

1
American Institute of Aeronautics and Astronautics

Gaussian Mixture Approximation by Another Gaussian
Mixture for "Blob" Filter Re-Sampling

Mark L. Psiaki∗, Jonathan R. Schoenberg#
Cornell University, Ithaca, N.Y. 14853-7501

and Isaac T. Miller
Coherent Navigation, Inc., San Mateo, CA 94404

A new method has been developed to approximate one Gaussian mixture by another in a
process that generalizes the idea of importance re-sampling in a particle filter. This
algorithm is being developed as part of an effort to generalize the concept of a particle filter.
In a traditional particle filter, the underlying probability density function is described by
particles: Dirac delta functions with infinitesimal covariances. This paper develops an
important component of a “blob” filter, which uses a Gaussian mixture of “fattened,” finite-
covariance blobs instead of infinitesimal particles. The goal of a blob filter is to save
computational effort for a given level of probability density precision by using many fewer
blobs than particles. Most of the techniques necessary for this type of filter have already
been developed. The one missing component is developed in this paper: a re-sampling
algorithm that bounds the covariance of each element while accurately re-producing the
original probability distribution. The covariance bounds are needed in order to keep the
blobs from becoming too “fat”; otherwise, Extended Kalman Filter (EKF) or Unscented
Kalman Filter dynamic propagation and measurement update calculations would cause
excessive truncation error for each blob. The re-sampling algorithm is described in detail,
and its performance is studied using several simulated test cases. Also discussed is the
usefulness of a Gaussian mixture and EKF-like techniques for nonlinear dynamic
propagation and nonlinear measurement update of probability distributions.

I. Introduction
ifficulties can arise when solving certain nonlinear dynamic estimation problems. The default solution
algorithm for such problems is the EKF, but the EKF has a known potential to diverge or to yield sub-optimal

accuracy 1,2,3. Various algorithms have been developed with the goal of improved convergence robustness or
accuracy in the presence of strong nonlinearities, among them the Unscented or Sigma-Points Kalman Filter (UKF)
1,4, the Particle Filter (PF) 2, and the Backward-Smoothing Extended Kalman Filter 3.

The PF is attractive for its simplicity and its theoretical guarantee of convergence to the optimal result in the
limit of very many particles. The required number of particles to achieve a reasonable result, however, can become
overwhelming for state space dimensions as small as 3 or 4, as in Ref. 5.

A sensible generalization of the PF is to use Gaussian mixtures to represent probability density functions. In
effect, a PF works with representations of probability density functions that are sums of Dirac delta functions. A
Gaussian mixture generalizes this concept by using elements that have finite widths instead of infinitesimal widths.
A sum of finite-width elements has the potential to approximate a probability density function with many fewer
elements than would be needed by a PF for the same degree of accuracy, as measured based on differences of
multiple moments or based on the functional norm "distance" from the true probability density. Thus, a Gaussian
mixture filter has the potential to solve the curse of dimensionality that causes a PF to become impractical for state
space dimensions above 2 or 3.

∗ Professor, Sibley School of Mechanical and Aerospace Engineering. Associate Fellow, AIAA.
Graduate student, Sibley School of Mechanical and Aerospace Engineering.

D

AIAA Guidance, Navigation, and Control Conference
2 - 5 August 2010, Toronto, Ontario Canada

AIAA 2010-7747

Copyright © 2010 by Mark L. Psiaki, Jonathan R. Schoenberg, & Isaac T. Miller. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

2
American Institute of Aeronautics and Astronautics

Gaussian mixture filters have been studied extensively in the past, and Ref. 6 is one of the earliest known
papers on this subject. The proposed "blob" filter is a modified version of the Gaussian mixture filter of Ref. 7.
That filter implements a separate standard UKF dynamic propagation and measurement update for each element of
its Gaussian mixture. Its approximate implementation of the full non-linear Bayesian measurement update dictates
that it recalculate the weights of its mixture elements. This re-calculation increases the weights of elements whose
predicted measurements best match the actual measurement at the given sample, as in the static multiple-model filter
described in Ref. 8. The final filter action for a given sample is to re-approximate the mixture by drawing samples
from it and then fitting a new Gaussian mixture to the samples. This action can avert degeneracy of the mixture into
one element or a very few elements that have appreciable weight, and it can reduce the number of elements in cases
where the multiplication of Gaussian mixtures would cause exponential growth of this number.

The Gaussian mixture filter of Ref. 7 has strengths and weaknesses. Its main strength lies in the potential
accuracy of the UKF dynamic propagation and measurement update of the mixture. If each element of the Gaussian
mixture has a covariance that is sufficiently small, as measured in terms of the maximum eigenvalue or some other
sensible metric, then the UKF calculations will be very accurate. With sufficiently small covariances, EKF
calculations also would be sufficiently accurate to yield a good estimate of the posterior probability density
function. This is true because a narrow distribution implies good accuracy of the Taylor series approximations
inherent in the UKF or EKF calculations. That is, the Taylor series approximations are accurate over the likely
ranges of state variations of each mixture element.

The weakness of the filter of Ref. 7 lies in its re-approximation of the Gaussian mixture distribution after the
measurement update. This re-approximation samples the original mixture and fits a new Gaussian mixture to the
samples via Expectation Maximization (EM). This procedure achieves the worthy goal of eliminating mixture
elements with low weights. Unfortunately, it does not limit the maximum covariance of any element of the re-
approximation. This limitation is needed so that the next recursion of the filtering algorithm will yield good
accuracy when using the approximations that are inherent in its element-by-element EKF or UKF calculations. It is
not obvious how to add such a limitation to the EM-based re-sampling procedure without making it unduly
complicated.

The other weakness of the mixture re-approximation is its failure to fit the old mixture as closely as possible in
some functional norm sense, as in the Integral Square Difference (ISD) metric of Ref. 9. Instead, the filter of Ref. 7
uses an ad hoc transition first to particle samples of the old mixture and finally back to Gaussian mixture elements
that fit these particles.

Section IV of Ref. 10 constitutes a prototype application of similar concepts to those of Ref. 7, albeit with
EKFs used in place of UKFs for propagating and updating the Gaussian mixture elements and without any need for
re-sampling. The goal of this application was to achieve filter convergence from large initial uncertainty in a
difficult spacecraft attitude determination problem. The algorithm converged reliably from large initial errors that
would have caused an EKF to fail. This reliable convergence implies that the algorithm of Ref. 7 could provide a
powerful solution to difficult problems in nonlinear filtering if it were modified to use this paper's re-sampling
procedure.

The present paper's contribution is an improved Gaussian mixture re-approximation algorithm that could be
applied to a filter like that of Ref. 7. It has four important properties: First, it chooses elements of the new mixture
so that their covariances lie below a linear matrix inequality (LMI) upper bound. This constraint is included to
ensure that element-by-element EKF or UKF dynamic propagation and measurement update calculations will yield
a sufficiently accurate approximation of the a posteriori probability density function on the next Bayesian filter
step. Second, it directly chooses new mixture elements and their weights in a way that seeks to minimize the ISD
between the new Gaussian mixture distribution and the original distribution. Third, it tends not to waste new
elements in attempts to approximate the contributions of original elements that have low weights. Last, it tends to
hold down the number of needed new elements through a combination of strategies. These strategies include a)
maximization of new element covariances subject to the LMI constraint, b) selection of new element means and
weights in a way that tends to limit the number of new elements needed for a given improvement to the ISD, c)
termination of the generation of new elements when a conservative upper bound has been met for the ISD between
the new and old mixtures, and d) combination of elements if their Gaussian sum can be approximated well by a
single new element.

There exist other Gaussian mixture re-sampling schemes 9,11,12. This paper's new algorithm differs from the
existing algorithms in several important respects. The existing algorithms' primary goal is to approximate an
original mixture by a new one that has fewer elements. The present algorithm retains this as a secondary goal, but
its main goal is to develop a new approximate mixture whose elements all have covariances that satisfy an LMI

3
American Institute of Aeronautics and Astronautics

upper bound, which is an important property when using Gaussian mixtures to generalize nonlinear particle
filtering. The new algorithm uses the ISD fit metric of Ref. 9, but in a new way: It formulates and solves quadratic
programs based on the ISD metric in order to choose optimal relative weights for subsets of the new mixture's
elements.

This paper's new Gaussian mixture re-approximation method will be useful for generalizing the nonlinear
particle filter to create a blob filter along the lines of Ref. 7, as stated above. The key generalization is to replace
particles of infinitesimal width by blobs of finite width. Therefore, another important aspect of the new re-
approximation scheme is that it approaches the re-sampling scheme of a standard particle filter 2 in the limit of a
very small upper bound on the covariances of the new elements. This asymptotic similarity makes the blob filter a
natural generalization of the particle filter.

Asymptotic similarity to PF re-sampling is achieved by choosing the mean values of the new mixture elements
through the use of a modified sampling method. This modified procedure employs a perturbation of the original
distribution, and it samples the perturbed distribution using Metropolis-Hastings techniques 13. The perturbed
distribution reduces the original distribution near existing new elements, thereby reducing the probability that
additional new elements will be located near existing elements. A particle filter, on the other hand, tends to sample
many particles very near each other in regions of the filter's state space that have high probability densities, as
characterized by the high numbers of existing particles in those regions. The new re-sampling method achieves
equivalent results through an explicit increase of the weights that it assigns to new mixture elements that lie in
regions of high original probability density.

Figure 1 depicts the new re-sampling algorithm in block-diagram form. It starts in the upper left-hand corner of
the diagram with original Gaussian mixture distribution pa(x). Its 1st block decomposes pa(x) into sub-mixtures, and
its remaining blocks fit corresponding sub-mixtures of the new re-sampled distribution to these original sub-
mixtures. Initially, each sub-mixture of the new distribution is a poor fit to the corresponding sub-mixture of the
original distribution because it lacks elements, and the algorithm initializes fit parameters accordingly in its 2nd
block. Each new sub-mixture uses a common covariance matrix for each of its elements, and the set of sub-mixture
covariance matrices is computed in the 3rd algorithm block. The 3rd block also pre-computes parameters that are
used in the 7th block in order to set up an optimization problem for the relative weights within each new sub-
mixture.

The algorithm's main loop is depicted by the 4th-10th blocks of Fig. 1. It adds one new element to the new
Gaussian mixture per pass through these blocks. The 4th block computes modified sub-mixture weights that assign
higher values to those original sub-mixtures that have a) high original weights, b) poor fits to their corresponding
new sub-mixtures, or c) both. The 5th block picks which new sub-mixture to augment with a new element. The
selection procedure uses importance sampling and the modified weights from the 4th block. A new sub-mixture is
likely to gain a new element if its corresponding original sub-mixture has a sufficiently high original weight and if
its fit to that original sub-mixture is sufficiently poor. The 6th block draws the mean value of the new mixand from
a modified form of the probability density function of the corresponding original sub-mixture. This modified sub-
mixture has reduced probability density near pre-existing new sub-mixture elements, thereby reducing the
likelihood of close spacing between new elements. The 7th block optimizes the relative weights of the new sub-
mixture to account for its new mixand. Decision block 8 rejects the new mixand if the resulting ISD fit error of the
augmented sub-mixture does not decrease, in which case another new-element mean value is sampled in a return to
the 6th block. Otherwise, two termination criteria are tested in the 9th and 10th blocks. Termination occurs if the
overall fit error is sufficiently small or if a given upper limit on the number of new mixands has been reached. The
11th block finishes by computing the new mixands' final weights.

This paper develops and analyzes its new Gaussian mixture re-approximation algorithm in 8 main sections.
Section II defines Gaussian mixtures using square-root information matrix notation, and it defines sub-mixtures as
being subsets of the elements of a given mixture. Section III develops the ISD error metric between two Gaussian
mixtures, derives an analytic formula for the ISD, and determines an upper bound for the relative norm error
between two Gaussian mixtures. This relative upper bound is used to implement the algorithm termination test in
the 9th block of Fig. 1. Section IV presents a quadratic program (QP) that chooses the weights of a new Gaussian
mixture in order to minimize the ISD between it and an original Gaussian mixture. This QP algorithm is used in the
7th block of Fig. 1. Section V defines an LMI that bounds the covariances of the elements of the new Gaussian
mixture. It develops an algorithm for choosing the covariance of a new element in a way that respects this limit
while deviating as little as possible from the covariance of a corresponding element of the original mixture. This
LMI solution algorithm is used by the 3rd block of Fig. 1. Section VI introduces a technique for decomposing the
original mixture into sub-mixtures, as per Block 1 of Fig. 1. These sub-mixture groupings can help to reduce the

4
American Institute of Aeronautics and Astronautics

number of elements of the new mixture. Section VII presents the algorithm for selecting means and covariances of
new mixture elements, as needed to implement the 6th block in Fig. 1. Section VIII combines the developments of
Sections II-VII in order to define the new Gaussian mixture re-sampling algorithm. Section IX presents example
test results that illustrate the performance and usefulness of the new algorithm. Section X summarizes this paper's
developments and presents its conclusions.

