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A new method has been developed to approximate one Gaussian mixture by another in a
process that generalizes the idea of importance re-sampling in a particle filter. This
algorithm isbeing developed as part of an effort to generalize the concept of a particlefilter.
In a traditional particle filter, the underlying probability density function is described by
particles. Dirac delta functions with infinitesimal covariances. This paper develops an
important component of a “blob” filter, which uses a Gaussian mixture of “fattened,” finite-
covariance blobs instead of infinitesimal particles. The goal of a blob filter is to save
computational effort for a given level of probability density precision by using many fewer
blobs than particles. Most of the techniques necessary for this type of filter have already
been developed. The one missing component is developed in this paper: a re-sampling
algorithm that bounds the covariance of each element while accurately re-producing the
original probability distribution. The covariance bounds are needed in order to keep the
blobs from becoming too “fat”; otherwise, Extended Kalman Filter (EKF) or Unscented
Kalman Filter dynamic propagation and measurement update calculations would cause
excessive truncation error for each blob. The re-sampling algorithm is described in detail,
and its performance is studied using several simulated test cases. Also discussed is the
usefulness of a Gaussian mixture and EKF-like techniques for nonlinear dynamic
propagation and nonlinear measur ement update of probability distributions.

|. Introduction

ifficulties can arise when solving certain nonlinear dynamic estimation problems. The default solution

algorithm for such problems is the EKF, but the EKF has a known potential to diverge or to yield sub-optimal
accuracy “?%, Various agorithms have been developed with the goal of improved convergence robustness or
accuracy in the presence of strong nonlinearities, among them the Unscented or Sigma-Points Kalman Filter (UKF)
14 the Particle Filter (PF) 2, and the Backward-Smoothing Extended Kalman Filter °.

The PF is attractive for its smplicity and its theoretical guarantee of convergence to the optimal result in the
limit of very many particles. The required number of particles to achieve a reasonable result, however, can become
overwhelming for state space dimensions as small as 3 or 4, asin Ref. 5.

A sensible generalization of the PF is to use Gaussian mixtures to represent probability density functions. In
effect, a PF works with representations of probability density functions that are sums of Dirac delta functions. A
Gaussian mixture generalizes this concept by using elements that have finite widths instead of infinitesimal widths.
A sum of finite-width elements has the potential to approximate a probability density function with many fewer
elements than would be needed by a PF for the same degree of accuracy, as measured based on differences of
multiple moments or based on the functional norm "distance" from the true probability density. Thus, a Gaussian
mixture filter has the potential to solve the curse of dimensionality that causes a PF to become impractical for state
space dimensions above 2 or 3.
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Gaussian mixture filters have been studied extensively in the past, and Ref. 6 is one of the earliest known
papers on this subject. The proposed "blob" filter is a modified version of the Gaussian mixture filter of Ref. 7.
That filter implements a separate standard UKF dynamic propagation and measurement update for each element of
its Gaussian mixture. Its approximate implementation of the full non-linear Bayesian measurement update dictates
that it recalculate the weights of its mixture elements. This re-calculation increases the weights of elements whose
predicted measurements best match the actual measurement at the given sample, asin the static multiple-model filter
described in Ref. 8. The final filter action for a given sample is to re-approximate the mixture by drawing samples
from it and then fitting a new Gaussian mixture to the samples. This action can avert degeneracy of the mixture into
one element or avery few elements that have appreciable weight, and it can reduce the number of elementsin cases
where the multiplication of Gaussian mixtures would cause exponential growth of this number.

The Gaussian mixture filter of Ref. 7 has strengths and weaknesses. Its main strength lies in the potential
accuracy of the UKF dynamic propagation and measurement update of the mixture. If each element of the Gaussian
mixture has a covariance that is sufficiently small, as measured in terms of the maximum eigenvalue or some other
sensible metric, then the UKF calculations will be very accurate. With sufficiently small covariances, EKF
calculations also would be sufficiently accurate to yield a good estimate of the posterior probability density
function. This is true because a narrow distribution implies good accuracy of the Taylor series approximations
inherent in the UKF or EKF calculations. That is, the Taylor series approximations are accurate over the likely
ranges of state variations of each mixture element.

