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Absolute Orbit and Gravity Determination using Relative 
Position Measurements Between Two Satellites 
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Cornell University, Ithaca, N.Y. 14853-7501 

A method has been developed to use a time series of relative position measurements to 
estimate the orbits of two satellites along with corrections to the gravity model of the 
celestial body about which they orbit.  This system provides autonomy or near autonomy 
and could be used for gravity recovery at the Moon or a planet.  This system eliminates the 
need for a third spacecraft that maintains a constant link with Earth-based tracking stations 
when the two probe spacecraft pass to the far side of the body whose gravity model is being 
estimated.  The system uses a radio cross link to measure the relative range between the two 
satellites.  It uses an optical imaging device on one of the satellites, such as a star camera, 
and a light beacon on the other satellite in order to measure the relative bearing between the 
satellites referenced to inertial coordinates.  The two satellites’ orbits and corrections to the 
gravity field model are shown to be absolutely observable in cases where the two orbital 
altitude time histories are not identical.  An extended Kalman filter for this system is 
developed, and it is tested using data from a truth-model simulation.  The resulting system 
can achieve absolute RMS position accuracies of 3.5 m, absolute RMS velocity accuracies of 
0.003 m/s, and RMS gravity accuracies of 3x10-7 m/s2 when operating on a month’s worth of 
data from a pair of Lunar orbiting spacecraft. 

I. Introduction 
he field of orbit determination is as old as Kepler and has reached a high state of maturity.  A modern treatment 
of orbit determination is contained in a text book that has been written by recognized leaders in the field 1.  

Another subject that has a long history is that of gravity model determination based on observations of satellite 
orbits 2,3.  These techniques use orbit models and measurements in a batch filter or an extended Kalman filter (EKF) 
to estimate orbit, and if desired, corrections to the gravitational model.  Measurements might include GPS 
pseudorange and Doppler shift, two-way range from a laser ranging system or a satellite-borne radar altimeter, and 
Doppler shift or integrated Doppler shift from satellite or ground beacons 1. 

The recent initiative to revisit the Moon and eventually explore Mars has generated a renewed interested in 
developing improved orbit determination methods for satellites that orbit these bodies.  This interest, in turn, has 
generated an interest in the generation of improved gravity models for these bodies because improved gravity 
models enable increased orbit determination accuracy or a reduced need for measurements in order to achieve a 
given level of accuracy.  The Japanese mission SELenological and ENgineering Explorer (SELENE) is scheduled to 
launch in 2007 and plans to use inter-satellite Doppler shift measurements between 3 Lunar-orbiting satellites in 
conjunction with Very Long Baseline Interferometry using Earth-based tracking assets in order to recover a gravity 
model on the far side of the Moon 4.  The planned Lunar Reconnaissance Orbiter mission is slated to carry a laser 
altimeter that may be used for simultaneous orbit determination and gravity model estimation 5.  The Gravity 
Recovery And Interior Laboratory (GRAIL) mission, which is in the concept study phase, also seeks to map the 
Moon's gravity field, though for scientific rather than operational reasons 6. 

One difficulty of gravity/orbit determination systems for orbits about the Moon or about a planet is their lack of 
autonomy.  Near-Earth systems, such as the Gravity Recovery And Climate Experiment (GRACE) mission, require 
data from external systems such as the Global Positioning System (GPS) or satellite laser ranging systems.  External 
measurements are not readily available when operating around the Moon or a planet.  GPS is unusable, and radio-
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based navigation must rely on expensive systems such as the Deep-Space Network 7.  The SELENE concept needs 
to use Earth-based tracking assets in order to carry out its mission 4, and the GRAIL mission is likely to require 
similar data.  Lunar gravity determination is especially difficult because Earth-based systems cannot track a satellite 
on the never-visible far side of the Moon.  Therefore, missions such as SELENE need to include an extra satellite 
that is visible both to the Earth and to a second satellite or pair of satellites behind the Moon.  The LRO mission's 
laser altimeter may offer some degree of autonomy for purposes of orbit and gravity model recovery, but it remains 
unclear how well such a scheme will work. 

The present paper seeks to build on an autonomous orbit determination concept that has been proposed for a pair 
of satellites 8,9.  It determines the absolute orbits of the two satellites based on a time history of measurements of the 
relative position vector between the two spacecraft, as depicted in Fig. 1.  The measurement Δr12(tk) in the figure is 
the full 3-dimensional position vector of Satellite 1 measured relative to Satellite 2 and referenced to inertial 
coordinates.  The system measures Δr12(tk) by measuring the range between the satellites along with the inertial 
bearing of Satellite 1 as viewed from Satellite 2.  Except for a few special cases that have identical altitude time 
histories, the absolute orbits of both satellites are observable from a time sequence of relative position 
measurements Δr12(tk), Δr12(tk+1), Δr12(tk+2), ... 8, and absolute position accuracies on the order of 1 m may be 
achievable if a sufficiently accurate measurement system and a sufficiently accurate gravity model are available 9. 

 
The goal of the present paper is to investigate whether the system of 8,9 can be used to estimate corrections to the 

central body's gravity model in addition to the two satellites' orbits.  If workable, then this system would enable 
autonomous or nearly autonomous GRACE-mission-type determination of gravity models at the Moon, Mars, or 
other planets.  Like GRACE, it would use a radio ranging signal to measure the inter-satellite range.  The addition 

Δr12(tk+2) 

Δr12(tk+1) 

Figure 1.  Three samples of the time history of the relative position vector 
between two Lunar-orbiting satellites. 
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of an optical system for measuring the bearing of the Δr12 vector would make up for the loss of external aids such as 
GPS or a ground-based laser ranging system.  Such a system would be simpler than what is planned for the 
SELENE mission because it could estimate gravity corrections on the far side of the Moon without the need to have 
an auxiliary spacecraft that was simultaneously visible from an Earth-based tracking network and from the satellites 
on the far side of the Moon. 

This paper makes four contributions to the study of a dual-spacecraft orbit/gravity estimation system.  First, it 
develops a semi-analytical demonstration of the simultaneous observability of the two orbits and the 1/r2 
gravitational constant μ for a simple central-force gravitational field.  Second, it sets up a general model and 
develops an EKF for estimating the following quantities: the positions and velocities of the two satellites, a 
perturbation to μ, perturbations to the higher-order coefficients in a spherical harmonic expansion of the body's 
gravitational field, solar radiation pressure coefficients for the two spacecraft, Markov acceleration errors, and 
sensor biases.  The Kalman filter estimates these quantities based on realistic measurements of absolute range, 
accumulated delta range, and absolute bearing from one spacecraft to the other.  Third, this paper performs a 
linearized numerical observability calculation for its Kalman filter model, and it demonstrates the simultaneous 
observability of all model states.  Fourth, it presents truth-model simulation results that illustrate how this system 
could perform if applied to a Lunar gravity estimation mission. 