Fig. 1. Flow chart of Gaussian mixture re-sampling algorithm.

II. Gaussian Mixture Probability Density Functions

A. Original and New Gaussian Mixture Probability Density Functions
A Gaussian mixture is a weighted sum of Gaussian distributions. The ith element of the mixture, also called the

ith mixand or the ith component, can by characterized by its square-root information matrix Ri and its mean μi. The
element probability distribution is:

)]([)]([5.0
2/

T

)2(

|)det(|
),;(iiii RR

n
i

iisr e
R

R μμμ −−−= xxx
π

N =),;(T1 −−
iii RRμxN (1)

where x and μi are n-dimensional vectors and Ri is an n-by-n matrix. The covariance matrix of this distribution is Pi
= T1 −−

ii RR , where the notation ()-T indicates the inverse of the transpose of the matrix in question. The notation
N(x;μ,P) indicates the usual normal distribution in the vector x that has mean μ and covariance matrix P. The new
notation Nsr(x;μ,R) indicates the same distribution in x, except that its covariance is characterized by the square-root
information matrix R in place of the covariance matrix P. This non-standard parameterization of the normal

10

Decompose pa(x)
 into original sub-

mixtures & initialize
corresponding new

sub-mixtures as
empty sets

Initialize
sub-mixture

fit
parameters
to indicate
poor fits

Pre-compute new
sub-mixture

covariances that
satisfy LMIs along
with quantities used

to set up weight
optimizations

Compute modified sub-
mixture weights based
on weights of original

sub-mixtures & on
current sub-mixture fit

parameters

Start
1 2

3
4

5

6

11

98

Do importance sampling
based on modified weights

to pick an original sub-
mixture with relatively poor

current fit/relatively high
original weight

Sub-mixture
ISD decrease?

Sufficiently
good fit to all

of pa(x)?

Stop

Reached
limit on No. of
new mixands?

Compute new mixand weights based on
new sub-mixture weights & on optimized
relative weights within new sub-mixtures

No NoNo Yes

YesYes

Draw mean of new element of
corresponding new sub-mixture

from modified original sub-
mixture distribution & use pre-
computed new covariance to

define new sub-mixture element

Re-optimize relative weights
within corresponding new

sub-mixture to minimize ISD
from original sub-mixture &
update new sub-mixture's fit

parameter

7

5
American Institute of Aeronautics and Astronautics

distribution will be used throughout the remainder of this paper. It has been chosen because it allows a simple LMI
solution in Section V and because it is consistent with the planned square-root information filter (SRIF)
implementation of the proposed “blob” filter. An SRIF implementation is desirable because it has good numerical
stability.

Each element of a Gaussian mixture also has a weight, wi. Each weight must be non-negative. The sum of all
of the weights equals 1. If there are N elements in the mixture, then

∑=
=

N

i
iw

1
1 and 0≥iw for i = 1, ..., N (2)

Given the Gaussian component definition in Eq. (1) and weights that obey the constraints in Eq. (2), the
corresponding Gaussian mixture is

∑=
=

N

i
iisriNNNgm RwRwRwp

1
111),;(),,,...,,,;(μμμ xx N (3)

It is straightforward to show that this probability density function preserves the unit normalization constraint and
that its mean and covariance are, respectively,

∑=
=

N

i
iigm w

1
μμ and ∑ +=

=

−−N

i
gmigmiiiigm RRwP

1

TT1])-)(-([μμμμ (4)

It is necessary to distinguish between two Gaussian mixture distributions in this paper. Suppose that one
distribution, distribution "a", is characterized by the weights, mean values, and square root-information matrices wai,
μai, Rai for i = 1, ..., Na. Similarly, suppose that another related distribution, distribution "b", is characterized by wbj,
μbj, Rbj for j = 1, ..., Nb. The following short-hand notation is used to indicate these two distributions

∑==
=

a

aaa

N

i
aiaisraiaNaNaNaaagma RwRwRwpp

1
111),;(),,,...,,,;()(μμμ xxx N (5a)

∑==
=

b

bbb

N

j
bjbjsrbjaNbNbNbbbgmb RwRwRwpp

1
111),;(),,,...,,,;()(μμμ xxx N (5b)

The goal of this paper is to develop a method that picks the parameters of distribution "b", Nb and wbj, μbj, and
Rbj for j = 1, ..., Nb. It seeks to pick these parameters in a way that will cause pb(x) to be a good approximation of
pa(x) while respecting an LMI lower bound on every Rbj

TRbj for j = 1, ..., Nb. The algorithm's LMI lower bound on
Rbj

TRbj is an alternate means of enforcing an LMI upper bound on the covariance Pbj = T1 −−
bjbj RR . The algorithm

also seeks to keep the number of new elements Nb from being too large. Of course, there normally is a trade-off
between the size of Nb and the accuracy with which pb(x) approximates pa(x).

B. Decomposition into Sub-Mixtures
It can be useful to break Gaussian mixtures pa(x) and pb(x) into weighted sums of sub-mixtures. This

decomposition allows the original function approximation problem to be broken into a set of smaller approximation
problems. It can be used to reduce the computational burden of this paper's algorithms. Note that the term “sub-
mixture” is non-standard. It denotes a Gaussian mixture distribution that is formed using a re-weighted subset of
the elements of an original Gaussian mixture.

Let distribution pa(x) and distribution pb(x) be broken into the following disjoint sets of sub-mixtures

sam

i

ii
aiaisrai

sam w

Rw
p

him

lom
∑

= =
),;(

)(
μx

x
N

 for m = 1, ..., M (6a)

sbm

j

jj
bjbjsrbj

sbm w

Rw
p

him

lom
∑

= =
),;(

)(
μx

x
N

 for m = 1, ..., M (6b)

where the sub-mixture cumulative weights are defined to be

∑=
=

him

lom

i

ii
aisam ww for m = 1, ..., M (7a)

6
American Institute of Aeronautics and Astronautics

∑=
=

him

lom

j

jj
bjsbm ww for m = 1, ..., M (7b)

The start and stop indices ilom and ihim define the index range of components of the original Gaussian mixture pa(x)
that form its mth sub-mixture psam(x). The indices jlom and jhim work similarly to define the mth sub-mixture psbm(x) of
pb(x). These indices obey the constraints:

ilo1 = 1, ilo(m+1) = ihim+1 for m = 1,...,(M-1), ihiM = Na, and ilom ≤ ihim for m = 1,...,M (8a)
jlo1 = 1, jlo(m+1) = jhim+1 for m = 1,...,(M-1), jhiM = Nb, and jlom-1 ≤ jhim for m = 1,...,M (8b)

These index constraints ensure that each original mixand appears in one and only one sub-mixture for probability
density functions pa(x) and pb(x). The mth sub-mixture of pa(x) has Nam = ihim - ilom+1 Gaussian components, and the
mth sub-mixture of pb(x) has Nbm = jhim - jlom+1 components. The constraint jlom-1 ≤ jhim allows for the possibility
that Nbm = 0 if jlom-1 = jhim. In this situation, psbm(x) and wsbm are undefined. This situation may arise if the
corresponding original sub-mixture weight wsam is very low, in which case the new Gaussian mixture pb(x) may not
devote any elements to fitting the effects of psam(x).

It is helpful to define relative weights within a given sub-mixture. They are:

samaiai www /=(for i = ilom, ..., ihim and for m = 1, ..., M (9a)

sbmbjbj www /=(for j = jlom, ..., jhim and for m = 1, ..., M (9b)

Equations (9a) and (9b) guarantee normalization of the weights within each sub-mixture, and they allow the sub-
mixtures in Eqs. (6a) and (6b) to be expressed as true Gaussian mixtures in their own right:

∑=
=

him

lom

i

ii
aiaisraisam Rwp),;()(μxx N(for m = 1, ..., M (10a)

∑=
=

him

lom

j

jj
bjbjsrbjsbm Rwp),;()(μxx N(for m = 1, ..., M (10b)

It is possible to express the two original Gaussian mixtures as weighted sums of these sub-mixtures:

∑=
=

M

m
samsama pwp

1
)()(xx (11a)

∑=
=

M

m
sbmsbmb pwp

1
)()(xx (11b)

Equations (7a) and (7b) and the normalization and non-negativeness of the original mixture weights imply that the
sub-mixture weights are also normalized and non-negative:

∑=
=

M

m
samw

1
1 and 0≥samw for m = 1, ..., M (12a)

∑=
=

M

m
sbmw

1
1 and 0≥sbmw for m = 1, ..., M (12b)

III. The Integral Square Difference between Two Gaussian Mixtures as a Measure of
Approximation Accuracy

A. ISD Definition
The Integral Square Difference is a good measure of the accuracy with which pb(x) approximates pa(x). The

ISD is defined to be the integral of the square of the difference between these two probability density functions 9:

∫ −=
∞

∞−
xxx dppJ baISD

2)]()([(13)

This quantity is non-negative, and its square root is the functional 2-norm of the difference between the probability
distributions

5.0
2

2)]()([||)()(||
⎭
⎬
⎫

⎩
⎨
⎧
∫ −==−
∞

∞−
xxxxx dppJpp baISDba (14)

7
American Institute of Aeronautics and Astronautics

Therefore, the ISD is a good measure of the similarity between these two functions. A very small value of the
ISD cost JISD indicates that pb(x) is a very good approximation of pa(x). Distribution pb(x) perfectly matches pa(x) if
and only if JISD = 0.

Some re-approximation algorithms seek to choose pb(x) in a way that explicitly constrains the mean and
covariance of the new distribution to equal that of pa(x), e.g., see Ref. 11. In order to avoid an additional source of
algorithmic complexity, the current approach enforces no such constraint. If JISD in Eq. (13) is sufficiently small,
however, then the mean and covariance of pb(x) will be very close to the corresponding pa(x) quantities, as
demonstrated by example in Section IX. In addition, a small JISD could cause a number of higher moments of pb(x)
to be closer to the corresponding moments of pa(x) than they would be if a different re-approximation technique
were used to construct pb(x) without consideration of its JISD.

B. Analytic Formulas for the ISD
Reference 9 presents analytic formulas for evaluating the integral in Eq. (13). The formulas used here are

modified versions of those found in Ref. 9. The modifications account for the use of square-root information
matrices in place of mixand covariance matrices. Suppose that one defines weight vectors for the two probability
density functions: wa = [wa1;wa2;wa3;...;waNa] and wb = [wb1;wb2;wb3;...;wbNb]. Then the integral in Eq. (13) can be
written as a quadratic form in these two vectors:

bbbbbabaaaaaISD HHHJ wwwwww TTT 2 +−= (15)

where Haa, Hab, and Hbb are matrices with the respective dimensions Na-by-Na, Na-by-Nb, and Nb-by-Nb. The
matrices Haa and Hbb are symmetric and at least positive semi-definite. The elements of these matrices can be
evaluated using the formulas:

∫=
∞

∞−
xxx dRRH akaksraiaisrikaa),;(),;(][μμ NN for i = 1,...,Na and k = 1,...,Na (16a)

∫=
∞

∞−
xxx dRRH bjbjsraiaisrijab),;(),;(][μμ NN for i = 1,...,Na and j = 1,...,Nb (16b)

∫=
∞

∞−
xxx dRRH blblsrbjbjsrjlbb),;(),;(][μμ NN for j = 1,...,Nb and l = 1,...,Nb (16c)

where the notation []ik indicates the row-i/column-k element of the matrix in question.
The integrals in Eqs. (16a)-(16c) can be evaluated analytically by using the normalization property of a

Gaussian distribution and the fact that the product of two Gaussian distributions is itself a Gaussian distribution,
although not properly normalized 9. These integrals take the general form:

∫
∞

∞−
xxx dRR ddsrccsr),;(),;(μμ NN =)](~[)](~[5.0

2/

T

|)det(|)2(
|)det(||)det(| dccddccd RR

cd
n

dc e
R
RR μμμμ −−−

π
 (17)

where the n-by-n matrices cdR and cdR~ are computed based upon the following orthonormal/upper-triangular (QR)
factorization 14:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

d

ccdcd
R
RR

QQ
R

Q
0

],[
0 21 (18)

with Q being a 2n-by-2n orthonormal matrix and cdR an n-by-n upper-triangular matrix. Q1 equals the first n
columns of Q, and Q2 equals the last n columns. These matrices are used to compute

⎥
⎦

⎤
⎢
⎣

⎡
−=⎥

⎦

⎤
⎢
⎣

⎡
=

d

c
cd R

Q
R

QR
0

0
~ T

2
T
2 (19)

Equations (17)-(19) have been derived using a lengthy, non-intuitive sequence of matrix/vector manipulations that
have been omitted for the sake of brevity. In the special case where Rc = Rd, it suffices to use cdR = cR2 and

cdR~ = cR)2/1(, and in this case the Eq. (17) integral becomes

∫
∞

∞−
xxx dRR cdsrccsr),;(),;(μμ NN =)]([)]([25.0

2/

T

2
|)det(| dccdcc RR

nn
c eR μμμμ −−−

π
 (20)

8
American Institute of Aeronautics and Astronautics

C. An ISD-Based Metric for Relative Fit Error
The ISD formula in Eq. (15) can be used to develop a relative measure of the accuracy with which new

Gaussian mixture pb(x) approximates original Gaussian mixture pa(x). A sensible metric is the norm of the
difference between pb(x) and pa(x) divided by the norm of pa(x):

aaaa

bbbbbabaaaaa

a

ba
relba

H

HHH
p

ppe
ww

wwwwww
x

xx
T

TTT

2

2 2
||)(||

||)()(|| +−
=−= (21)

If this quantity is small relative to 1, then the difference between pb(x) and pa(x) is small relative to the magnitude of
pa(x).