The weakness of the filter of Ref. 7 liesin its re-approximation of the Gaussian mixture distribution after the
measurement update. This re-approximation samples the original mixture and fits a new Gaussian mixture to the
samples via Expectation Maximization (EM). This procedure achieves the worthy goal of eliminating mixture
elements with low weights. Unfortunately, it does not limit the maximum covariance of any element of the re-
approximation. This limitation is needed so that the next recursion of the filtering algorithm will yield good
accuracy when using the approximations that are inherent in its element-by-element EKF or UKF calculations. Itis
not obvious how to add such a limitation to the EM-based re-sampling procedure without making it unduly
complicated.

The other weakness of the mixture re-approximation is its failure to fit the old mixture as closely as possible in
some functional norm sense, asin the Integral Square Difference (1SD) metric of Ref. 9. Instead, the filter of Ref. 7
uses an ad hoc transition first to particle samples of the old mixture and finally back to Gaussian mixture elements
that fit these particles.

Section IV of Ref. 10 constitutes a prototype application of similar concepts to those of Ref. 7, albeit with
EKFs used in place of UKFs for propagating and updating the Gaussian mixture elements and without any need for
re-sampling. The goa of this application was to achieve filter convergence from large initial uncertainty in a
difficult spacecraft attitude determination problem. The algorithm converged reliably from large initial errors that
would have caused an EKF to fail. This reliable convergence implies that the algorithm of Ref. 7 could provide a
powerful solution to difficult problems in nonlinear filtering if it were modified to use this paper's re-sampling
procedure.

The present paper's contribution is an improved Gaussian mixture re-approximation algorithm that could be
applied to afilter like that of Ref. 7. It has four important properties: First, it chooses elements of the new mixture
so that their covariances lie below a linear matrix inequality (LMI) upper bound. This constraint is included to
ensure that element-by-element EKF or UKF dynamic propagation and measurement update calculations will yield
a sufficiently accurate approximation of the a posteriori probability density function on the next Bayesian filter
step. Second, it directly chooses new mixture elements and their weights in a way that seeks to minimize the 1SD
between the new Gaussian mixture distribution and the origina distribution. Third, it tends not to waste new
elements in attempts to approximate the contributions of original elements that have low weights. Lagt, it tends to
hold down the number of needed new elements through a combination of strategies. These strategies include a)
maximization of new element covariances subject to the LMI constraint, b) selection of new element means and
weights in a way that tends to limit the number of new elements needed for a given improvement to the ISD, c)
termination of the generation of new elements when a conservative upper bound has been met for the ISD between
the new and old mixtures, and d) combination of elements if their Gaussian sum can be approximated well by a
single new element.

There exist other Gaussian mixture re-sampling schemes . This paper's new agorithm differs from the
existing algorithms in several important respects. The existing algorithms' primary goal is to approximate an
original mixture by a new one that has fewer elements. The present algorithm retains this as a secondary goal, but
its main goal is to develop a new approximate mixture whose elements all have covariances that satisfy an LMI
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upper bound, which is an important property when using Gaussian mixtures to generalize nonlinear particle
filtering. The new agorithm uses the 1SD fit metric of Ref. 9, but in anew way: It formulates and solves quadratic
programs based on the ISD metric in order to choose optimal relative weights for subsets of the new mixture's
elements.

This paper's new Gaussian mixture re-approximation method will be useful for generalizing the nonlinear
particle filter to create a blob filter along the lines of Ref. 7, as stated above. The key generalization is to replace
particles of infinitesmal width by blobs of finite width. Therefore, another important aspect of the new re-
approximation scheme is that it approaches the re-sampling scheme of a standard particle filter 2 in the limit of a
very small upper bound on the covariances of the new elements. This asymptotic similarity makes the blob filter a
natural generalization of the particle filter.