The remainder of this paper presents its analyses, models, simulations, and results in five sections plus 
conclusions.  Section II develops a linearized observability analysis for the two spacecraft orbits and the μ central 
force parameter of a 1/r2 gravity model.  Section III presents a system model that includes higher-order gravity 
terms, non-gravity disturbance accelerations, and realistic measurement models for relative range and bearing.  
Section IV develops an EKF for the system model of Section III using the Square-Root Information Filter (SRIF) 
implementation.  It also explains how to modify the SRIF calculations in order to numerically compute this system’s 
linearized observability Gramian.  Section V describes the truth-model simulation that has been used to study this 
system’s observability and accuracy.  Section VI presents the results of the linearized observability calculation 
along with Kalman filter estimation results for a truth-model simulation of a Lunar gravity recovery mission.  
Section VII summarizes the paper and presents its conclusions. 

II. Orbit/Gravity Observability in a 1/r2 Central-Force Field 
This section develops a simple orbit/gravity observability analysis for a dual-spacecraft problem with a simple 

1/r2 central force.  This analysis is an extension of that presented in the appendix of 8.  Its goal is to verify that the 
central gravitational force parameter μ can be observed simultaneously with the orbits based only on measurements 
of a time sequence of relative position vectors.  A second goal of this analysis is to determine any special orbital 
cases that are unobservable so that such cases can be avoided in the more complicated numerical calculations of this 
paper’s later sections. 

A. Linearized Dynamics Model and Observability Matrix 
Following the approach of 8, but with modifications to include gravity estimation and some changes of notation, 

the observability analysis for the central-force version of this system considers the following time-varying linearized 
system: 
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where δr1 and δr2 are the linearized perturbations to the position vectors of the two spacecraft, r1 and r2, δv1 and δv2 
are the linearized perturbations to the velocity vectors of the two spacecraft, v1 and v2, δμ is the linearized 
perturbation to the attracting body’s central force gravitational constant, and δy = δΔr12 is the linearized perturbation 
to the measured relative position vector between the two spacecraft.  The 13-by-13 A(t) matrix and the 3-by-13 
matrix C are implicitly defined by Eqs. (1a) and (1b).  The two matrices  
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are the gravity gradient matrices at the two spacecraft locations, and the vectors 
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equal the nominal gravitational accelerations at the two spacecraft divided by μ.  Equations (1a) and (1b) are 
linearization versions of the dual 2-body problem’s original nonlinear model: 
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Note that all position and velocity vectors are defined with respect to an inertially-oriented coordinate system whose 
origin lies at the center of mass of the attracting central body. 

The observability analysis for the time-varying linear system in Eqs. (1a)-(1b) starts by deriving a formula for 
the measurement and its time derivatives: 
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where the observability matrix takes the form 
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Given a known left-hand side of Eq. (5) based on the known measurements and their inferred time derivatives, 
the observability of the system can be analyzed by considering the uniqueness of the δx solution of Eq. (5).  The 
solution is unique and the system is observable if all 13 columns of Ok are linearly independent.  If there are fewer 
than 13 linearly independent columns for all values of k, then no solution to Eq. (13) is unique, and the system is not 
observable. 

The number of rows in Ok is 3k, and the minimum k for which column linear independence is possible is k = 5.  
Using Eqs. (6), (2), (3), and (4a) along with the definitions of the matrices A(t) and C, the 15x13 O5 matrix takes the 
form: 
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where 
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B. Observability Analysis of Possible Ok Null-Space 
In keeping with the analysis of the appendix of 8, the condition for observability can be expressed as follows:  

The system is observable if and only if the system of equations: 

0=xδkO  (9) 

only has the trivial solution δx = 0 for all k ≥  5.  Thus, the question of observability reduces to the question of 
whether any of the matrices O5, O6, O7, ... has only a trivial null space.  Given that the first 3k rows of Ok+1 are equal 
to Ok, one way to confirm observability is to assume that all of the Ok matrices have a non-trivial null space and to 
show that this assumption leads to a contradiction.  Equivalently, one can assume that the columns of each Ok 
matrix are linearly dependent and then show that this leads to a contradiction.  This is the method used in 8 to 
determine which cases are observable and which cases are not observable. 

All of the unobservable cases of 8 are also unobservable in the present situation.  This is true because the first 12 
columns of each new Ok matrix equal the corresponding Ok matrix of 8.  The unobservable cases found in 8 
correspond to a non-trivial intersection of all the non-trivial null spaces of all of the original analysis' Ok matrices.  
This same subspace will be a non-trivial intersection of the null spaces in the present context because the required 
non-trivial δx null-space vectors can be constructed from those of 8 simply by appending the trivial 13th element δμ 
= 0.  Thus, the following two unobservable cases from 8 remain unobservable when the δμ gravity correction needs 
to be estimated along with the two orbits:  Both unobservable cases are for elliptical orbits with the same semi-
major axis, the same eccentricity, and the same mean anomaly at the same epoch.  These conditions cause them to 
have identical altitude and speed time histories.  If the two orbits are also co-planar, then they are unobservable.  
Alternatively, if they are non-coplanar, then they are still unobservable if they are phased to cross the intersection of 
the orbital planes at the same time (which leads to the impractical implication that they collide twice per orbit). 

The question of present interest concerns whether additional cases are unobservable.  This question can be 
addressed after reducing the dimensions of the matrices that must be considered.  The first 6 rows of Eq. (9) for any 
k ≥  2 imply that δr1 = δr2 and δv1 = δv2 in any null space of Ok.  Thus, the unobservability condition in Eq. (9) can 
be reduced to 
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In Eq. (10), δr = δr1 = δr2 is the common position perturbation of the 2 satellites, δv = δv1 = δv2 is their common 
velocity perturbation, and kO~  is a 3(k-2)-by-7 reduced observability matrix.  Note that the matrix [0 I] on the 
extreme left-hand side of Eq. (10) is a 3(k-2) by 3k matrix that acts to delete the first 6 rows from Ok in order to 
produce kO~ .  As an example, the reduced observability matrix for k = 5 is the 9-by-7 matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−+−−−+
−−−
−−

=

22211121
2
22

2
11

212121

2121

5
)(2

0

γγγγ
γγ
γγ

GGGGGGGG
GGGG

GG
O~

&&&&&&&&&&
&&&&  (11) 

If the columns of kO~  are linearly independent for any value of k, then the system is observable for the given pair 
of orbits.  If kO~  has a non-trivial null space for all k, then the system is unobservable.  Note that the null-space of 

kO~  is necessarily contained in the null space of jO~  for all j < k because kO~  is created from jO~  by appending 
3(k-j) additional rows. 