The metric erelba provides a sensible termination criterion for the procedure that generates new mixand elements
of pb(x). If erelba is sufficiently small compared to 1, then the algorithm should terminate with the given pb(x);
otherwise, it should continue generating new elements. If erelba is very small compared to 1, then the mean and
covariance of pb(x) should closely match those of pa(x), as demonstrated by example in Section IX.

D. Sub-Mixture ISDs and Practical Computation of a Bound on the Relative Fit Error
The re-sampling algorithm needs a practical means for measuring the goodness of the fit of pb(x) to pa(x). It

uses this metric to implement the termination test in the 9th block of Fig. 1. Computation of the relative error in Eq.
(21) will be prohibitively expensive if there are large numbers of mixture elements in the original distribution, Na, or
in the new distribution, Nb. Consider the leading-term scalings of the number of operations required to compute the
Haa, Hab, and Hbb matrices, as per Eqs. (16a)-(19). They are, respectively, Na

2n3, NaNbn3, and Nb
2n3. Recall that n is

the dimension of the x vector. The n3 factor arises from the QR factorization in Eq. (18). The other factors arise
from the dimensions of the dense Haa, Hab, and Hbb matrices. In many situations envisioned in this paper, it may be
possible to eliminate many of the QR factorizations in Eq. (18) due to the re-use of the same R matrix in multiple
mixands of a given distribution. If this were the case, then the respective leading computational cost terms would
scale as Na

2n2, NaNbn2, and Nb
2n2. The n2 factors arise from the matrix-vector multiplications that are needed to

compute the exponent in Eq. (17). If there were Na = 2000 mixands in probability density function pa(x), Nb = 1000
mixands in probability density function pb(x), and n = 5 states, then the number of operations required to compute
the Haa, Hab, and Hbb matrices would be on the order of 175x106. These numbers imply that far too many operations
would be required for computation of the Eq.-(21) metric even in the restricted case that re-uses R matrices in
multiple mixands.

A practical solution to this computational complexity problem is to examine how well pb(x) fits pa(x) on a term-
by-term basis using the sub-mixture decomposition described in Section II.B. Consider the ISD that characterizes
the fit error between the new sub-mixture psbm(x) and its original sub-mixture counterpart psam(x):

bmbbmbmbmabmamamaamamISDm HHHJ wwwwww ((((((TTT 2 +−= (22)

where the weight vectors within the sub-mixtures are defined as amw(= [lomaiw(;...; himaiw(] and bmw(=
[lombjw(;...; himbjw(]. The matrix Haam is a sub-matrix of the original Haa that appears in Eq. (15), the one along rows
and columns ilom through ihim. Similarly, Habm equals the sub-matrix of Hab along rows ilom through ihim and columns
jlom through jhim, and Hbbm is the Hbb sub-matrix along rows and columns jlom through jhim. Consider, also, a modified
version of the sub-mixture ISD. It accounts for possible differences between the total weights of the original and
new sub-mixture components, differences between wsam and wsbm:

2
TTT 2 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

sam

sbm
bmbbmbm

sam

sbm
bmabmamamaamamISDm w

wH
w
wHHJ wwwwww (((((()

 (23)

One can use the modified ISD in Eq. (23) to construct the following conservative upper bound for the relative
fit-error in Eq. (21):

∑

∑ ⎟
⎠
⎞⎜

⎝
⎛−

=

∑

∑
≤

−

=

=

=

=
M

m
samsam

M

m
sbmw

w
samsam

M

m
amaamamsam

M

m
ISDmsam

a

ba

pw

ppw

Hw

Jw

p
pp sam

sbm

1

2
2

2

1
2

1

T2

1

2

2

||)(||

||)()(||

||)(||
||)()(||

x

xx

ww
x

xx

((

)

 (24)

The derivation of the left-hand inequality in Eq. (24) relies on the triangle inequality

9
American Institute of Aeronautics and Astronautics

∑ −≤−
=

M

m
sbmsbmsamsamba pwpwpp

1
22 ||)()(||||)()(|| xxxx , (25)

on the inequality

∑≥
=

M

m
samsama pwp

1

2
2

22
2 ||)(||||)(|| xx , (26)

and on straightforward manipulations of Eqs. (25) and (26). The result in Eq. (26) can be proved as follows:
Replace pa(x) on the left-hand side by the Eq. (11a) sum of sub-mixtures. Next, expand the result into a double sum
involving squared functional norms and functional inner products. Finally, eliminate the inner products to change
the equality into an inequality because all of the inner products are non-negative due to the fact that psam(x) ≥ 0 for
all x and all m.

It is possible that psbm(x) will be undefined for one or more values of m. This will happen if no elements have
been assigned in the new Gaussian mixture to approximate the corresponding original psam(x) sub-mixture. The
term (wsbm/wsam)psbm(x) in the numerator on the extreme right-hand side of Eq. (24) is replaced by zero for all such
values of m.

Equation (24) implies that its right-most expression is a conservative measure of how well the new Gaussian
mixture pb(x) fits the original mixture pa(x). Suppose that the new mixture yields a value for this expression that is
sufficiently small relative to 1. Then the original relative fit measure, erelba from Eq. (21), is at least this small, and
pb(x) is a good approximation of pa(x).

The importance of Eq. (24) is that its conservative right-most bound is inexpensive to compute. It only requires
the computation of blocks along the diagonals of the original Haa, Hab, and Hbb matrices of Eq. (15). The following
expression gives the scaling law of the leading term in the number of computations needed to produce all of these
matrix sub-blocks:

Number of ops ~ ∑ ++
=

M

m
bmbmamam NNNNn

1

223)((27)

Again, if most of the QR factorizations in Eq. (18) can be eliminated due to re-use of R square-root information
matrices for many mixands, then the leading n3 term changes to n2. Consider the same problem dimensions as
discussed in the beginning of this section, i.e., Na = 2000, Nb = 1000, and n = 5. Assume, also, that Gaussian
mixtures pa(x) and pb(x) have both been decomposed into M = 500 sub-mixtures with Nam = 4 components for each
original psam(x) sub-mixture and with Nbm = 2 components for each new psbm(x) sub-mixture. Then the number of
operations given in Eq. (27), but with n3 replaced by n2, is 350x103. This is smaller by a factor of 500 than the cost
of exact computation of erelba. Therefore, this conservative measure of the pb(x) approximation accuracy is preferred
based on computational considerations.

IV. Weight Calculation for New Gaussian Mixture Components using ISD and Quadratic
Programming

A. Quadratic Programs to Minimize the ISDs of New Sub-Mixtures
This paper's re-approximation algorithm develops a new set of Gaussian mixture elements and weights to

define pb(x) in a way that seeks to closely approximate pa(x). In order to avoid too much computation, it adopts a
divide-and-conquer approach in which it breaks pa(x) into the weighted sub-mixtures psam(x) for m = 1, ..., M, as
defined in Eq. (10a). For each original sub-mixture psam(x) that has a sufficiently large weight wsam, the algorithm
determines components and weights of a new sub-mixture psbm(x) that enable it to approximate psam(x) with
sufficient accuracy. The procedures for picking the means and square-root information matrices of the new sub-
mixture components are discussed later, in Sections V and VII.

The present section develops a method for choosing the component weights of the new sub-mixture, bmw(=
[lombjw(;...; himbjw(]. This method is used in the 7th block of the algorithm flow chart in Fig. 1. This procedure starts
from the assumption that the new means and square-root information matrices have already been chosen. Note that
this section’s weight calculation algorithm could be matched with any algorithm that selects the means and
covariances of new mixands, e.g., the algorithms defined in Refs. 9, 11, and 12.

A good method of choosing bmw(is to minimize the value of the fit error between psbm(x) and psam(x), JISDm
from Eq. (22). Under the assumptions of this section, the only unknown quantity on the right-hand side of Eq. (22)
is the relative weight vector bmw(. The fit error cost in Eq. (22) has terms that are linear and quadratic in this
vector. Therefore, the optimal fit is obtained by solving the following constrained quadratic program (QP):

10
American Institute of Aeronautics and Astronautics

find: bmw((28a)

to minimize: bmbbmbmbmbmm HJ wwwg (((T
2
1T += (28b)

subject to: bmwc (T1 = (28c)
 bmw(≤0 (28d)

where gbm = - amabmH w(T and c is an Nbm-dimensional vector of ones. The cost function Jm has been derived from
JISDm by subtracting off the first term on the right-hand side of Eq. (22), the one that does not depend on bmw(, and
then halving the result. This has been done in order to frame the QP in a standard form 14. The value of bmw(that
minimizes the cost in Eq. (28b) also minimizes JISDm from Eq. (22). Equation (28c) is the scalar unit normalization
equality constraint. Equation (28d) constitutes Nbm separate scalar inequality constraints on the elements of bmw(.
These two constraints guarantee that sub-mixture psbm(x) will be a unit-normalized, non-negative probability density
function.

B. Quadratic Program Solution Strategies
The linearly-constrained quadratic program in Eqs. (28a)-(28d) can be solved using standard active-set methods

such as those described in Ref. 14. There exist standard software packages for solving such problems, e.g., the
MATLAB function quadprog.m, which is part of MATLAB's optimization toolbox.

There are three reasons to develop special software for solving this QP. First, the Hessian matrix Hbbm will be
positive definite for a well chosen set of mixture components of psbm(x) that have minimal overlap with each other.
This fact can be exploited to speed the solution of the QP.

If, on the other hand, Hbbm is not sufficiently positive definite, then the QP should be restarted after choosing
one or more alternate new components of sub-mixture psbm(x). A specially-designed QP algorithm could determine
whether Hbbm was not sufficiently positive definite. Such a determination could signal this paper's re-sampling
algorithm to replace one or more components of sub-mixture psbm(x).

The second reason for developing a special-purpose QP algorithm is to exploit the method by which
components of psbm(x) are chosen. This paper proposes choosing one new component at a time and computing a
new relative weight vector bmw(after adding each new component. A general-purpose QP solution would require
order 3

bmN scalar operations for the factorization of its Nbm-by-Nbm Hessian matrix. A special-purpose algorithm
could exploit the following facts: each successive QP involves the addition of only one new row and column to
Hbbm, one new element to gbm, one new element to c, and one new scalar inequality constraint in Eq. (28d). A well
defined rank-1 update and re-solution based on the previous QP solution typically would require only order 2

bmN
scalar operations. Such an approach could save a considerable amount of computation.

The third reason for developing a special-purpose QP algorithm is also related to the method of choosing new
mixture components. When a single new mixture component is added to psbm(x), the corresponding element of the
new optimal bmw(may equal 0. If this happens, then the other elements of the optimal bmw(all remain unchanged.
This situation indicates a poor choice of the new component, one that should be rejected. A special-purpose QP
solution algorithm would be able to check for this condition using only order 2

bmN calculations.
A good strategy for developing a special-purpose QP solver is to Cholesky factorize the Hessian matrix and to

use that factorization in order to define a transformed weight vector and a transformed QP. Suppose that Lm is the
lower-triangular Cholesky factor of Hbbm:

bbmmm HLL =T (29)
The transformed QP is posed in terms of the transformed weight vector bmw) = bmmL w(T . It takes the equivalent
form:

find: bmw) (30a)

to minimize: bmbmbmbmmJ wwwg)))) T
2
1T += (30b)

subject to: bmm wc))T1 = (30c)

 bmmL w)-T0 ≤ (30d)

where bmmbm L gg -1=) and cc -1
mm L=) . When applied to this transformed QP, an active-set method works with a

guess of the inequality constraints in Eq. (30d) that are active, i.e., that are satisfied exactly as equalities. It QR-
factorizes a matrix whose rows include T

mc) and the active rows of -T
mL . Given this factorization, it uses simple

linear algebra operations and a line search to compute the optimum under its active set assumption or to determine a

11
American Institute of Aeronautics and Astronautics

new inequality constraint to add to the active set. Once it reaches an optimum for a given assumption, it checks the
Kuhn-Tucker multipliers for the active constraints to see whether any should be dropped from the active set in order
to further decrease the cost.