Asymptotic similarity to PF re-sampling is achieved by choosing the mean values of the new mixture elements
through the use of a modified sampling method. This modified procedure employs a perturbation of the original
distribution, and it samples the perturbed distribution using Metropolis-Hastings techniques 3. The perturbed
distribution reduces the original distribution near existing new elements, thereby reducing the probability that
additional new elements will be located near existing elements. A particle filter, on the other hand, tends to sample
many particles very near each other in regions of the filter's state space that have high probability densities, as
characterized by the high numbers of existing particles in those regions. The new re-sampling method achieves
equivalent results through an explicit increase of the weights that it assigns to new mixture elements that lie in
regions of high original probability density.

Figure 1 depicts the new re-sampling algorithm in block-diagram form. It startsin the upper left-hand corner of
the diagram with original Gaussian mixture distribution p,(x). Its 1% block decomposes p,(x) into sub-mixtures, and
its remaining blocks fit corresponding sub-mixtures of the new re-sampled distribution to these origina sub-
mixtures. Initialy, each sub-mixture of the new distribution is a poor fit to the corresponding sub-mixture of the
original distribution because it lacks elements, and the algorithm initializes fit parameters accordingly in its 2™
block. Each new sub-mixture uses a common covariance matrix for each of its elements, and the set of sub-mixture
covariance matrices is computed in the 3 algorithm block. The 3" block also pre-computes parameters that are
used in the 7" block in order to set up an optimization problem for the relative weights within each new sub-
mixture.

The algorithm's main loop is depicted by the 410" blocks of Fig. 1. It adds one new element to the new
Gaussian mixture per pass through these blocks. The 4™ block computes modified sub-mixture weights that assign
higher values to those original sub-mixtures that have a) high original weights, b) poor fits to their corresponding
new sub-mixtures, or c) both. The 5" block picks which new sub-mixture to augment with a new element. The
selection procedure uses importance sampling and the modified weights from the 4" block. A new sub-mixture is
likely to gain a new element if its corresponding original sub-mixture has a sufficiently high original weight and if
its fit to that original sub-mixture is sufficiently poor. The 6™ block draws the mean value of the new mixand from
a modified form of the probability density function of the corresponding original sub-mixture. This modified sub-
mixture has reduced probability density near pre-existing new sub-mixture elements, thereby reducing the
likelihood of close spacing between new elements. The 7" block optimizes the relative weights of the new sub-
mixture to account for its new mixand. Decision block 8 rejects the new mixand if the resulting 1SD fit error of the
augmented sub-mixture does not decrease, in which case another new-element mean value is sampled in areturn to
the 6™ block. Otherwise, two termination criteria are tested in the 9" and 10" blocks. Termination occurs if the
overall fit error is sufficiently small or if a given upper limit on the number of new mixands has been reached. The
11" block finishes by computing the new mixands final weights.

This paper develops and analyzes its new Gaussian mixture re-approximation algorithm in 8 main sections.
Section |1 defines Gaussian mixtures using square-root information matrix notation, and it defines sub-mixtures as
being subsets of the elements of a given mixture. Section |11 develops the ISD error metric between two Gaussian
mixtures, derives an analytic formula for the 1SD, and determines an upper bound for the relative norm error
between two Gaussian mixtures. This relative upper bound is used to implement the algorithm termination test in
the 9" block of Fig. 1. Section IV presents a quadratic program (QP) that chooses the weights of a new Gaussian
mixture in order to minimize the 1SD between it and an original Gaussian mixture. This QP algorithmis used in the
7" block of Fig. 1. Section V defines an LMI that bounds the covariances of the elements of the new Gaussian
mixture. It develops an algorithm for choosing the covariance of a new element in a way that respects this limit
while deviating as little as possible from the covariance of a corresponding element of the original mixture. This
LMI solution algorithm is used by the 3% block of Fig. 1.  Section VI introduces a technique for decomposing the
original mixture into sub-mixtures, as per Block 1 of Fig. 1. These sub-mixture groupings can help to reduce the
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number of elements of the new mixture. Section VI presents the algorithm for selecting means and covariances of
new mixture elements, as needed to implement the 6™ block in Fig. 1. Section VIII combines the developments of
Sections 11-VII in order to define the new Gaussian mixture re-sampling algorithm. Section 1X presents example
test results that illustrate the performance and usefulness of the new algorithm. Section X summarizes this paper's
developments and presents its conclusions.
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Fig. 1. Flow chart of Gaussian mixture re-sampling algorithm.