C. Numerical Observability Analysis of 5O~  
The present analysis departs from that of 8 because it has not developed a comprehensive analytical result that 

deals with all kO~  for k = 3, 4, 5,... in order to determine all observable and unobservable cases.  Instead, a 
numerical study of the system's observability has been performed by considering the linear independence of the 
columns of 5O~ .  This is a reasonable initial approach because 5O~  has enough rows to allow the possibility of its 
columns being linearly independent and because the analysis of 8 found that the linear dependence or independence 
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of the columns of 5O~  carried through to kO~  for all k > 5. 
The choice of the scaling of the columns and rows of kO~  becomes important in a numerical observability 

analysis.  The finite precision of computer calculations can cause false determinations of linear dependence or linear 
independence if a poor scaling is chosen.  A reasonable numerical scaling of kO~  can be achieved if all lengths are 
expressed in units of radii of the central body and if all times are expressed in units of Hergs, where one Herg 
equals 503 )( .

b /a μ  seconds if the radius of the central body ab is expressed in meters and if its gravitational constant 
μ is expressed in m3/s2.  In this alternate system of units, μ = 1 radius3/Herg2, and 2π Hergs is the period of an orbit 
whose semi-major axis equals the attracting body's radius. 

The results of this numerical analysis indicate that the system is observable in the general case because 5O~  has 
full column rank.  There is, however, a new unobservable case:  Like the two unobservable cases of 8, both 
spacecraft orbits have identical altitude and speed time histories, i.e., ||r1(t)|| = ||r2(t)|| and ||v1(t)|| = ||v2(t)|| for all t.  
This occurs only if they have the same semi-major axis, the same eccentricity, and the same mean anomaly at epoch.  
Different from the situation of 8, however, this new unobservable case does not require that the orbital planes be the 
same, or that the orbits be phased so that the two spacecraft cross the intersection of non-coplanar orbits at the same 
time.  The non-trivial unobservable displacement δr = δr1 = δr2 is perpendicular to the nominal relative position 
vector (r1-r2) in this new unobservable case, but the non-trivial unobservable velocity δv = δv1 = δv2 can have a 
component along this direction.  This counter-intuitive result has yet to be explained. 

The general observable case includes the situation in which both satellite orbits have the same semi-major axis 
and eccentricity.  In this case, observability holds true if the two orbits' mean anomalies at epoch differ.  This 
difference causes their altitude and speed time histories to differ by a time lag.  This case remains observable even 
when the 2 orbits are coplanar. 

III. Problem Model with High-Order Gravity Terms and Realistic Measurements 
The goal of this section is to develop the state, dynamics, and measurement models of a realistic estimation 

problem for the two spacecraft orbits and for corrections to a spherical harmonic gravity model.  This problem 
model will be used to design an EKF that estimates these quantities, to derive a numerical analysis of their 
observability, and to develop a truth-model simulation that can be used to study the Kalman filter's performance. 

A. Gravity Model 
The general non-spherical gravitational model used in this study takes the form 

∑+=
=

J

j
ojNNibbib ,t,S,,C,S,C,S,C,C;tAtA,t

1
302222212120

T )(])([)()( rgrgrg Δμ K  (12) 

where g(r,t) is the gravitational acceleration at position r and time t.  Both g and r are measured with respect to 
coordinates whose origin is fixed at the primary attracting body's center of mass and whose axes are inertially 
aligned. 

The gravitational acceleration in Eq. (12) consists of a term due to the gravity of the primary attracting body, the 
Aib(t)gb term, and terms due to the gravity of J nearby attracting bodies, the Δgoj(r,t) terms for j = 1, ..., J.  The 
former term is the product of the direction cosines rotation matrix Aib(t), which transforms from attracting-body-
fixed coordinates to inertial coordinates, and the gravity as computed in the body-fixed coordinate system, gb.  The 
Aib(t) body attitude matrix is assumed to be a known function of time.  Each of the Δgoj(r,t) terms is the difference 
between the nearby body's gravitational acceleration at r and its acceleration at the center of mass of the primary 
attracting body, hence the Δ prefix for each of these terms.  These terms depend on time because of the motions of 
the secondary bodies relative to the primary body.  J = 2 for Lunar orbit/gravity determination problems, with the 
Earth and the Sun being the two bodies of interest.  Their effects are modeled using simple 1/r2 gravitation laws. 

The gravitational acceleration of the non-spherical mass distribution of the primary attracting body depends on 
the satellite's location in body-fixed coordinates, rb = r)(T tAib , and on the N2+2N-2 gravity model parameters μ, C20, 
C21, S21, ..., SNN.  The parameters C20 through SNN are the coefficients in an N-degree, N-order spherical harmonic 
approximation of the body's gravitational potential energy per unit mass 10: 
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where the functions Pnm[] are Legendre and associated Legendre functions, θ(rb) is the body-relative latitude at the 
position rb, and λ(rb) is the body-relative longitude at rb. 

The gravitational acceleration of the central attracting body is computed from this potential energy function by 
taking its gradient: 

T
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The actual computation of this gradient is carried out using the non-singular recursion II of Table 2 of 10. 
The EKF and the observability analysis also require the derivatives of gb with respect to rb, μ, C20, C21, S21, ..., 

and SNN.  These derivatives are needed in order to estimate both the orbits and corrections to the gravity model 
parameters.  These derivatives are computed by using the chain rule in term-by-term differentiation of the recursion 
that is used to compute gb. 