The importance of the transformed problem lies in the fact that it can be efficiently re-solved after the addition
to psbm(x) of one new mixture component, and therefore, the addition of one element to bmw(. The corresponding
additional row and column of Hbbm can be used to compute a new -1

mL in order 2
bmN scalar operations by adding

one new row to the previous Cholesky factor. If the new mixand produces a new Hbbm that is insufficiently positive
definite, then this fact will become apparent in the process of computing the new row of -1

mL , and the new mixand
can be rejected. The corresponding updates of bmg) and mc) are computable in order Nbm operations, and the
corresponding rank-1 update of the active set constraint matrix can be computed in order 2

bmN in the usual case of
few active constraints. Of course, order 2

bmN scalar operations will still be a large number of operations if Nbm is
large. Therefore, care will be taken to avoid creating more elements of the sub-mixture psbm(x) than are absolutely
necessary. Strategies for achieving this aim are discussed in Sections VI and VII.

V. LMI Bounds on the Covariances of the New Mixture's Components

A. Covariance and Square-Root Information Matrix Bounds
This section defines and solves a Linear Matrix Inequality. This solution is needed in order to compute the

constrained covariances of the new mixture elements, as per the 3rd block of the main algorithm in Fig. 1. The LMI
is used to enforce the following lower bound on the information matrices of the elements of the new Gaussian
mixture pb(x):

Rbj
TRbj minminRRT≥ for all j = 1, ..., Nb (31)

where the matrix inequality is defined in the sense that the symmetric matrix on the left minus the symmetric matrix
on the right equals a positive semi-definite matrix. This lower bound on the information matrix of each mixture
element translates into an upper bound on each element's covariance: Pbj = T1 −−

bjbj RR ≤ T1 −−
minmin RR = Pmax. One can

prove equivalence between this covariance inequality and Eq. (31) as follows: The latter matrix inequality is
equivalent to TT1

minbjbjmin RRRR −− ≤ I. Equation (31) is equivalent to 1TT −−
minbjbjmin RRRR ≥ I. The left-hand sides of

these last two matrix inequalities are the inverses of each other. These last two inequalities are interchangeable
because the first implies that the symmetric matrix on its left-hand side has eigenvalues all less than 1, and the
second implies that its left-hand-side matrix has eigenvalues all greater than 1.

If the re-sampling algorithm must be constrained to choose the elements of pb(x) to have covariances less than
Pmax, then it suffices to enforce the LMI in Eq. (31). This LMI provides a means of trying to ensure that element-
by-element UKF or EKF operations on the mixture, as per Ref. 7, will yield a good approximation of optimal
Bayesian nonlinear filtering. An example in Section IX demonstrates that this approach works as desired if the
UKF or EKF approximations are accurate over a range of state variations commensurate with Pmax, i.e., if Pmax is
sufficiently small. Choice of the bound Pmax is problem-dependent, and no general method has yet been developed
for choosing Pmax based on the degree of nonlinearity of the filtering problem’s model functions.

Each Rbj square-root information matrix will be subject to at least one additional bound beyond that of Eq. (31).
In its simplest version, the algorithm of Section VII chooses the jth component of pb(x) with the goal of improving
the accuracy with which pb(x) approximates a particular element of pa(x), call it the ith element. In order for the re-
sampling algorithm to work well, it is necessary that the covariance of the jth component of pb(x) not exceed the
covariance of the corresponding ith component of pa(x). Otherwise, the re-sampling algorithm might not be able
produce a good approximation of the ith component of pa(x) because the new approximation’s covariance can be no
smaller than the smallest covariance of any of its components. The resulting additional bound on the new element's
square-root information matrix becomes

Rbj
TRbj ≥ Rai

TRai (32)
One might be tempted also to impose an LMI upper bound on Rbj

TRbj. Instead of enforcing an upper bound, an
optimization of Rbj provides a means of limiting the size of Rbj

TRbj.

B. Optimal Solution to a Pair of LMIs
The standard algorithm for choosing Rbj seeks the smallest resulting information matrix that satisfies the two

LMIs in Eqs. (31) and (32). The smallest possible information matrix results in the largest possible covariance

12
American Institute of Aeronautics and Astronautics

matrix. This is a good choice because the largest possible covariance matrix tends to enable pb(x) to approximate
pa(x) accurately with the fewest possible elements.

The optimal solution procedure for this LMI starts by computing the singular value decomposition of the matrix
1−

minai RR :
T

bjbjbj VSU = 1−
minai RR (33)

where Ubj and Vbj are orthonormal matrices and Sbj = diag(σbj1,...,σbjn) is a diagonal matrix with the n positive
singular values σbj1, ..., σbjn on its diagonal.

If σbjk ≥ 1, for all k = 1, ..., n, then Rbj = Rai respects the LMIs in Eqs. (31) and (33) in an optimal manner.
Otherwise, one forms the n-by-n diagonal matrix

bjfullSδ =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

)0,1max(0

0)0,1max(

2

2
1

bjn

bj

σ

σ

L

MOM

L

 (34)

Next, one deletes all of the zero-valued rows of δSbjfull in order to form the matrix δSbj. That is, row k of δSbjfull is
deleted for every k such that σbjk ≥ 1. This latter matrix is then used to form the matrix:

δRbj = minbjbj RVS Tδ (35)

Finally, one uses QR factorization in order to compute Rbj as follows:

⎥
⎦

⎤
⎢
⎣

⎡
0
bj

bj
R

Q = ⎥
⎦

⎤
⎢
⎣

⎡

ai

bj
R
Rδ

 (36)

where Qbj is an orthonormal matrix and Rbj is a square, upper-triangular matrix.
One can prove that this Rbj matrix satisfies the LMIs of Eqs. (31) and (32) if one recognizes the following

implication of Eq. (36): that
Rbj

TRbj = Rai
TRai + δRbj

TδRbj (37)
The LMI in Eq. (32) follows directly from this relationship. One can derive Eq. (31) by multiplying this
relationship on the left by T−

minR and on the right by 1−
minR . One can then substitute in Eqs. (33) and (35) to show

that 1TT −−
minbjbjmin RRRR = TTT)(bjbjbjbjbjbj VSSSSV δδ+ = TTT)(bjbjfullbjfullbjbjbj VSSSSV δδ+ . The last matrix expression

in parentheses is a diagonal matrix, all of whose diagonal elements are no less than 1. Therefore,
1TT −−

minbjbjmin RRRR ≥ I, which is equivalent to Eq. (31).
The Rbj matrix of Eq. (36) has two significant properties. First, it is optimal in that it minimizes both of the

following squared weighted-norm metrics: Trace(1TT −−
minbjbjmin RRRR) and Trace(1TT −−

aibjbjai RRRR). Second, consider
the eigenvalues of the two matrix differences (Rbj

TRbj - minmin RRT) and (Rbj
TRbj-Rai

TRai). Both sets of eigenvalues are
non-negative, in accordance with the LMIs in Eqs. (31) and (32). Consider the union of the eigenvalues of these
two positive semi-definite matrices, as set of 2n eigenvalues. It is straight-forward to prove that n or more of these
eigenvalues equal zero. These properties indicate that Rbj

TRbj is as close as possible, in some matrix sense, to
minmin RRT and to Rai

TRai. Closeness to Rai
TRai tends to reduce the number of required new mixands for a given level

of probability density approximation accuracy.
Note that the LMI solution Rbj is not unique. It can be left-multiplied by any orthonormal matrix without

changing any of the properties described in this sub-section, except for upper-triangularity. This non-uniqueness
presents no problems. Any Rbj square-root information matrix with the given properties will serve for the
development of the new Gaussian mixture pb(x).

C. Differential Covariance Matrix Square Roots
Differential covariance matrices are used to develop the modified sub-mixture distributions from which new

elements’ means are drawn, as in the 6th block of Fig. 1. The matrix δRbj represents the square-root of an increment
to an information matrix. The corresponding covariance increment is

δPaibj = Pai - Pbj = T1T1 −−−− − bjbjaiai RRRR = T
aibjaibj YY δδ (38)

The matrix increment δPaibj is positive semi-definite, and δYaibj is its matrix square-root. The following is a valid
formula for this non-unique matrix square-root

13
American Institute of Aeronautics and Astronautics

δYaibj = 1TT1 −−−
djaibjaiai RRRR δ (39)

where the matrix Rdjai is determined from the QR factorization

⎥
⎦

⎤
⎢
⎣

⎡
0
djai

dj
R

Q =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

I
RR bjai

TTδ (40)

with Qdj being an orthonormal matrix and Rdjai being a square, upper-triangular matrix. One can prove that δYaibj
from Eq. (39) satisfies Eq. (38) by squaring the δYaibj expression in Eq. (39), as on the right-hand side of Eq. (38),
and by algebraically manipulating the result to show that it equals T1T1 −−−− − bjbjaiai RRRR . This manipulation requires
the formula T1 −−

djaidjai RR = I - TT1
bjbjbjbj RRRR δδ −− . This formula can be proved by squaring both sides of Eq. (40) to

show that djaidjai RRT = I + TT1
bjaiaibj RRRR δδ −− and by using the classic matrix inversion lemma 15 along with a

substitution based on Eq. (37). One completes the proof by substituting the T1 −−
djaidjai RR expression into the

expression for the square of δYaibj and by performing several associative re-groupings of matrix multiplications and
two substitutions for bjbj RR δδ T that are based on Eq. (37).

The square-root covariance increment matrix δYaibj has only as many columns as δRbj has rows. This number
equals the number of singular values of Sbj that satisfy σbjk < 1.

It is possible to develop a similar expression for the covariance increment
δPmaxbj = Pmax - Pbj = T1T1 −−−− − bjbjminmin RRRR = T

bjmaxbjmax YY δδ (41)

It takes the form:
δYmaxbj = 1TT1 −−−

mindjbjaltminmin RRRR δ (42)

where
δRbjalt = aibjbjalt RUS Tδ (43a)

δSbjalt =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

)0,1max(0

0)0,1max(

2

2
1

bjn

bj

σ

σ

L

MOM

L

 but with its all-zeros rows deleted (43b)

⎥
⎦

⎤
⎢
⎣

⎡
0
min

min
dj

dj
R

Q =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

I
RR bjaltmin

TT δ (43c)

where Eq. (43c) represents a QR factorization that produces the orthonormal matrix Qdjmin and the square, upper-
triangular matrix Rdjmin.

Note that the square-root covariance increment matrices δYaibj and δYmaxbj are not unique. They can be right-
multiplied by any orthonormal matrix without changing their respective satisfaction of Eqs. (38) and (41). Any
δYaibj and δYmaxbj matrices that satisfy these equations will serve for this paper's re-sampling algorithm.

D. Ad Hoc Solution to 3 LMIs
It is necessary to compute an Rbj matrix that satisfies 3 LMIs in the situation where a sub-mixture of pa(x) has 2

elements. One is the LMI in Eq. (31), the second is the LMI in Eq. (32), and the third LMI is similar to Eq. (32):
Rbj

TRbj ≥ Rak
TRak (44)

The index k ≠ i is that of a second component of Gaussian mixture pa(x).
An ad hoc solution to this system of 3 LMIs can be developed by applying two successive solutions of a 2-LMI

problem, as in Sub-section V.B. Suppose that the 2-LMI algorithm of that sub-section is applied, but with Rak
replacing Rmin. Suppose that the resulting solution is Rbjtemp and that the corresponding square-roots of the
covariance matrix increments from Eqs. (39) and (42) are, respectively, δYaibjtemp and δYakbjtemp. One can then find a
solution to the 3-LMI problem by re-applying the 2-LMI algorithm of Sub-section V.B, only this time using Rbjtemp
in place of Rai. This second solution will be the final Rbj, and it will satisfy Eqs. (31), (32), and (44). Suppose that
the square-root of the covariance matrix increment that is generated by Eq. (39) for this second 2-LMI solution is
δYbjtempbj. Then the total square-root covariance increments are

δYaibj = [δYaibjtemp, δYbjtempbj] (45a)
δYakbj = [δYakbjtemp, δYbjtempbj] (45b)

14
American Institute of Aeronautics and Astronautics

so that Pai - Pbj = T
aibjaibj YY δδ and Pak - Pbj = T

akbjakbj YY δδ . It may be possible to use QR factorization of T
aibjYδ or

T
akbjYδ in order to develop alternate square-root covariance increment matrices that preserve the values of

T
aibjaibj YY δδ and T

akbjakbj YY δδ , but with fewer columns in δYaibj or δYakbj.
In this 3-LMI case, nothing definite can be said about the number of zero-eigenvalues in the set of 3n

eigenvalues that is the union of the eigenvalues of the three matrix differences (Rbj
TRbj - minmin RRT), (Rbj

TRbj-
Rai

TRai), and (Rbj
TRbj-Rak

TRak). It is possible, maybe even likely, that this ad hoc algorithm is a sub-optimal solution
to the 3 LMIs in Eqs. (31), (32), and (44). That is, it may fail to minimize any sensible norm of Rbj

TRbj subject to
the three LMI constraints. If so, then an optimized Rbj solution might improve part of this paper's Gaussian mixture
re-sampling algorithm; it might enable a sub-mixture of pb(x) to accurately approximate a 2-element sub-mixture of
pa(x) using a smaller number of new elements.