I1. Gaussian Mixture Probability Density Functions

A. Original and New Gaussian Mixture Probability Density Functions
A Gaussian mixture is aweighted sum of Gaussian distributions. The i element of the mixture, also called the

i™ mixand or the /™ component, can by characterized by its square-root information matrix R; and its mean g. The
element probability distribution is:

|0Ct(R) || —0.8R (x—p )1 TTR; (x44)]
where x and y; are n-dimensional vectors and R; is an n-by-n matrix. The covariance matrix of this distribution is P;
= R7IR;T, where the notation ()" indicates the inverse of the transpose of the matrix in question. The notation
Mx;u,P) indicates the usual normal distribution in the vector x that has mean 4 and covariance matrix P. The new

notation %, (X;4,R) indicates the same distribution in x, except that its covariance is characterized by the square-root
information matrix R in place of the covariance matrix P.  This non-standard parameterization of the normal

Wsr (X;iui!Ri) = = W(X;ﬂi!Ri_lRi_T) (1)
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distribution will be used throughout the remainder of this paper. It has been chosen because it allows a simple LMI
solution in Section V and because it is consistent with the planned sguare-root information filter (SRIF)
implementation of the proposed “blob” filter. An SRIF implementation is desirable because it has good numerical
stability.

Each element of a Gaussian mixture also has aweight, w,. Each weight must be non-negative. The sum of all
of theweights equals 1. If there are N elements in the mixture, then

N
1=Yw; and w; 20 fori=1,..,N 2
i=1
Given the Gaussian component definition in Eq. (1) and weights that obey the constraints in Eq. (2), the
corresponding Gaussian mixtureis

N
Do (X W 1, Rae Wyl Ry) = SNy (X 1, Ry) ®)

i=1
It is straightforward to show that this probability density function preserves the unit normalization constraint and
that its mean and covariance are, respectively,

y N plp-T T
lugm = leiﬂi and Pgm = _lei[Ri Ri + (ﬂl _lugm)(ﬂi _lugm) ] (4)

It is necessary to distinguish between two Gaussian mixture distributions in this paper. Suppose that one
distribution, distribution "a", is characterized by the weights, mean values, and square root-information matrices w;,
My R fori=1, .., N,. Similarly, suppose that another related distribution, distribution "b", is characterized by wy,,
My, Ry forj =1, ..., N,. Thefollowing short-hand notation is used to indicate these two distributions

Ng
Pa(X)= Pgm (X Wa1, Ma1s Ragveens Wan, » HaN, 7RaNa )= leaiwsr (X Mai Ryi) (59)
=

Np
Pb(X) = P g (X; Wp1, Hp1s Rpgees Wo, oy, - Ran, ) = lebﬂ‘fsy (X; pj» Ryyj) (5b)
J:

The goal of this paper is to develop a method that picks the parameters of distribution "b", N, and wy,;, 4, and
Ry forj =1, .., N, It seeksto pick these parametersin away that will cause p,(x) to be a good approximation of
p.(X) while respecting an LMI lower bound on every Rb,TRb, forj=1, .., N,. Thealgorithm's LMI lower bound on
Rb,TRb, is an alternate means of enforcing an LMI upper bound on the covariance P, = Rb‘.le‘.T . The agorithm
also seeks to keep the number of new elements N, from being too large. Of course, there normally is a trade-off
between the size of N, and the accuracy with which p,(x) approximates p,(x).