B. Estimated State Vector 
This paper's Kalman filter estimates the following state vector: 

T
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T
2

T
2

T
21

T
1

T
1

T
1 KμρΔρΔβδβδ φavravrx =  (15) 

where δa1 and δa2 are 3-dimensional disturbance acceleration vectors that act on satellites 1 and 2, β1 and β2 are 
solar radiation pressure coefficients in units of area divided by mass for satellites 1 and 2, Δρφ is the bias in a 
measurement of the accumulated delta range between the satellites that is based on the carrier phase of a radio cross-
link, and Δρp is the bias in a measurement of the absolute range between the satellites that is based on a transmitted 
pseudo-random number (PRN) code, much like GPS pseudorange measurements.  The dimension of this state 
vector N2+2N+20. 

It would be possible to eliminate the need to estimate the solar radiation pressure coefficients β1 and β2 if the 
satellites carried accurate accelerometers and attitude sensors.  These sensors could be used to directly measure the 
non-gravitational forces, which could then be used in the filter's dynamic model.  Note, however, that the random 
acceleration errors, δa1 and δa2, might still be needed in order to account for the effects of unmodeled higher-order 
terms in the actual gravity field.  If the orbits were near the Earth and if accelerometer data were not available, then 
one would need to estimate atmospheric drag parameters that were similar to β1 and β2.  Drag parameters have been 
omitted because the target application is Lunar orbits, where drag is negligible. 

C. Dynamics Model 
This sub-section presents the various equations that the Kalman filter uses to model the time evolution of its state 

vector.  The time evolution of the position and velocity of each satellite is modeled using its point-mass translational 
equations of kinematics and dynamics: 
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where rs is the position of the Sun and ps(ri,rs) is the solar radiation pressure, which depends on distance from the 
Sun and on whether or not the spacecraft is in the shadow of the primary attracting body. 

The acceleration disturbances are modeled by a discrete-time first-order Gauss/Markov process: 

aik
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aikki
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ki aikkaikk etet ντΔτΔ σδδ /2/
1 1)()( −+=+ aa    for i = 1,2 (17) 

where tk and tk+1 are sample times, Δtk = tk+1 - tk, and νaik is a 3-dimensional discrete-time Gaussian white-noise 
sequence with a mean of zero and a covariance equal to the identity matrix.  The Markov process' first-order time 
constant τaik depends on the satellite index i and the sample index k because it is scaled to vary in proportion to 

1.5)( ki tr  in order to model the effect of altitude on the rate of change of the effects of unmodeled higher-order 
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terms in the actual gravity field.  Similarly, the Markov process' nominal standard deviation σaik depends on i and k 
because it is scaled to vary in proportion to -3)( ki tr  in order to model the effect of altitude on the magnitudes of 
unmodeled higher-order terms in the actual gravity field.  This is a conservative model of the acceleration error 
magnitude's fall-off with altitude that presumes higher magnitudes of the unmodeled gravity terms at high altitudes 
than is likely warranted. 

The dynamics of the solar radiation pressure parameters are modeled by discrete-time random-walk processes: 

ikkkiki νttt ββ Δσββ +=+ )()( 1    for i = 1,2 (18) 

where νβik is a scalar discrete-time Gaussian white-noise sequence with a mean of zero and a covariance of 1, and σβ 
is the square-root of the intensity of the white noise process that drives the random walk. 

The remaining elements of the state vector are modeled as being constants.  Their discrete-time dynamic models 
take the forms 

)()( 1 kk tt φφ ρΔρΔ =+  (19a) 

)()( 1 kpkp tt ρΔρΔ =+  (19b) 

)()( 1 kk tt μμ =+  (19c) 
)()( 20120 kk tCtC =+  (19d) 

M   
)()( 1 kNNkNN tStS =+  (19e) 

The discrete-time dynamic models for the time evolution of the satellites' positions and velocities are derived via 
numerical integration of the system of coupled nonlinear differential equations in Eq. (16).  The 1-sample 
integration from time tk to time tk+1 is performed using constant values for the disturbance acceleration and for the 
solar radiation pressure coefficient.  These values are  

)]()([50 1 kikii tt. aaa δδδ += +    for i = 1,2 (20a) 
)]()([50 1 kikii tt. βββ += +    for i = 1,2 (20b) 

The values δai(tk) and δai(tk+1) are taken from the discrete-time Markov model in Eq. (17), and the values βi(tk) and 
βi(tk+1) are taken from the discrete-time random-walk model in Eq. (18). 

The dynamics models described in Eqs. (16)-(20b) can be assembled into the generic discrete-time model form 

),(1 kkkk wxfx =+  (21) 

where xk is the state vector from Eq. (15) at sample time tk and xk+1 is the state at time tk+1.  The discrete-time 
process-noise vector wk consists of 8 elements: 

T
kkakkak ,,, ][ 2

T
21

T
1 ββ νννν=w  (22) 

It has a mean of zero and a covariance equal to the identity matrix. 
The EKF and the observability analysis of Section IV both require computation of the dynamics model's 

Jacobian matrices  

),( kkk

k
k

wxx
f

∂
∂

=Φ    and   
),( kkk

k
k

wxw
f

∂
∂

=Γ  (23) 

Computation of the elements of these matrices that are associated with Eqs. (17)-(19e) is simple.  Computation of 
the elements associated with the ri and vi propagations, although straightforward, is complicated.  These 
computations involve integration of a state transition matrix differential equation to determine the corresponding 
components of Φk and integration of a disturbance effectiveness matrix differential equation to compute the 
corresponding components of Γk.  The matrix differential equation for the Φk components can be derived by 
differentiating the system of differential equations in Eq. (16) with respect to the initial condition xk, and the matrix 
differential equation for the Γk components comes from differentiating the system in Eq. (16) with respect to the 
constant disturbance parameters δai or βi.  The computation of Γk includes application of the chain rule in order to 
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account for the effects of elements of wk on δai and βi as implied by Eqs. (17), (18), (20a), and (20b).  Note that the 
altitude dependence of the quantities τaik and σaik in Eq. (17) has not been considered when computing Φk and Γk 
because its effect on the derivatives is presumed to be negligible. 

The matrices Φk and Γk are large and have a structured sparsity when N, the maximum order and degree of the 
estimated corrections to the gravity model, is large.  It is usually worthwhile in terms of computational time savings 
to tailor any filter calculation to exploit these matrices’ structures. 

D. Measurement Model 
This section develops a model for a realistic set measurements of the relative position vector Δr12.  The likely 

instruments that would be used to measure Δr12 would be a radio cross-link to measure the magnitude ||Δr12|| and an 
optical system to measure the bearing 12r̂Δ  = Δr12/||Δr12||. 