VI. Algorithm for Decomposing the Original Gaussian Mixture into Sub-Mixtures

A. The Need for a Decomposition of pa(x) into Sub-Mixtures
This section develops a strategy for decomposing original Gaussian mixture pa(x) into the Gaussian sub-

mixtures, psam(x) for m = 1, ..., M, as described in Sub-section II.B. This decomposition is used in the 1st block of
Fig. 1's main re-sampling algorithm. It is needed for several reasons. First, as noted in Sub-section III.D, it is often
impractical to compute the relative fit metric defined in Eq. (21). Therefore, sub-mixtures are needed to enable use
of the more practical, but conservative, metric found on the extreme right-hand side of Eq. (24). Second, this
paper's method for choosing weights for new elements relies on decomposition into sub-mixtures and solution of a
separate low-order QP in order to determine the relative weights of each sub-mixture. One could pose a QP for the
entire weight vector wb by optimizing JISD from Eq. (15). The resulting QP, however, often would be too large and
require far too much computation to solve in a reasonable amount of time. Third, the method of selecting new
elements of pb(x), as defined in Section VIII, adds new elements one at a time. Its method for selecting each new
element is intimately linked with the decomposition of pa(x) into sub-mixtures.

B. The Use of One- and Two-Component Sub-Mixtures of pa(x)
A simple decomposition of pa(x) uses only single-element sub-mixtures. That is, it chooses M = Na and psam(x)

= Nsr(x;μam,Ram) for m = 1, ..., Na. In the notation of Sub-section II.B, this choice would imply that ilom = ihim = m
and that Nam = 1 for m = 1, ..., M. Although simple and sometimes effective, this decomposition has one significant
drawback when used in conjunction with the algorithms of Sections VII and VIII: It will never allow those
algorithms to merge a pair of very similar components of original Gaussian mixture pa(x) into a single new
component of Gaussian mixture pb(x).

The ability to merge components can be important, and this capability is the subject of a number of research
efforts, e.g., see Refs. 9, 11 and 12. In Gaussian mixture filtering applications, the dynamic propagation and
measurement update processes can tend to make different mixture components converge towards each other over
time. This is especially true in cases where an initially large state uncertainty converges to a much smaller
uncertainty over time, as experienced during the project that produced Ref. 10.

Therefore, this paper's algorithm also considers 2-component sub-mixtures in its decomposition of Gaussian
mixture pa(x). In general, the decomposition can consist of some sub-mixtures with one component and others with
two components.

It might be sensible to consider the possibility of allowing some of the sub-mixtures of pa(x) to have more than
two components. The consideration of higher numbers of sub-mixture components might enhance the algorithm's
ability to reduce the number of components in going from mixture pa(x) to pb(x). In the interest of simplicity,
however, the possibility of using more than two components has not been considered. The two-component limit
enables the re-sampling algorithm to reduce the number of mixture components, when possible, while avoiding
undue complexity.

There is no limit to Nbm, the number of elements in new sub-mixture psbm(x), for any m in the range 1 to M. The
matrix LMI restriction on the covariance of the new components, if coupled with a limit on Nbm, could preclude the
possibility of developing a psbm(x) sub-mixture that accurately approximated its psam(x) counterpart. Therefore, an
upper bound on Nbm could preclude pb(x) from ever being a sufficiently accurate approximation of pa(x).

15
American Institute of Aeronautics and Astronautics

C. An Algorithm to Select the Sub-Mixtures of pa(x)
This sub-section describes how the sub-mixture decomposition is determined for an original Gaussian mixture

pa(x). The decomposition seeks to pair two components into a single sub-mixture if they are deemed likely to be
mergeable and if they have high enough weights. Multiple criteria are used to make a determination about
mergeability, criteria that are somewhat like those given in Refs. 9 and 11. Note that no decision to merge two
components is made at the point of deciding to pair them to form a single sub-mixture psam(x). A sub-mixture
pairing decision merely causes two components of pa(x) to become candidates for merging. An actual decision to
merge is mechanized indirectly via the operations that select new components. They occur in Blocks 4-6 of Fig. 1
and are described in Sections VII and VIII.

The sub-mixture decomposition procedure works with a candidate set of components of mixture pa(x).
Suppose that this set is indicated at the start of any given stage of this procedure by the corresponding indices of its
components of pa(x), the index set {ic1, ic2, ic3, …, icK}. This set has K elements, with K ≤ Na. Suppose, also, that
these indices have been sorted so that they are in order of descending weights. That is, 1caiw ≥ 2caiw ≥ 3caiw ≥ …
≥ cKaiw .

A stage of the decomposition procedure executes by considering K-1 candidate pairs for forming a new sub-
mixture. The first component of each candidate pair is),;(11 cc aiaisr RμxN , and the second component of the kth
candidate pair is),;(akaksr RμxN for k = ic2, ic3, ic4, …, icK. The procedure selects the pair),;(11 cc aiaisr RμxN
and),;(akaksr RμxN for the first index k in this sequence which yields a pair that passes all of the procedure's
criteria for possible merging, criteria which are defined below. These two components are used to define a new
sub-mixture psam(x), their corresponding indices are dropped from the set {ic1, ic2, ic3, …, icK}, which causes K to
decrement by 2, and the procedure repeats starting with the next available candidates for merging. If none of these
K-1 pairs passes all of the criteria for possible merging, then a 1-component sub-mixture is formed from

),;(11 cc aiaisr RμxN , ic1 is dropped from the set of candidate indices, K is decremented by 1, and the procedure
continues. This procedure terminates when K = 1 or 0. If it terminates with K = 1, then the remaining component is
used to form a sub-mixture psam(x) that has only one component.

Before entering this procedure, the initial index set {ic1, ic2, ic3, …, icK} is formed from all components of
Gaussian mixture pa(x) whose weights are above a small minimum threshold. That is, ckaiw ≥ wmin for all k = 1,
…, K for the initial set. If any original mixture component does not have a weight above the threshold wmin, then it
is used to form a 1-component sub-mixture psam(x). This positive threshold is a tuning parameter of the algorithm.
Typically it is set very low, wmin < 1/Nbmax, where Nbmax is the upper limit on the number of components in the new
Gaussian mixture pb(x). It is not worthwhile to try to merge elements with very small weights because they are
unlikely to be sampled by the new component selection algorithm of Section VII.

The following criteria are used to determine whether a given pair of components of pa(x) should be grouped to
define a two-component sub-mixture by virtue of being reasonable candidates for merging. For notational
convenience, let),;(aiaisr RμxN and),;(akaksr RμxN be the two candidate components during the remainder of
this discussion of pairing criteria. The first two criteria test whether the two means are sufficiently close:

n-R-R akaiaiakaiai γ≤)]([)]([T μμμμ and n-R-R akaiakakaiak γ≤)]([)]([T μμμμ (46)

where γ is a tuning parameter of the algorithm. Typically γ is chosen to be less than 1 in order to ensure that the two
means are close in a statistical sense. A typical tuning value is γ = 0.1. Both of these inequalities must be satisfied
in order for components i and k to be considered for possible grouping into a single sub-mixture psam(x).

If the criteria in Eq. (46) are satisfied, then a second test is applied. It checks whether there is a small ISD
between the proposed two-component sub-mixture and a single new Gaussian component candidate that tries to fit
the entire proposed sub-mixture. In order to carry out this test, it is necessary to define the candidate new Gaussian
component. Its mean equals the mean of the proposed sub-mixture

)(/)(akaiakakaiaiaik wwww ++= μμμ (47)
Its square-root information matrix is calculated based on the technique of Sub-section V.B, but with Rak replacing
Rmin in the calculations of that sub-section. Let this candidate square-root information matrix be called Raik. It
optimally satisfies the LMIs Raik

TRaik ≥ Rai
TRai and Raik

TRaik ≥ Rak
TRak. Thus, it is the square-root information

matrix of a Gaussian distribution whose covariance is no greater than the covariance of either the ith or the kth
component of pa(x). The second test is based on the ISD between the candidate merged Gaussian component

16
American Institute of Aeronautics and Astronautics

Nsr(x;μaik,Raik) and the candidate two-component sub-mixture psamc(x) = [waiNsr(x;μai,Rai)+wakNsr(x;μak,Rak)]/
(wai+wak). This test is passed if

λ≤

∫

∫ −

∞

∞

∞

∞

-

2
samc

-
samc

p

pN

xx

xxx

d

dRaikaiksr

)(

)](),;([2μ
 (48)

where λ is another tuning parameter of this algorithm. It is normally chosen to be significantly smaller than 1. A
typical value is λ = 0.1. Note that the integral in the numerator on the left-hand side Eq. (48) is an ISD. It and the
integral in the denominator can be evaluated analytically by using techniques defined in Sub-section III.B.

The two criteria in Eq. (46) and the one criterion in Eq. (48) all must be satisfied in order for a given pair of
components of Gaussian mixture pa(x) to be deemed mergeable. If any pair satisfies these three criteria during the
search procedure defined above, then they air paired to form a single actual psam(x) sub-mixture of pa(x).

Note that it is possible for a particular pair of components to satisfy these three criteria and yet not be paired
into a psam(x) sub-mixture. This will happen if one or the other of the pair has already been successfully paired with
a different component of higher weight. Thus, this pairing algorithm prefers pairs with the highest combined
weight, subject to the constraints in Eqs. (46) and (48).

VII. Algorithm for Choosing New Sub-Mixture Components to Fit a Corresponding Old Sub-
Mixture

Part of the overall Gaussian mixture re-sampling algorithm involves choosing the elements of sub-mixture
psbm(x) so that it will closely approximate the original sub-mixture psam(x) after its relative weights have been
determined by solving the QP of Section IV. Recall that the elements of psbm(x) are Nsr(x;μbj,Rbj) for j = jlom, ..., jhim,
as per Eq. (6b). The choice of elements of psbm(x) involves choosing their means and square-root information
matrices, μbj and Rbj for j = jlom, ..., jhim. This section describes how these choices are made.

A. Choosing Square-Root Information Matrices of New Components
The square-root information matrices are pre-selected to be the same for all components of a given sub-mixture

of pb(x): Rbj = Rsbm for j = jlom, ..., jhim. This rule is consistent with the 3rd and 6th blocks of Fig. 1's algorithm. The
common square-root information matrix Rsbm is chosen by using the LMI solution procedure in Section V. If psam(x)
has only one component, Nsr(x;μai,Rai), then Rsbm is chosen to satisfy the LMIs in Eqs. (31) and (32), as per Sub-
section V.B. If psam(x) consists of two component, Nsr(x;μai,Rai) and Nsr(x;μak,Rak), then Rsbm is chosen to satisfy the
LMIs in Eqs. (31), (32), and (44) as per Sub-section V.D.

The LMI constraints on Rsbm enable psbm(x) to better approximate psam(x) because each component of psbm(x) has
a smaller covariance than each component of psam(x). Therefore, it is possible to have a set of components of psbm(x)
with distributed means whose net total covariance equals that of psam(x). If the covariances of the components of
psbm(x) were larger than those of the components of psam(x), then this covariance matching might be difficult or even
impossible because the covariance of a weighted sum of probability density functions can be no smaller, in an LMI
sense, than the smallest covariance of any of its components. Thus, the LMI constraints on Rsbm allow latitude in
choosing the new components' means μbj for j = jlom, ..., jhim while maintaining the new sub-mixture's potential to
accurately model the covariance of the corresponding original sub-mixture.

For purposes of the remainder of this section, let δYaim be the square root of the covariance increment Pai - Psbm
= T1 −−

aiai RR - T1 −−
sbmsbmRR = T

aimaim YY δδ , where i is the index of the first component of psam(x). If psam(x) has two
components, then let k be the index of this second component, and let δYakm be the square root of the covariance
increment Pak - Psbm = T1 −−

akak RR - T1 −−
sbmsbmRR = T

akmakm YY δδ . Methods for computing δYaim and δYakm are described
in Sub-sections V.C and V.D, though they are called δYaibj and δYakbj in those sub-sections.