B. Decomposition into Sub-Mixtures
It can be useful to break Gaussian mixtures p,(X) and p,(x) into weighted sums of sub-mixtures. This
decomposition allows the original function approximation problem to be broken into a set of smaller approximation
problems. It can be used to reduce the computational burden of this paper's algorithms. Note that the term “ sub-
mixture” is non-standard. It denotes a Gaussian mixture distribution that is formed using a re-weighted subset of
the elements of an original Gaussian mixture.
Let distribution p,(x) and distribution p,(x) be broken into the following digjoint sets of sub-mixtures
Lhim
Z Waiwsr (X;ﬂui'Rai)

=liom

Psam (X): form=1,... M (6&)
Wsam
Jhim
£ ijwsr (X;ﬂbj ) ij)
Psbm (X) = I lom form=1,... M (6b)
Wsbm
where the sub-mixture cumulative weights are defined to be
ipi
Weam = fn Wi form=1,.. M (7a)
=ljom
5
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Jhim
Webm = 2 Wy form=1,..,.M (7b)
J=Jlom
The start and stop indices i, and i,;, define the index range of components of the original Gaussian mixture p,(x)
that form its m™ sub-mixture Psan(X). Theindices jj,,, and j;;, work similarly to define the m™ sub-mixture DPssm(X) Of
pp(X). These indices obey the constraints:

i1 =1, ila(m+l) = i+l form = 1,...,(M'1), inie = Ngy  and iy, < inm form=1,...M (8a)
jlol = 11 jlo(m+l) :jhim+1 form = 1:---:(M'1); jhiM:Nb! andj]om'l S jhim form = 1;---|M (8b)

These index constraints ensure that each original mixand appears in one and only one sub-mixture for probability
density functions p,(x) and p;(x). The m™ sub-mixture of p.(X) has N, = i - Lom+1 Gaussian components, and the
m™ sub-mixture of pu(X) has Ny, = juim - jiom+1 cOMponents. The constraint ji,,-1 < j., alows for the possibility
that Ny, = 0 if jiou-1 = jum. In this situation, pg,(x) and wy, are undefined. This situation may arise if the
corresponding original sub-mixture weight w,,,, is very low, in which case the new Gaussian mixture p,(x) may not
devote any elements to fitting the effects of p;,,,(X).

It is helpful to define relative weights within a given sub-mixture. They are:
Wai =Wai | Weam for i = ipm oo, i a@nd form=1, .., M (9a)
\/T/b] = ij /stm forj :jlarm -"vjhim and fOf m= l, vy M (gb)

Equations (9a) and (9b) guarantee normalization of the weights within each sub-mixture, and they allow the sub-
mixturesin Eqgs. (6a) and (6b) to be expressed as true Gaussian mixturesin their own right:

ihim -
psam(x) = z Waiwsr(X;luai'Rai) form=1,..,M (10&)
=liom
Jhim _
Pspm (X) = 2 Wy N o (X; g, Ryy) form=1,.., M (10b)
J=Jlom
It is possible to express the two original Gaussian mixtures as weighted sums of these sub-mixtures:
M
Pa(X) = X WeamDsam (X) (119)
m=1
M
pp(X) = z]‘_’vsbmpsbm (x) (11b)
m=

Equations (7a) and (7b) and the normalization and non-negativeness of the original mixture weights imply that the
sub-mixture weights are also normalized and non-negative:

M

1= Ywy, ad wgy, =0 form=1,..,M (12a)
m=1
M

1= Y wy,, ad wg, =0 form=1,..,M (12b)
m=1

I11. TheIntegral Square Difference between Two Gaussian Mixtures as a Measur e of
Approximation Accuracy