This study presumes that the radio cross-link would measure ||Δr12|| based on the principle of dual one-way 
ranging 1.  In this method, each satellite would have a GPS-like transmitter and a GPS-like receiver that would run 
off of a common oscillator.  Each satellite's range measurement would include the effects of receiver/transmitter 
clock errors.  If a stable oscillator were used on each satellite and if the range measurements from the two satellites 
were averaged, then the effects of the receiver/transmitter clock errors would drop out. 

The measurement concept envisions using two types of range measurements that are derivable from the radio 
cross link.  One type measures the relative change in range based on precise carrier phase measurements, and the 
other type measures absolute range using the time of flight of a PRN code, as in GPS pseudorange measurements.  
The models for these two measurement types are 

kkkk tty φφ νρΔ ++−= )()( 211 rr  (24a) 

pkpkkk tty νρΔ ++−= )()( 212 rr  (24b) 

where Δρφ and Δρp constitute measurement biases and νφk and νpk are uncorrelated, zero-mean, discrete-time 
Gaussian white noise measurement errors with the respective standard deviations σφ and σp.  Although these two 
models look identical, there are important differences.  The carrier-phase measurement in Eq. (24a) normally will be 
very precise, with σφ ≅  0.005 m or even less.  The absolute range measurement in Eq. (24b) will be much less 
precise; σp ≅  0.5 m.  The advantage of the latter measurement is that there will be a priori knowledge that the 
absolute range bias has an expected value of E{Δρp} = 0 with a standard deviation on the order of the residual 
calibration error, which might be about 0.5 m.  The Δρφ bias of the carrier phase measurement, on the other hand, 
will have no a priori mean or standard deviation.  Thus, it will have to be estimated from scratch.  The first 
measurement has been included because it is known to be useful on the GRACE mission for recovering high-order 
gravity effects.  The second measurement has been included because it makes the system much more likely to be 
observable; the observability calculations of 8,9 and of Section II presume the availability of an absolute range 
measurement. 

This study assumes that the relative direction vector 12r̂Δ  would be measured by an optical system.  Suppose 
that Satellite 1 carried a light beacon, perhaps a bright light-emitting diode, and that Satellite 2 carried a star camera.  
The intensity of the light beacon could be sized to enable the star camera to detect it at typical inter-satellite 
distances, which may range from 10 to 50 km.  The beacon could flash on and off, both to save power and to help 
the star camera distinguish it from stars.  The star camera's data processing software could be modified to enable it 
to identify the beacon and locate the beacon relative to the stars.  Measurement of the location of the beacon relative 
to known stars in the camera's field of view (FOV) would constitute measurement of 12r̂Δ . 

The relative bearing measurement model takes the form 

rk
kk

kk
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k
k
k
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ttˆ
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=+=
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21
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rr
rrr  (25) 

where νΔrk is the 3-dimensional uncorrelated, zero-mean, discrete-time Gaussian white noise bearing measurement 
error vector with covariance equal to σΔrI.  Technically, νΔrk should have zero variance in the direction 12r̂Δ  
because the length of this vector is known exactly.  Practically, this slight modeling error has no impact on the 
filter's performance, and it is tolerated because it simplifies the necessary computations. 
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Equation (25) includes no measurement bias term.  The use of a single star camera to measure both the beacon 
and the inertial direction of the stars tends to cancel out the effects of biases if the camera's optics and CCD sensor 
exhibit no significant geometric nonlinearities.  If one instrument were used to measure Satellite 2's inertial attitude 
and if a second instrument were used to measure the bearing of the Satellite-1 beacon relative to Satellite 2's body-
fixed coordinates, then some sort of alignment bias would be present in the resultant 12r̂Δ  measurement.   
Therefore, the best instrumentation strategy is to avoid such biases by making the two measurements using a single 
instrument, as envisioned in the present study. 

The bearing measurement 12r̂Δ  may not be available continuously.  Satellite 2 might be required to perform 
slew maneuvers in order to keep Satellite 1's beacon in the star camera's FOV.  Alternatively, the star camera might 
be mounted on a gimbaled platform so that it could be slewed without having to maneuver the whole spacecraft.  In 
either case, it might not always be possible or practical to slew the camera FOV to keep Satellite 1 in view.  Two 
additional problems with this measurement are glare and lack of stars in the FOV.  If the Sun, the Earth, or the 
sunlight portion of the primary attracting body fell within the FOV, then the camera could not be used because of 
too much glare.  Alternatively, if the dark side of the primary attracting body took up all or most of the FOV, then 
there would be no stars to provide an inertial point of reference.  This latter situation will arise whenever 12r̂Δ  is 
aligned too closely with the nadir vector from Satellite 2.  Therefore, this system must be able to cope with 
intermittent unavailability of the 12r̂Δ  measurement. 

An additional measurement is considered at the end of this study as a means of enhancing the observability of 
the central gravity parameter μ.  This measurement is the range rate of one of the spacecraft relative to an Earth-
based tracking station.  This measurement could be made using the carrier phase part of a dual-one-way-ranging 
system between the spacecraft and the tracking station.  It is envisioned that such a measurement would be used 
infrequently, perhaps only once a month with only a 100 sec tracking period.  Such data, although violating the goal 
of complete autonomy, might greatly enhance the system's ability to perform its orbit/gravity estimation task.  If the 
range rate measurement is made for Satellite 2, then the model for this measurement takes the form: 

kvkekk νtˆy 22
T
26 )( += vrΔ  (26) 

where ekˆ2rΔ  is the unit direction vector from the Earth tracking station to Satellite 2 and νv2k is the zero-main, 
Gaussian measurement error whose standard deviation is σv2.  This simplified measurement model presumes that 

ekˆ2rΔ  is known exactly, which is not quite true due to uncertainty in r2, but the uncertainty is small enough to 
neglect.  This model lumps the effect of the Earth tracking station's Moon-relative velocity into the measurement y6k. 

In summary, the measurements in Eqs. (24a)-(26) can be lumped into a single nonlinear measurement equation 
of the form: 

kkkk ν+= )(xhy  (27) 

where yk is the measurement vector that is composed of the left-hand sides of Eqs. (24a)-(26), hk(xk) is the 
measurement model function whose components are the leading terms on the right-hand sides of Eqs. (24a)-(26), 
and νk is the measurement noise vector whose elements are the noise terms in Eqs. (24a)-(26).  If Rννk is defined to 
be the square-root information matrix for the random measurement error vector νk, then 1−

kRνν  = 
diag(σφ,σp,σΔr,σΔr,σΔr,σv2).  The Jacobian matrix of the measurement function is defined to be Hk = kk x/h ∂∂ .  It is 
needed by the Kalman filter and by the observability analysis. 