B. Initial Candidate Distribution for Choosing Means of New Components
A candidate method for generating the new components' mean values is to sample the following modified form

of the original sub-mixture probability:

17
American Institute of Aeronautics and Astronautics

⎪
⎩

⎪
⎨

⎧

+
=

elements 2 has)(if
),;(

),;(
element 1 has)(if),;(

)(
T

T

T

x
x

x
xx

x
sam

akmakmakak
aimaimaiai

samaimaimai
m p

YYw
YYw

pYY
p

δδ
δδ
δδ

μ
μ

μ
μ

N
N
N

(
((49)

That is, pμm(x) is almost the same as psam(x), except for the following: The respective covariance of the first
component is reduced from T1 −−

aiai RR to T
aimaim YY δδ , and if there is a second component, then its covariance is

reduced from T1 −−
akak RR to T

akmakm YY δδ .
The usefulness of the distribution pμm(x) can be understood by considering the following scenario: Suppose

that psbm(x) has many elements with their means independently sampled from pμm(x), their square-root information
matrices all equal to Rsbm, and their weights all equal. One can show that the resulting distribution has the same
mean and covariance as psam(x) in the limit of a large number of components. This result relies on the variability of
the mean values μbj for j = jlom, ..., jhim to make up for the fact that each new component's covariance, T1 −−

sbmsbmRR , is
less than the covariance of any of the components of psam(x). In fact, the δYaim and δYakm matrices have been
specifically designed to compensate for any such covariance differences, as per Sub-sections V.C and V.D.

C. A Modified Distribution for Choosing Means of New Components
The above approach for choosing means and relative weights of new components relies too much on the brute-

force statistical properties of large numbers. It achieves a high probability density in a given region by locating
many equally-weighted new components close together in locations of x space where psam(x) is large. A better
approach would be to locate fewer components in such regions, but to increase their weights. The QP solution
procedure of Section IV provides the needed means of increasing weights in regions of high psam(x) values. The
present sub-section develops a method for spreading out the means of the new elements in order to exploit the
ability of QP-based weight selection to obviate the need for many new components with closely spaced mean
values. This method is used in the 6th block of the Fig. 1 algorithm. Adequate spacing of new elements’ mean
values helps to avert the degeneracy problems that can occur in typical particle filters.

Suppose that the means μbj for j = jlom, ..., (jhim-1) have been chosen for psbm(x). There is no loss of generality in
assuming that means have already been chosen for all but the last component of psbm(x). The main algorithm of
Section VIII adds a single component to a given psbm(x) at any given stage of its procedure. The procedure always
assumes that the newly added component may be the last. Under this assumption, a better approach for choosing
the next mean of a new component is to sample it from the following modified probability density function:

)()()(1)(
1 }){(}){(5.0 T

xxxx xx
mmm

j

jj

RR
hm pCpeCp

him

lom

bjsbmbjsbm
μμμ π=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∏ ⎥
⎦

⎤
⎢
⎣

⎡
−=

−

=

−−− μμ (50)

where C is a normalization constant. The factor πm(x) is a scalar multiplicative factor involving terms of the form
1-e(*). It takes on values in the range 0 < πm(x) < 1. It takes on values very near 1 in regions of x space that are
remote from the existing component mean values μbj for j = jlom, ..., (jhim-1). In regions near the existing means, on
the other hand, this scaling factor is very near 0. Thus, the new mean μbjhim is nominally sampled from pμm(x),
unless the resulting value would be too near to one of the existing mean values, μbj for j = jlom, ..., (jhim-1).

An example pμhm(x) distribution is shown in Fig. 2 for a 1-dimensional x space. The black dash-dotted curve is
pμhm(x)/C, and the grey curve is pμm(x). The means of new mixands that have already been selected, μbj for j = jlom,
..., (jhim-1), are 3.5, 6, and 7.5 in this case. pμhm(x)/C equals zero at these values, and it nearly equals pμm(x) remote
from these values. Thus, the next mean, μbjhim, is unlikely to be near the values 3.5, 6, and 7.5. This is a good
property because the pre-existing components are already able to approximate pμm(x) accurately near these values.

D. How to Sample a New Mean from the Modified Distribution
It is necessary to develop a special algorithm in order to properly sample from the probability density function

in Eq. (50). This distribution is ideally suited to use a form of Metropolis-Hastings (M-H) sampling 13 because it is
the product of the following three factors: the easily-sampled distribution pμm(x), the constant C, and the uniformly
bounded function πm(x). The M-H algorithm for sampling pμhm(x) consists of an algorithm for sampling pμm(x)
coupled with an algorithm for accepting or rejecting the sample based on evaluation of πm(x) at the current
candidate sample and, typically, at a number of alternate candidate samples.

The algorithm for sampling the distribution pμm(x) of Eq. (49) is straightforward. If it has only one Gaussian
component, then a Gaussian random vector is sampled from a distribution with a mean of zero and a covariance

18
American Institute of Aeronautics and Astronautics

equal to the identity matrix. Its dimension equals the number of columns of the square-root covariance matrix δYaim.
This sampled vector is multiplied by δYaim, and the result is added to μai in order to produce a sample of pμm(x).

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

p m
uh

m
(x

)

pmum(x)

Pre-existing means
of components

of psbm(x)

pmuhm(x)/C

Fig. 2. The original and modified sampling distribution functions for the mean values of components of a

new sub-mixture, a 1-dimensional example.

If pμm(x) has two components, then its sampling procedure must start with an importance sampling step. A
scalar is sampled from the uniform distribution between 0 and 1 U[0,1]. If that scalar is no greater than the relative
weight aiw(, then the desired sample of pμm(x) is drawn from the Gaussian distribution),;(T

aimaimai YY δδμxN , as
described in the preceding paragraph. If the uniform sample exceeds aiw(, on the other hand, then the desired
sample of pμm(x) is drawn from the alternate Gaussian distribution),;(T

akmakmak YY δδμxN . If pμm(x) were allowed
to have more than 2 Gaussian components, then this method would be modified to make the importance sampling
step decide between the multiple Gaussian components based on their relative weights, as per standard procedures
that are given in Ref. 2 and elsewhere.

Given an ability to sample from pμm(x), a mixture of the accept/reject method and an M-H method are used to
sample from pμhm(x). Pseudo-code for this sampling algorithm is

Initialize l = 0, a counter of the number of M-H accept/reject cycles.
Draw αl from U[0,1] and draw xl from pμm(x).
If πm(xl) ≥ αl, then stop and accept xl.
While l < lmax

l = l + 1.
Draw αl from U[0,1] and draw xl from pμm(x).
If πm(xl) ≥ αl, then stop and accept xl.
Draw βl from U[0,1]
If βlπm(xl-1) > πm(xl)

xl = xl-1
end

end
Let himbjμ = xl.

19
American Institute of Aeronautics and Astronautics

The M-H iteration limit lmax must be chosen large enough to ensure that the final sample is from a distribution
that nearly approximates pμhm(x) 13. This limit must not be too large; otherwise, it wastes computational resources.
Computational experience suggests that a good value might be lmax = 30.

One acceptance test for the sample takes the form: if πm(xl) ≥ a sample from U[0,1], then stop and accept xl.
This is a classic accept/reject test. It would suffice to generate the pμhm(x), but the accept/reject algorithm can be
very inefficient.

The final if/end block implements the M-H part of the sampling method. It automatically keeps xl as a better
candidate sample from pμhm(x) if πm(xl-1) ≤ πm(xl) because βl sampled from U[0,1] will always obey βl ≤ 1.
Whether or not it keeps xl when πm(xl-1) > πm(xl) depends on how small πm(xl) is relative to πm(xl-1) and on how
small the sampled value βl is, consistent with the M-H method. The accept/reject operations and the M-H
operations both increase the likelihood of choosing a given xl if its πm(xl) is near 1. This is exactly what is needed
in order modify the distribution pμm(x) from Eq. (49) in order to yield samples from the pμhm(x) distribution of Eq.
(50). Note that the algorithm never needs to know the scaling constant C.

E. Additional QP-Based Accept/Reject Criteria
Two additional accept/reject tests are applied to the candidate component mean value himbjμ . These criteria

implement the decision in the 8th block of Fig. 1's main algorithm. They involve the new QP that gets generated, as
per Eqs. (28a)-(28d) of Section IV. The new mean and the corresponding new component of psbm(x) give rise to a
new last component of the relative-weight QP solution vector bmw(, a new last row and column of the Hessian
matrix Hbbm, and new last elements of the gradient vector gbm and of the normalization constraint vector c.

As discussed in Section IV, the new QP may have two deficiencies. One is that Hbbm may not be sufficiently
positive definite. The second is that the optimal value of the new component of bmw(may be zero. Both of these
situations indicate that the new Gaussian mixture component does not enable the augmented psbm(x) sub-mixture to
approximate the original sub-mixture psam(x) with significantly better accuracy. In this case, the candidate mean

himbjμ is rejected, and the sampling algorithm of the previous sub-section is re-executed with the goal of generating
a better candidate.

These rejection criteria tend to correlate with himbjμ being too close to the mean of an existing element of
psbm(x), i.e., to one of the means μbj for j = jlom, ..., (jhim-1). One would expect the sampling algorithm of the
previous sub-section to avert this situation in most cases. Computational experience indicates that this situation is
not completely precluded. Therefore, these two accept/reject criteria are worth including in the algorithm. Note,
the first of these criteria maintains the uniqueness of the global solution of the QP in Eqs. (28a)-(28d), and it ensures
that one can use a Cholesky-factorization-based solution procedure for this QP, as outlined in Section IV.

F. Selection of Mean of First Sub-Mixture Component
The algorithm of the previous two sub-sections presumes that at least one component of psbm(x) has already

been selected. That is, it assumes that jhim - jlom = 1. Therefore, an auxiliary algorithm is needed in order to select
the first mean value of the first component of psbm(x). One reasonable choice is to sample lombjμ from the pμm(x)
distribution of Eq. (49).

An alternative approach is to choose the initial mean lombjμ to equal the mean of psam(x), which also equals the
mean of pμm(x). An adaptation of the mean formula in Eq. (4) can be used to compute this mean value. The
adaptation substitutes relative weights aiw(for absolute weights wai, and it sums only from ilom to ihim. Note: the
merging criteria of Sub-section VI.C ensure that this mean will not lie in a region of low probability.

The use of the alternative scheme may be advisable for many situations. It is particularly important if the
differential covariance T

aimaim YY δδ is small and psam(x) has only one component, or if psam(x) has two components
with each component’s differential covariance being small and with both components being very much alike. In
this case, a single component of psbm(x) may be able to approximate psam(x) to a very high degree of accuracy. The
use of the mean of psam(x) for lombjμ increases the likelihood of achieving such a good approximation.

There is no need to apply the additional accept/reject criteria of the previous sub-section to the first component
of psbm(x). The scalar Hessian Hbbm is guaranteed to be positive definite in this special case, and the new element of

bmw(is guaranteed to be non-zero. In fact, it will be the only element. It must equal 1 because of the unit
normalization constraint in Eq. (28c).

20
American Institute of Aeronautics and Astronautics

VIII. Main Algorithm for Generating the New Gaussian Mixture pb(x)
This section uses the definitions and results of Sections II-VII and several additional definitions in order to

develop the main algorithm for generating the new Gaussian mixture pb(x) from the original Gaussian mixture pa(x).
This algorithm starts by decomposing pa(x) into a set of M 1- and 2-component sub-mixtures, as described in
Section VI. Next, it recursively selects individual component sub-mixtures of pa(x) as candidates for improved
approximation. This selection process is similar to importance re-sampling in a traditional particle filter 2, except
that it uses a modified set of weights that reflect both the original sub-mixtures’ weights and the residual fit errors
between each original sub-mixture and its new counterpart. For the sub-mixture psam(x) that is selected by this
modified importance re-sampling procedure, the algorithm adds one new component to psbm(x), as per Section VII,
and it uses a QP to re-calculate the relative weights of the modified psbm(x) in a way that minimizes its fit error, as
per Section IV. This process repeats itself, adding one new component to pb(x) per recursion, until it has achieved a
sufficiently good fit of pb(x) to pa(x), or until it reaches a pre-allotted number of Gaussian mixture components of
pb(x).

A. Modified Importance Re-Sampling
The modified re-sampling procedure uses the following relative fit parameter between the old and new sub-

mixtures psam(x) and psbm(x):

][T

TTT)()()(2
,1min

amaamam

optbmbbmoptbmoptbmabmamamaamam
m

H

HHH
f

ww

wwwwww
((

((((((+−
= (51)

where optbm)(w(is the optimal solution of the QP in Eqs. (28a)-(28d) . Recall from the analysis of Section III that
the right-hand argument of the min[,] function in Eq. (51) equals ||psbm(x)-psam(x)||2/||psam(x)||2. The value of fm is
initialized to 1 when there are not yet any components of new sub-mixture psbm(x). The min[,] function in Eq. (51)
restricts fm to be no greater than 1. As will become evident from what follows, this restriction avoids the possibility
of amplifying the weight of an original sub-mixture due to a very poor fit between it and the corresponding new
sub-mixture. These fit parameters are initialized in the 2nd block of the main algorithm of Fig. 1, and they are
updated in the 7th block.