A. I SD Definition
The Integral Square Difference is a good measure of the accuracy with which p,(x) approximates p,(x). The
ISD is defined to be the integral of the square of the difference between these two probability density functions®:

Jisp = [[pa(X) = pp(x)]2dx (13)

This quantity is non-negative, and its square root is the functional 2-norm of the difference between the probability
distributions

_ 05
| po(X) = Pp(X) llo=+/J1sp = { [lpa(X) - Pb(X)]ZdX} (14)

—oo
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Therefore, the ISD is a good measure of the similarity between these two functions. A very small value of the
ISD cost J;sp indicates that p,(X) is avery good approximation of p,(x). Distribution p,(x) perfectly matches p,(x) if
and only if J;gp = 0.

Some re-approximation algorithms seek to choose p,(x) in a way that explicitly constrains the mean and
covariance of the new distribution to equal that of p,(x), e.g., see Ref. 11. In order to avoid an additional source of
algorithmic complexity, the current approach enforces no such constraint. If Ji5p in Eq. (13) is sufficiently small,
however, then the mean and covariance of p,(x) will be very close to the corresponding p.(X) quantities, as
demonstrated by example in Section IX. In addition, a small J;5p could cause a number of higher moments of p,(x)
to be closer to the corresponding moments of p,(x) than they would be if a different re-approximation technique
were used to construct p,(x) without consideration of its Jsp.

B. Analytic Formulasfor theSD

Reference 9 presents analytic formulas for evaluating the integral in Eq. (13). The formulas used here are
modified versions of those found in Ref. 9. The modifications account for the use of square-root information
matrices in place of mixand covariance matrices. Suppose that one defines weight vectors for the two probability
density functions: W, = [Wu1;Wa2iWas;---;Wana] @Nd Wy, = [wp1;wpoiwps;-.;wpn] . Then the integral in Eq. (13) can be
written as a quadratic form in these two vectors:

T T T
Jisp =Wq H 4q Wy —2Wy H 3y Wy, + Wy, Hpp Wy, (15)
where H,,, H,, and Hy, are matrices with the respective dimensions N,-by-N,, N,-by-N,, and N,-by-N,. The

matrices H,, and H,, are symmetric and at least positive semi-definite. The elements of these matrices can be
evaluated using the formulas:

[Huadin = [Ng (K g Ryt )N g (X; Mg Ry )dx — fori=1,..N,andk=1,...,.N, (164)
[Hab]ij = .[Wsr(X;luai'Rai)wsr(X;ﬂbj'ij)dx fori=1,..N, and] =1..N (16b)
[Hpplji = TN o (X My Ry )N 5 (X; iy, Rpp )X forj=1,..Nyand!=1,.,N, (16c)

where the notation []; indicates the row-i/column-% element of the matrix in question.

The integrals in Egs. (16a)-(16c) can be evaluated analyticaly by using the normalization property of a
Gaussian distribution and the fact that the product of two Gaussian distributions is itself a Gaussian distribution,
athough not properly normalized °. These integrals take the general form:

. y -
[N (X ey RN g0 (X g Rg )X = 'det(R,“‘z) 9RLR )| =081 Rea e =111 1Rea e =10 (17)
e (27)"" < | det(R.q) |

where the n-by-n matrices R.; and ﬁcd are computed based upon the following orthonormal/upper-triangular (QR)
factorization **:

Ecd Ecd _RC
= y = 18
Q{ ; } (o} Qz]{ o 7|, (18)
with O being a 2n-by-2n orthonormal matrix and ch an n-by-n upper-triangular matrix. Q, equals the first n
columns of Q, and O, equalsthe last n columns. These matrices are used to compute

~ R. 0]
Rg =0z [ 0‘} =-02 { %, (19)