The vector function hk(xk) depends on k.  As defined above, its nominal dimension is 6, but the actual dimension 
of hk(xk) can vary with time.  Its dimension will usually be 5 because the velocity measurement in Eq. (26) will be 
used only rarely, if ever.  The number of measurements will drop down further to two whenever Satellite 2's star 
camera FOV fails to track the Satellite-1 beacon, whenever there is glare in the camera FOV, and whenever the 
FOV sees too much of the primary attracting body.  This possibility of change in the number of measurements is the 
reason why the measurement error vector’s square-root information matrix Rννk can vary with k; its dimension and 
element definitions must vary with those of hk(xk).  A second reason for variation of the function hk(xk) with the 
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sample index k is that ekˆ2rΔ  in Eq. (26) varies with k due to the motion of the Earth relative to the primary 
attracting body. 

IV. An EKF in SRIF form and a Linearized Observability Calculation 
The EKF that estimates the state vector of Eq. (15) and the analysis of the observability of this state both rely on 

linearizations of the dynamics model in Eq. (21) and the measurement model in Eq. (27).  They both use standard 
extended SRIF techniques that are an extension of the linear SRIF developed in 11.  This section briefly reviews the 
necessary computations. 

A. SRIF Form of the EKF 
The SRIF form of the Kalman filter uses an information equation format to store the state estimate and its 

covariance.  The following form of the a posteriori state information equation is suitable for use in an extended 
SRIF: 

xkkkxxk ˆˆR̂ ν−=)-( xx  (28) 

where kx̂  is the a posteriori (i.e., filtered) state estimate at sample time tk, xxkR̂  is its square, upper-triangular 
square-root information matrix, and xkν̂  is a discrete-time, zero-mean, Gaussian white-noise sequence with 
covariance equal to the identity matrix.  The estimation error covariance for kx̂  is -T-1

xxkxxkxxk R̂R̂P̂ = , where the 
notation ()-T indicates the inverse transpose of the matrix ().  Note how the use of the overstrike (^) in this section 
indicates quantities associated with the a posteriori estimate; in previous sections it indicated unit-normalization, as 
for the inter-spacecraft bearing vector 12r̂Δ . 

The dynamic propagation from tk to tk+1 uses a linearization of Eq. (21) about the values xk = kx̂  and wk = 0.  It 
performs the following computations: 

)0,(1 kkk x̂fx =+  (29a) 
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in order to compute the a priori (i.e., predicted) state estimate 1+kx  and its estimation error square-root information 
matrix 1+xxkR  that are valid at sample time tk+1.  The matrices on the left-hand side of Eq. (29b) are calculated using 
orthonormal/upper-triangular (QR) factorization of the matrix on the right-hand side of the equation 12, which 
implies that Qprk is a square, orthonormal matrix and that wwkR  and 1+xxkR  are square, upper-triangular matrices.  
The matrix in the upper left-hand entry of the block matrix on the right-hand side of Eq. (29b) is an identity matrix 
because that is the correct a priori square-root information matrix for the process noise vector wk as defined in the 
present problem.  These operations result in an a priori information equation at sample time tk+1 of the form 

1111 )-( ++++ −= xkkkxxkR νxx  (30) 

where 1+xkν  is the information equation’s zero-mean, identity-covariance noise term. 
The measurement update at time tk+1 is carried out using the following calculations: 
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Again, the matrices on the left-hand side of Eq. (31a) are computed via QR factorization of the matrix on the right-
hand side so that 1+upkQ  is orthonormal and 1+xxkR̂  is upper-triangular.  The outputs of Eqs. (31a) and (31b) are 

1+kx̂ , the a posteriori state estimate at time tk+1, and its estimation error square-root information matrix 1+xxkR̂ .  
These outputs complete the filter cycle for one sample interval and prepare it for recursive operation over the next 
sample interval. 
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B. SRIF Form of the Linearized Observability Calculations 
The linearized observability calculations use SRIF techniques to compute the square-root of a re-normalized 

observability Gramian.  This Gramian square root is equivalent to the square-root information matrix for the error in 
the smoothed estimate of x0 under the assumption of zero process noise and zero a priori information about x0.  If 
this square-root information matrix is called xxkR~  when based on the measurements that extend from sample time t0 
to sample time tk, then its computation proceeds recursively as follows: 

I~ =−1Φ    and   ⎥⎦
⎤
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⎡=

000
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HRR~xx νν
 (32a) 
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Equation (32a) initializes the square matrices 1−k
~Φ  and xxkR~  at sample k = 0, and Eq. (32b) defines how k

~Φ  and 
1+xxkR~  are computed recursively from 1−k

~Φ  and xxkR~ .  This recursion uses the linearized dynamic propagation 
model for the time interval from tk to tk+1 and the linearized measurement model at time tk+1.  k

~Φ  is the state 
transition matrix from time t0 to time tk+1.  The 1+xxkR~  computation in Eq. (32b) uses QR factorization to compute 
the orthonormal matrix 1+kQ~  and the square, upper-triangular matrix 1+xxkR~  from the matrix on the right-hand side 
of the equation.  The matrices Hk and Φk used in Eqs. (32a) and (32b) are computed using the same linearizations as 
are used in the EKF of the preceding sub-section. 

If K is the last sample of a data batch, then the square symmetric matrix xxKxxK R~R~T  is the observability Gramian 
for the system.  The system is observable if and only if this matrix is full-rank.  This is equivalent to saying that the 
system is observable if and only if the smoothed covariance matrix xxKP~  = -T-1

xxKxxK R~R~  has all finite entries.  This 
latter matrix is used as a measure of the degree of observability because the square-roots of its diagonal elements 
give indications of the estimation accuracy that can be expected for the corresponding elements of the state vector.  
Large diagonal elements occur when the Gramian is nearly singular.  They indicate poor accuracy because of poor 
observability. 

V. Lunar Truth-Model Simulation 
A truth-model simulation has been used to generate simulated time histories of the measurements and states for 

an example orbit/gravity estimation problem at the Moon.  Its output data have been used to evaluate the EKF of 
Section IV.  The EKF operates on simulated measurements and produces state estimates.  These estimates are then 
compared to the simulation’s “truth” states.  The EKF’s linearizations about the resulting state estimates are used in 
the observability analysis. 