The modified sub-mixture weights used in the modified re-sampling procedure are

∑
=

=

M

l
lsal

msam
sam

fw

fw
w

1

~ for m = 1, ..., M (52)

These weights are computed in the 4th block of the Fig.-1 algorithm. They indicate both the importance of a given
sub-mixture and the current inaccuracy of its fit by the corresponding sub-mixture of pb(x). The weight will be
small if the original weight is small or if the current fit parameter is small, smallness indicating a good fit. In either
case, the algorithm probably will not add a new component to the corresponding sub-mixture of pb(x). This will be
a reasonable decision because larger modified weights of other sub-mixtures would indicate that those other sub-
mixtures have relatively higher importance, relatively poorer fit accuracy for their corresponding pb(x) component,
or both. The algorithm, therefore, would do well to improve the fit of one of those other sub-mixtures by giving it a
new component.

The following modified importance re-sampling algorithm chooses which new sub-mixture to augment: First,
sample η from U[0,1]. Next, seek the lowest index m such that

∑<≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>∑

=

=

−

=

m

l
sal

m

l
sal

wmw

m

1

1

1

~
1 if~
1 if0

η (53)

This index chooses sub-mixture psbm(x) as being the one for which a new component will be selected and for which
new relative weights will be calculated in order to better fit the original sub-mixture psam(x). This modified
importance re-sampling algorithm is implemented in the 5th block of Fig. 1.

B. Weights of New Sub-Mixtures
No information has yet been given about how the weight wsbm of the new sub-mixture psbm(x) will be

calculated. The chosen ad hoc method seeks to keep wsbm close to wsam, the weight of the corresponding original
sub-mixture. This technique is reasonable given that the components and relative weights of psbm(x) are chosen in a

21
American Institute of Aeronautics and Astronautics

way that tries to fit psam(x) accurately. An optimal method, on the other hand, might rely on definition and solution
of some sort of QP. As noted in Section III, however, the size of such a QP might be prohibitively large.

The ad hoc algorithm tries to choose the new weights wsbm = wsam for m = 1, ..., M, but it cannot use this choice
if any psbm(x) sub-mixture has no components. An empty sub-mixture can occur if the corresponding original
weight wsam is very small. In this case, the wsam weights are used to define un-normalized wsbm weights for the non-
empty psbm(x) sub-mixtures, un-normalized weights of zero are assigned to the empty psbm(x) sub-mixtures, and the
final weights are determined via re-normalization.

The calculation procedure for the new weights relies on the mask weights

⎩
⎨
⎧

>
=

=
0 if1
0 if0

bm

bm
m N

N
z (54)

Recall from the text after Eq. (8b) that Nbm is the number of Gaussian components in psbm(x). Given these values,
the chosen weights of the new sub-mixtures are

∑
=

=

M

l
lsal

msam
sbm

zw

zw
w

1

 for m = 1, ..., M (55)

C. Main Re-Sampling Algorithm
Given the foregoing definitions, it is possible to define this paper's main Gaussian mixture re-sampling

algorithm. It takes the following form, as defined using pseudo-code:

Decompose pa(x) into sub-mixtures psam(x) with weights wsam and relative weight vectors
amw(for m = 1, ..., M. Do this using the decomposition definition of Sub-section II.B, the

relative weight vector definition after Eq. (22) in Sub-section III.D, and the decomposition
algorithm of Section VI.

Initialize the fit parameters and the mask weights to, respectively, fm = 1 and zm = 0 for m = 1,
..., M as per Sub-sections VIII.A and VIII.B.

Compute the new square-root information matrices Rsbm and the corresponding δYaim and
δYakm square-root covariance increment matrices for m = 1, ..., M as per Sub-section
VII.A.

Pre-compute miscellaneous quantities that will be used in calculating the Haam, Habm, and Hbbm
matrices for m = 1, ..., M, as per Section III.B. These include the factor to the left of e on
the right-hand side of Eq. (17) and that equation's cdR~ matrix for all possible pairings of
Gaussian components between psam(x) and psbm(x).

Initialize Nb = 0 and jlom = 1, jhim = 0, Nbm = 0, and bmw(= the empty vector for m = 1, ..., M.
This initialization indicates that all of the psbm(x) sub-mixtures start with no elements.

Initialize Erel = ∞ .
While (Nb < Nbmax) and Erel > Erelmax

Use Eq. (52) to re-compute the modified weights samw~ for m = 1, ..., M
Do modified importance re-sampling to select sub-mixture psbm(x) as the one to which

a new component will be added, as per Eq. (53) in Sub-section VIII.A.
If m < M, then re-index the existing components of pb(x) in order to open up the

quantities associated with index (jhim+1) = jlo(m+1) for the new component. That is,
move μbj into μb(j+1) and Rbj into Rb(j+1) for j = jlo(m+1), …, Nb. Afterwards, increment
by 1 the quantities jlol and jhil for l = (m+1), …, M.

Increment by 1 the quantities Nb, jhim, and Nbm.
Let himbjR = Rsbm.
If Nbm > 1, then use the sampling and accept/reject methods of Sub-sections VII.D and

VII.E in order to determine himbjμ ; otherwise, determine himbjμ as per Sub-section
VII.F.

Set up and solve the QP in Eqs. (28a)-(28d) in order to determine bmw(. Use the
previous problem matrices, factorizations, and solution in order to perform low-
rank updates to efficiently re-pose and re-solve the QP as discussed in Section IV.

22
American Institute of Aeronautics and Astronautics

Set zm = 1 and use the new definition of psbm(x) along with the new optimal relative
weight vector bmw(in order to update fm as per Eq. (51).

Update wsbl for l = 1, …, M as per Eq. (55).
Compute the updated Erel as the right-most term in Eq. (24).

end
For l = 1:M

For j = jlol:jhil
wbj = wsbl 1)(][+lolj-jblw(

end
end

This algorithm is structured into 3 main sections. Everything before the main “while” loop constitutes an
initialization and corresponds to the 1st-3rd blocks of Fig. 1. The main “while” loop implements blocks 4-10 of Fig.
1, adding one new component to pb(x) for each pass through its operations. This component is the new last element
of sub-mixture psbm(x). The main “while” loop terminates when pb(x) has Nbmax Gaussian components or when Erel,
the conservative bound on the relative norm error between pa(x) and pb(x), falls to a value no greater than the upper
limit Erelmax. This upper limit is typically set to a small number relative to 1, for example, something in the range
0.01 to 0.0001. The final pair of nested “for” loops computes the final absolute weights of the components of pb(x),
as called for in the 11th block of Fig. 1. Each component’s final weight equals the product of its relative weight
within its sub-mixture and the absolute weight of that sub-mixture.

D. Discussion of Algorithm
The main algorithm has been designed with the goal of approximating elements of pa(x) with as small a number

of pb(x) elements as possible. Suppose that an original mixture element has a sufficiently small covariance such that
it does not violate the covariance upper limit on the new mixture elements, the limit defined in Eq. (31) using
square-root information matrices. If the old mixture element's weight is large enough, then the new mixture will
retain the old element exactly, and it will yield a perfect approximation of this component of the original mixture
using only one component of the new mixture. This new component may have a modified weight if such a
modification might allow it to also approximate another one of the original elements, one that is very similar to it.
Thus, this algorithm will tend to be frugal about creating components of the new distribution if the components of
its original distribution have sufficiently small covariances.

There are three computationally expensive parts of the algorithm. One is the pre-computation of new square-
root information matrices, which occurs in the 3rd block of Fig. 1. The expensive parts of the corresponding LMI
solutions are the singular-value decomposition in Eq. (33), the matrix algebra in Eqs. (33) and (35), and the QR
factorization in Eq. (36). These calculations require order Mn3 operations. Block 3 also contains the second
expensive part, the pre-computation of quantities that are used to set up the QP problems for the relative weights.
The expensive parts of this calculation are the QR factorization in Eq. (18) and the matrix algebra in Eq. (19).
These calculations also require order Mn3 operations. The third expensive component is the setting up and solving
of the QP problems that determine the relative weights in the 7th block of Fig. 1. The expensive parts of the QP
calculations are the computation of the off-diagonal elements of the Hbbm Hessian matrices, as per Eqs. (16c) and
(17), and the Cholesky factorizations of the Hessian matrices, as per Eq. (29). The cumulative count of these QP
operations will be on the order of ∑ +=)(322

1 bmbm
M
m NNn if the QP solutions do not require many changes of their

active constraint sets. If the average 2
bmN exceeds n or if the average 3

bmN exceeds n3, then the QP operations in
Block 7 constitute the dominant computational cost. Otherwise, the set-up operations in Block 3 dominate the cost.

This analysis does not consider the computational costs associated with the sub-mixture decomposition
calculations in the 1st block of Fig. 1. The second test of candidate sub-mixture pairs, the one implemented in Eq.
(48), requires many of the same calculations as are required for Block 3 of Fig. 1. The preceding analysis assumes
that any such results from the execution of Block 1 are saved until the execution of Block 3 so that they can be used
to reduce the number of computations that must be carried out in Block 3.

The algorithm in the previous sub-section reverts to the standard importance re-sampling of a particle filter 2
(one that does not include regularization), in the limit of vary small covariances of the Gaussian components. This
limit corresponds to a very large Rmin minimum square-root information matrix for the components of the new
mixture. In this case, the original and new Gaussian mixture components will be Dirac delta functions. The mean-
value selection procedure of Sub-section VII.D collapses to a selection of means of the new components from the

23
American Institute of Aeronautics and Astronautics

set of means of the old components because the δYaim and δYakm matrices are very small in this case. Similarly, the
modified re-sampling associated with Eq. (53) collapses to standard importance re-sampling because the fm values
from Eq. (51) always equal 1, which causes the re-sampling weights in Eq. (52) to equal the original weights. The
QP solution in Eqs. (28a)-(28d) will tend to yield nearly equal relative weights in this case. The expected number
of elements of each new sub-mixture, when combined with the near equality of the relative weights from the QP,
tends to produce equal weights in the main algorithm’s final pair of nested “for” loops. All of these properties yield
a filter that functions like a standard PF.

IX. Examples of Algorithm Performance
The algorithm described in Sections II-VIII has been implemented in MATLAB and tested on several problems.

Consider the n = 2-dimensional example whose original Gaussian mixture pa(x) is depicted in the top plot of Fig. 3.
The figure’s 3-D view of the distribution lies along a direction that is almost parallel to the x1-x2 plane, thereby
projecting the x1-x2 plane almost onto a horizontal line in the plot. This mixture has 5 elements. Their standard
deviations range from 0.18 to 1.70 for the first element of x and from 0.47 to 1.39 for the second element. The
maximum pb(x) component standard deviations, as imposed by Rmin, are 1.04 for the first element of x and 0.95 for
the second element.

Fig. 3. Original Na= 5 element 2-D Gaussian mixture pa(x) -- top plot, and error of Nb = 40 element Gaussian

mixture pb(x) -- bottom plot.

The fit of pb(x) was carried out using the following tuning parameters: Nbmax = 100 components and Erelmax =
0.01 to control termination criteria as in Section VIII; wmin = 0.001, γ = 0.1, and λ = 0.1 to control decomposition of
pa(x) into sub-mixtures as in Section VI; lmax = 30 iterations of the M-H sampling procedure as in Section VII.

The actual fit of pb(x) to pa(x) is very good, as shown on the fit error plot, the bottom plot of Fig. 3. The
achieved conservative measure of the relative error is Erel = 0.0084, and the actual relative error norm, as
determined numerically, is ||pb(x)-pa(x)||2/||pa(x)||2 = 0.0056, thus demonstrating the conservatism of the computed
Erel as defined by the extreme right-hand term in Eq. (24). This good fit has been achieved using only Nb = 40
components in the new distribution. Their standard deviations range from 0.18 to 0.82 for the first element of x and
from 0.47 to 0.75 for the second element. Thus, they are narrower than the widest elements of pa(x) due to the
covariance restrictions imposed by the Rmin LMI in Eq. (31).

The weights of the Gaussian components of pb(x) range from 0.0002 to 0.2912. The mean weight is 1/Nb =
0.025, and the standard deviation of the weights is 0.0451. Unlike particle filtering re-sampling, this procedure does

24
American Institute of Aeronautics and Astronautics

not produce equal-weighted components. This feature enables the new method to fit pb(x) to pa(x) with much
greater accuracy for a given number of components.

Another useful metric of this algorithm's performance is the accuracy with which it approximates the mean and
covariance of the original distribution as computed using Eq. (4). Reasonable metrics of the relative accuracies of
the mean and covariance are

)()(1T
gmagmbgmagmagmb PΔμ μμμμ −−= − and ||||/|||| gmagmagmb PPPΔP −= (56)

where the ()gma subscripts indicate the mean and covariance of original Gaussian mixture pa(x), and the ()gmb
subscripts denote the new approximate mixture pb(x). The matrix norms in the ΔP expression are induced matrix 2-
norms. These performance metrics evaluate to Δμ = 0.0042 and ΔP = 0.0102 for this example. Thus, both the mean
and the covariance of pb(x) closely match those of pa(x) in a relative sense, despite the fact that there is no explicit
matching constraint in the algorithm that constructs pb(x).

As a point of comparison, 40 particles have been sampled independently from pa(x), and they have been used to
approximate the mean and covariance. The relative mean error for these 40 equal-weight Dirac delta functions is
Δμ = 0.2748, and the relative covariance error is ΔP = 0.2068. Thus, the mean estimate from the 40 particles is 66
times less accurate than the mean estimate from the 40-component re-sampled Gaussian mixture, and the particles'
covariance estimate is 20 times less accurate. The non-infinitesimal widths of the pb(x) Gaussian mixture
components enable them to do a much better job of approximating pa(x).

Of course, MATLAB requires much less time to sample 40 particles from pa(x) than it requires to construct pb(x)
using this paper’s algorithm. A better comparison uses 8000 particles, which require about the same amount of
processor time to sample as is required to construct pb(x). The average Δμ and ΔP fit metrics decrease significantly
when using 8000 particles, but they are still larger than those achieved by the 40-component Gaussian mixture
pb(x). The 8000 particles’ average Δμ fit metric is larger by a factor of 3.7 than that of pb(x), and their average ΔP
metric is 2.1 times larger. Thus, the new algorithm offers a clear advantage over particle methods for this example
problem.

This paper's algorithm could have fit pb(x) to pa(x) very accurately with many fewer mixands if the LMI bound
in Eq. (31) had been less restrictive. The re-sampling algorithms in Refs. 9, 11, and 12 could have done the same.
With a very loose LMI bound, the algorithm could achieve a perfect fit with just 3 elements, the original elements.
The next example, however, demonstrates the usefulness of adding extra elements, even many extra elements, in
order to satisfy an LMI that enforces a restrictive bound on the new elements' covariances.

The required number of components of pb(x) grows significantly if the maximum covariance of each
component is reduced, that is, if Rmin increases in the LMI of Eq. (31). This is illustrated by the example in Fig. 4.
The original pa(x) has 3-components and is plotted in solid blue along the horizontal axis. The approximate pb(x)
has 100 components and is plotted as the dash-dotted red curve along the same axes. The 3 components of pa(x) are
plotted as dashed green curves, and the 100 components of pb(x) are plotted as dotted blue-grey curves. The
standard deviations of the components of pa(x) are 0.42, 0.75, and 2.06. The components of pb(x) all have the same
standard deviation: 0.20, the upper limit imposed by Rmin. As can be seen from Fig. 4, pb(x) approximates pa(x) very
well. The relative fit error is ||pb(x)-pa(x)||2/||pa(x)||2 = 0.0034. The cost of achieving this good fit is the need to use
100 components to construct pb(x).

Figure 4 illustrates an important point about why this Gaussian mixture re-sampling method has been
developed. It plots an example nonlinear function f(x) as the dash-dotted black curve. It also shows the exact
propagation of the probability density function pa(x) through f(x) to produce the corresponding probability density
function for f: pf(f) = pa[x(f)]/|∂f/∂x|, where x(f) represents the function inverse of f(x). This probability density is
plotted as the solid blue distribution that is shown along the left-hand vertical axis (after being moved to have its
zero value line up at the horizontal position x = -12 and after being scaled down by a factor of 3 in order to fit well
within the figure's horizontal range). pf(f) is plotted along the vertical f axis because f is its independent variable.
Also plotted on that axis are two approximations of pf(f). The dashed green curve is the pf(f) that results from
performing EKF-type propagations through f(x) of the 3 components of pa(x). The dash-dotted red curve is similar,
except that it applies the EKF-type propagations to the 100 components of pb(x). It is obvious from this plot that the
latter approximation is much closer to the truth. It even reproduces the bi-modal peaks of the true distribution.
Thus, there can be significant benefit in terms of nonlinear filtering accuracy if one re-approximates pa(x) by a
Gaussian mixture pb(x) with bounded covariances on each of its components.

A different calculation is required in order to illustrate the benefits of using a re-sampled Gaussian mixture with
bounded component covariances when performing the measurement update of a nonlinear filter. Suppose that pa(x)

25
American Institute of Aeronautics and Astronautics

of Fig. 4 is the a priori probability distribution for x, and suppose that f(x) of Fig. 4 is a nonlinear measurement
function rather than a nonlinear dynamic propagation function. Suppose that the measurement model takes the
form:

y = f(x) + ν (57)
where y is the observed measurement vector and ν is a Gaussian measurement noise vector with a mean of zero and
a covariance of Pνν. Then Bayes’ rule dictates that the a posteriori probability distribution of x is

)(
)()|(

)()|(
)()]([)]([5.0 1T

x
xxxy

xxyx xyxy
a

fPf

a

a
posterior pCe

dpp

pp
p −−−

∞

∞−

−
=

∫

= νν (58)

where C is a normalization constant. This posterior distribution can be approximated as a Gaussian sum by using
EKF or UKF calculations to do individual updates for each of the Gaussian components followed by re-weighting
of the components. The re-weighting is based on chi-squared statistics of the components’ normalized innovations,
as in Ref. 7.

-12 -10 -8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

x

f(x
)

f(x)

pa(x) (solid blue) &
pb(x) (dash-dotted red)

3 components
of pa(x)

100 components
of pb(x)

Exact pf(f) = pa[x(f)]/|df/dx|
(solid blue)

Approximate pf(f) from 100-component EKF
propagtion of pb(x) through f(x) (dash-dotted red)

Approximate pf(f) from 3-component
EKF propagtion of pa(x) through f(x)

Fig. 4. A 3-component original Gaussian mixture, a 100-component approximation, and their propagation

through a nonlinear function.

Figure 5 presents three a posteriori probability density functions for this example. The example’s measurement
error covariance is Pνν = (0.1)2. A truth-model simulation generated xtrue = -2.0965 and y = 0.2996. The solid blue
curve is the true a posteriori probability density, the dash-dotted red curve is based on 100-element multiple-model
EKF calculations involving the approximate a priori distribution pb(x), and the dashed green curve is based on 3-
element multiple-model EKF calculations involving the true a priori distribution pa(x). The dash-dotted red curve
is obviously a much better approximation of the solid blue curve than is the dashed green curve. This improvement
further illustrates the advantages for nonlinear Kalman filtering of this paper's technique of re-sampling a Gaussian
mixture in order to limit the covariance of its individual elements. In this example, the technique is used to
intentionally over-sample the original 3-element Gaussian mixture in order to produce accurate transformations of
probability densities through nonlinear functions.

26
American Institute of Aeronautics and Astronautics

The components of pb(x) act like basis functions in the re-approximation of pa(x). The main idea of this
technique is to provide a means of dynamically updating the basis functions for the nonlinear Kalman filter's
probability distribution. This update seeks to maintain the accuracy with which the basis functions approximate the
underlying distribution. At the same time, it seeks to limit the covariances of the basis functions in order to
maintain the accuracy of the approximate EKF or UKF calculations that will be used to dynamically propagate them
and to update them when new measurement data become available.

-12 -10 -8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

x

a
po

st
er

io
r p

(x
)

True
Approx. based on multiple-model EKFs applied to pb(x)
Approx. based on multiple-model EKFs applied to pa(x)

Fig. 5. True and approximate a posteriori probability distributions after a nonlinear measurement update.

X. Summary and Conclusions
A new Gaussian mixture re-approximation/re-sampling algorithm has been developed. It has three goals. First,

it seeks to create a new mixture that is a close approximation of the original mixture. Second, it limits the
covariances of the elements of its new mixture so that each one will propagate accurately through typical EKF or
UKF nonlinear filter calculations, provided that the covariances have been limited to a sufficient degree for a given
problem model. The algorithm’s third goal is to limit the number of components of the re-sampled mixture. It
employs two complementary strategies for achieving this goal. One is to use optimal weight calculations rather than
large numbers of components in order to accurately approximate the original distribution in regions of high
probability density. The other is to merge components of the original mixture when possible.

The re-sampling algorithm’s form represents a natural generalization of particle filtering techniques.
Covariance matrices of the new mixture components are determined by solving systems of linear matrix inequalities
that set lower bounds on the corresponding information matrices. Mean values of new mixture components are
sampled from sub-mixtures that have decreased covariances. These decreased covariances compensate for the fact
that the total covariance consists of contributions from the variability of the new means and from the new
covariances. The weights of new elements are determined by quadratic programs that optimally fit sub-mixtures of
new components to sub-mixtures of old components.

The re-sampling algorithm has been tested on two example problems. The results show that good
approximations can be achieved with reasonable numbers of narrowed components of a new Gaussian mixture. The
re-sampled mixture is not constrained to preserve the mean or covariance of the original mixture. Nevertheless, the
algorithm’s concern for accurate approximation of the original probability density function tends to result in better
reproduction of the original mean and covariance than is achieved by the same number of particles in a standard PF.

27
American Institute of Aeronautics and Astronautics

It is reasonable to inflate the number of particles in a comparison PF until the PF processing time equals the amount
required by the new algorithm. Even in this case, however, the PF fails to achieve mean and covariance accuracies
as good as those of the new algorithm.

Another example calculation demonstrates good EKF/multiple-model propagation and measurement-update
results in the presence of significant nonlinearities. The approximate EKF/multiple-model probability density
functions closely match the true density functions, as determined numerically, if the approximate EKF calculations
are applied to a re-sampled mixture that has sufficiently narrow components.

References

1Julier, S., Uhlmann, J., and Durrant-Whyte, H.F., "A New Method for the Nonlinear Transformation of Means and
Covariances in Filters and Estimators," IEEE Transactions on Automatic Control, Vol. AC-45, No. 3, 2000, pp. 477-482.

2Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T., "A Tutorial on Particle Filters for Online Nonlinear/Non-
Gaussian Bayesian Tracking," IEEE Transactions on Signal Processing, Vol. 50, No. 2, Feb. 2002, pp. 174-188.

3Psiaki, M.L., "Backward-Smoothing Extended Kalman Filter," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5,
Sept.-Oct. 2005, pp. 885-894.

4Wan, E.A., and van der Merwe, R., "The Unscented Kalman Filter," Kalman Filtering and Neural Networks, S. Haykin, ed.,
J. Wiley & Sons, (New York, 2001), pp. 221-280.

5Psiaki, M.L., "Estimation Using Quaternion Probability Densities on the Unit Hypersphere", Journal of the Astronautical
Sciences, Vol. 54, Nos. 3-4, July-Dec. 2006, pp. 415-431.

6Sorenson, H.W., and Alspach, D.L., "Recursive Bayesian Estimation Using Gaussian Sums," Automatica, Vol. 7, No. 4,
1971, pp. 465-479.

7van der Merwe, R., and Wan, E., "Gaussian Mixture Sigma-Point Particle Filters for Sequential Probabilistic Inference in
Dynamic State-Space Models," Proceedings of the International Conference on Acoustics, Speech and Signal Processing, (Hong
Kong), IEEE, Apr. 2003. Available at http://www.cse.ogi.edu/~rudmerwe/pubs/index.html.

8Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T., Estimation with Applications to Tracking and Navigation, J. Wiley & Sons,
(New York, 2001), pp. 441-443.

9Williams, J.L., and Maybeck, P.S., "Cost-Function-Based Gaussian Mixture Reduction for Target Tracking," Proceedings of
the Sixth International Conference on Information Fusion, Cairns, Queensland, Australia, 2003. Available online at http://ieee-
aess.org/isif/sites/default/files/proceedings/fusion03CD/regular/r214.pdf.

10Psiaki, M.L., "Global Magnetometer-Based Spacecraft Attitude and Rate Estimation," Journal of Guidance, Control, and
Dynamics, Vol. 27, No. 2, March-April 2004, pp. 240-250.

11Salmond, D.J., "Mixture Reduction Algorithms for Uncertain Tracking," Technical Report 88004, Farnborough, UK: Royal
Aerospace Establishment, January 1988.

12Runnalls, A.R., "Kullback-Leibler Approach to Gaussian Mixture Reduction," IEEE Trans. on Aerospace and Electronic
Systems, Vol. 43, No. 3, July 2007, pp. 989-999.

13Chib, S., and Greenberg, E., "Understanding the Metropolis-Hastings Algorithm," The American Statistician, Vol. 49, No. 4,
Nov. 1995, pp. 327-335.

14Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic Press, (New York, 1981), pp. 37-40, 164, 167-
180.

15Kailath, T., Linear Systems, Prentice-Hall, (Englewood Cliffs, N.J., 1980), p. 656.