The truth model implements a simulation of the dynamics model in Eq. (21) and the measurement model in Eq. 
(27).  This simulation includes random measurement noise, as defined in Eq. (27), along with random initial 
estimation errors, but its dynamic model errors are not merely realizations of a random wk process noise time 
history.  Instead, they take the form of systematic model errors that may occur in a real system.  The systematic 
model errors come in the form of extra terms in the gravity model.  These extra terms expand the order and degree 
of the “truth” gravity model beyond the value N used in the filter’s gravity model as defined in Eq. (13).  The extra 
gravity terms associated with the spherical harmonic coefficients, C(N+1)0, C(N+1)1, S(N+1)1, … act as the process noise.  
These “disturbance” coefficients have been chosen to be on the order of the corresponding coefficients of the 
Earth’s gravity field for lack of a better idea of the values of the Moon’s actual high-order gravity terms.  It is hoped 
that these values are representative of likely Lunar gravity perturbations. 

A significant feature of the truth-model simulation is its calculation of the availability of the relative bearing 
measurement in Eq. (25).  The simulation assumes that Satellite 2’s star camera is always slewed so that the relative 
bearing vector 12r̂Δ  lies in the center of its FOV.  It also assumes that the FOV is circular with a fixed angular 
radius.  It returns simulated measurements of 12r̂Δ  only if 4 conditions are met: 1) the Sun is not in the FOV, 2) no 
part of the Earth is in the FOV, 3) no part of the sunlit portion of the Lunar surface is in the FOV, and 4) less than 
2/3 of the FOV is occulted by the Moon.  The first three conditions are no-glare conditions, and the last condition 
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ensures that enough stars will be visible to supply an inertial reference for 12r̂Δ .  Simulation of the first 2 conditions 
is straightforward.  The 3rd condition is tested by considering 500 random direction vectors that are sampled 
uniformly from the FOV.  If any of them points towards a sunlit part of the Moon, then the 12r̂Δ  measurement is 
deemed unavailable.  The 4th condition is evaluated by computing the intersection of two small circles on a sphere, 
one being the FOV and the other being that subtended by the Moon.  This computation involves numerical 
integration because a closed-form solution for the needed integral is not known. 

VI. Observability and Filtering Results from the Truth-Model Simulation Study 

A. Lunar Orbit Scenario 
The dual-spacecraft Lunar orbit scenario that has been considered has Satellites 1 and 2 both in elliptical orbits 

with identical apoapsis altitudes of 250 km and identical periapsis altitudes of 50 km.  Their nominal orbital periods 
are 7363 sec, and Satellite 1’s altitude time history leads that of Satellite 2 by slightly more than 2% of an orbital 
period (156 sec), which leads to a maximum altitude difference between the spacecraft of 13.5 km.  Satellite 1’s 
orbit is inclined 89.20 deg with respect to the Lunar equator, which is defined to lie in the plane of the Moon’s orbit 
about the Earth, and Satellite 2’s orbit is inclined by 89.55 deg.  The total angular separation between the two orbital 
planes is 0.42 deg because some additional separation occurs due to a difference in the longitudes of their ascending 
nodes. 

The truth-model simulation has been run for 336 orbits or 28.6 Earth days, that is, about one month.  This length 
of simulation has been chosen in hopes of achieving good observability by allowing the Moon to rotate one full 
revolution.  This rotation causes its entire surface to pass near the two orbits’ periapsis, which remain almost fixed 
in inertially oriented coordinates.  It is conjectured that this complete “scanning” of the Lunar surface by the 
periapsis will enhance observability of the gravity parameters because periapsis presumably is the location that 
offers the maximum sensitivity to the gravity parameters. 

The relative position sensors are assumed to sample 100 times per orbit, or once every 73.6 sec.  The simulated 
FOV angular radius of the star/beacon camera on Satellite 2 is 15 deg.  This radius and the geometries and phasing 
of the orbits results in a 28% drop-out rate of the 12r̂Δ  bearing measurements due either to glare or to Lunar 
occultation of the stellar reference points. 

B. Observability Results 
The observability analysis of Section IV.B has been applied to this scenario under the assumption of complete 

autonomy.  Autonomy presumes that there are no absolute Doppler measurements from an Earth-based tracking 
station, as in Eq. (26). 

The state is completely observable in this situation.  This case falls within the set of situations that are predicted 
to produce observability by the analysis of Section II.  Nevertheless, the complete observability of the state in Eq. 
(15) is somewhat surprising given that it includes biases on both of its inter-satellite range measurements; the 
analysis of Section II presumes that the magnitude of 12rΔ  is measured without any bias. 

The central-force gravity parameter μ is not strongly observable in this completely autonomous scenario.  Its 
predicted batch estimation error standard deviation is 13.5 parts in a million.  An improved accuracy would result if 
the estimator had access to one or more Doppler shift measurements from an Earth-based tracking station, as in Eq. 
(26), during the one month data collection interval. 

C. EKF Performance 
The EKF has been run several times on the data from the Lunar orbit scenario of Section VI.A.  Each run has 

attempted to estimate gravity model corrections out to degree and order N = 12, which yields a state vector 
dimension of 188.  The truth-model simulation included gravity terms out to degree and order 20.  One run assumed 
perfect a priori knowledge of μ, and another run started with an initial μ error of 52 parts in 106. 

All runs have been initialized as follows:  They have started with zero a priori knowledge about the carrier phase 
range bias state Δρφ and with an a priori calibration error standard deviation of 1.5 m for the PRN code phase range 
bias state Δρp.  The solar radiation pressure parameters β1 and β2, the range biases Δρφ and Δρp, and all of the 
gravity model’s spherical harmonic coefficients C20 through SNN have been initialized at zero in all of the EKF runs 
even though the truth values for these quantities are all non-zero. 
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Each run has used the tuning parameter values: 

τaik = (175 sec)x[||rik||/(1.89x106 m)]1.5, σaik = (10-7 m/s2)x[(1.89x106 m)/||rik||]3, (33a) 
σβ = 9.18x10-5 m2/(kg-sec0.5), σφ = 0.005 m, σp = 1.2 m, and σΔr = 5 arc sec (33b) 

The τaik and σaik values in Eq. (33a) have been chosen to cause the Markov acceleration error model in Eq. (17) to 
give a reasonably good approximation to the acceleration errors that are caused by the filter’s neglect of the higher-
order terms in the truth gravity model.  These values have been tuned to give the closest Markov approximation of 
the neglected terms when operating at the lowest orbital altitudes.  Above these altitudes, the Markov model is 
conservative in that it presumes too much disturbance acceleration.  Note that the values for σφ, σp, and σΔr in Eq. 
(33b) are the same as the values used to generate the random measurement errors in the truth-model simulation. 

The results for a filter run that uses perfect a priori knowledge of μ are presented in Fig. 2.  These results show a 
fairly rapid position and velocity convergence from initial absolute position errors of 100 m and initial absolute 
velocity errors of 0.100 m/s to position errors on the order of 10-20 m and velocity errors on the order of 0.01 to 
0.02 m/s.  After 336 orbits, these numbers improve even further to yield per-axis RMS position errors of only 3 m 
and per-axis RMS velocity errors of only 0.003 m/s. 

The estimation results for the gravity corrections are similarly encouraging.  The a priori per-axis RMS gravity 
model error along the orbits is 4.2x10-5 m/s2.  After processing the month’s worth of Δr12 data, this error level is 
reduced to 2.7x10-7 m/s2.  Thus, the gravity model accuracy is improved by over two orders of magnitude. 
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Figure 2.  Position and velocity estimation errors for Satellite 1 with perfect 

a priori knowledge of μ. 

The system works less well when there is significant initial uncertainty in μ if Doppler shift measurements from 
an Earth-based tracking station are not used.  Figure 3 illustrates what happens when the initial uncertainty of μ is 
52 parts in 106.  The position and velocity estimation errors in Fig. 3 do not reach RMS values as low as those of 
Fig. 2 after 20 orbits.  Even after a month of filtering the per-axis RMS position errors are 17 m, and the per-axis 
RMS velocity errors are 0.014 m/s.  Similarly, the estimated corrections to the gravitational model are significantly 
degraded.  After one month of filtering, the per-axis RMS acceleration errors are only reduced to 3.7x10-5 m/s2. 

The poor performance of the latter case can be attributed to a significant residual error in its estimate of μ.  The μ 
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estimate settles to a nearly steady value after about 25 orbits, and this value is in error by 46 parts in 106.  The μ 
estimate improves only very slowly after that, presumably because of its weak observability.  If one compares the 
estimates of the other gravity parameters, C20 through SNN, between the two cases, then one finds that most of these 
quantities’ estimates are nearly identical.  If one analyzes the large position errors on the top plot of Fig. 3, one finds 
that these time histories are dominated by a 29 m altitude bias.  This bias is not apparent on the figure because the 
projection of altitude onto the three axes of the Moon-Centered Inertially-Fixed (MCIF) coordinate system varies 
with time.  The altitude bias is precisely the value that is required to counteract the effect on mean orbital motion of 
the nearly steady error in μ.  This makes sense because the mean rates of the two orbits should be observable from 
observations of the bearing vector 12r̂Δ . 
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Figure 3.  The effect of imperfect a priori knowledge of μ on the position 

and velocity estimation errors for Satellite 1. 

The correlation of the μ error with an altitude error and the absence of an error in the mean orbital rates suggests 
a method of improving the system:  Use an Earth-based tracking system in order to make an external measurement 
of a component of the velocity of one of the spacecraft.  If this component is nearly aligned with the actual velocity, 
then the tracking system will be able to correct the μ and altitude estimation errors because the inaccurate altitude 
and the accurate average orbital rate translate into an inaccurate average speed that an Earth-based Doppler shift 
measurement can detect. 

A test has been made of this hypothesis about how to improve the system when μ is uncertain.  The filtering run 
that produced the poorer results in Fig. 3 has been modified to add a single Doppler shift measurement from an 
Earth-based tracking station at the very end of the month-long data batch.  This addition involves a single 
measurement update using the velocity component measurement in Eq. (26) with a measurement accuracy of σv2 = 
7x10-5 m/s, which is reasonable for a 100 sec tracking run with a carrier phase measurement accuracy of 0.005 m.  
The resulting improvement in estimation accuracy is dramatic:  The μ estimation error drops by more than 2 orders 
of magnitude to 0.2 parts in 106, the 29 m altitude bias virtually disappears, and the per-axis RMS gravity modeling 
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errors along the two orbits also drop by more than 2 orders of magnitude to 3.2x10-7 m/s2. 

VII. Summary and Conclusions 
A proposed method of autonomous orbit determination for a pair of satellites has been extended to include the 

estimation of corrections to the gravity model of the primary attracting body.  The system’s EKF operates on 
relative position measurements between the two satellites in order to estimate the absolute positions and velocities 
of both spacecraft along with corrections to the central gravitational parameter μ and the coefficients in a spherical 
harmonic expansion of the gravity field.  The relative range measurements could be made using a radio cross link, 
and the relative bearing measurements could be made with an optical system, perhaps a modified star camera. 

An observability analysis has been performed for a simple version of the problem that involves only a central 
1/r2 gravitational force, and the system has been found to be observable in cases where the two orbits’ altitude time 
histories are not identical.  This result has been confirmed in a numerical study of a more complicated scenario that 
involves simultaneous estimation of sensor biases, acceleration error terms, and higher-order coefficients in the 
spherical harmonic gravity model. 

Kalman filtering results of simulated truth-model data from a Lunar-orbiting case confirm the system’s ability to 
estimate the orbits and gravity model corrections simultaneously.  If the filter starts with a high degree of certainty 
in μ and if it processes a month’s worth of data, then the RMS accuracies that can be achieved using reasonable 
sensor technology are on the order of 3.5 m in absolute position, 0.003 m/s in absolute velocity, and 3x10-7 m/s2 in 
the gravity model.  If the initial μ uncertainty is on the order of 50 parts in 106, then the position and velocity 
accuracies achievable by the filter can degrade by almost an order of magnitude, and the gravity model accuracy can 
degrade by 2 orders of magnitude.  If, however, the system has access to Doppler shift data from an Earth-based 
tracking system as infrequently as once per month, then the system accuracy can be improved almost to the level 
that is achievable with perfect a priori knowledge of μ. 

The excellent performance of this system and its autonomy or near autonomy make it a good candidate for the 
estimation of gravity models of remote celestial bodies.  In the near term, such a system should be considered for 
use in geodetic surveys of the Moon and Mars. 
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