Equations (17)-(19) have been derived using a lengthy, non-intuitive sequence of matrix/vector manipulations that
have been omitted for the sake of brevity. In the special case where R, = R,, it sufficesto use R.; = x/ERC and
R,y = (1/\/§)RC , and in this case the Eq. (17) integral becomes

T 06 e RN 6 1 R = LIRR 028 R g LR G~ (20)

- on ﬂ_nl2
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C. An ISD-Based Metric for Relative Fit Error

The ISD formula in Eq. (15) can be used to develop a relative measure of the accuracy with which new
Gaussian mixture p(x) approximates origina Gaussian mixture p,(x). A sensible metric is the norm of the
difference between p,(x) and p,(x) divided by the norm of p,(x):

T T T
_NPa(X)=pp(N)l2 _ \/Wa H qWg = 2Wq H gy Wy, + W Hpp Wy 1)

1pa (0 Iz YW H W,

If this quantity is small relative to 1, then the difference between p,(x) and p,(x) is small relative to the magnitude of
Pa(X)-

The metric e,.;;, provides a sensible termination criterion for the procedure that generates new mixand elements
of pp(X). If e, is sufficiently small compared to 1, then the algorithm should terminate with the given p,(x);
otherwise, it should continue generating new elements. If e,.;, iS very small compared to 1, then the mean and
covariance of p,(x) should closely match those of p,(x), as demonstrated by examplein Section IX.

€relba

D. Sub-Mixture | SDs and Practical Computation of a Bound on the Relative Fit Error

The re-sampling algorithm needs a practical means for measuring the goodness of the fit of p,(x) to p.(x). It
uses this metric to implement the termination test in the 9" block of Fig. 1. Computation of the relative error in Eq.
(21) will be prohibitively expensive if there are large numbers of mixture elementsin the original distribution, N,, or
in the new distribution, ~,. Consider the leading-term scalings of the number of operations required to compute the
H,,, H,, and H,, matrices, as per Eqs. (16a)-(19). They are, respectively, N, %>, N,N,n°, and N,n®. Recall that n is
the dimension of the x vector. The »® factor arises from the QR factorization in Eq. (18). The other factors arise
from the dimensions of the dense H,,,, H,;,, and H;;, matrices. In many situations envisioned in this paper, it may be
possible to eliminate many of the QR factorizations in Eq. (18) due to the re-use of the same R matrix in multiple
mixands of a given distribution. [f this were the case, then the respective leading computational cost terms would
scale as N,%n%, N,N,n? and N,?n%. The n? factors arise from the matrix-vector multiplications that are needed to
compute the exponent in Eq. (17). If there were N, = 2000 mixands in probability density function p,(x), N, = 1000
mixands in probability density function p,(x), and n = 5 states, then the number of operations required to compute
the H,,, H,,, and H,, matrices would be on the order of 175x10°. These numbers imply that far too many operations
would be required for computation of the Eq.-(21) metric even in the restricted case that re-uses R matrices in
multiple mixands.

A practical solution to this computational complexity problem is to examine how well p,(x) fits p,(x) on aterm-
by-term basis using the sub-mixture decomposition described in Section I1.B. Consider the ISD that characterizes
the fit error between the new sub-mixture pg;,,(x) and its original sub-mixture counterpart py,,,(x):

- ~T -
J ISDm — W H aamWa 2WamH abmWpm + WbmH bbmWpm (22)
where the wei ght vectors within the sub-mixtures are defined as W, = [wy;, ;i Wqi,, 1 @d W, =
[w YWitom ] The matrix H,,, is a sub-matrix of the original H,, that appearsin Eq (15) the one along rows

and coI umns z,om through inim- Similarly, H,,,, equals the sub-matrix of H,, along rows i, through i,,,, and columns
Jiom through .., and Hy,, is the Hy, sub-matrix along rows and columnsjy,,, through j,;,,. Consider, also, a modified
version of the sub-mixture ISD. It accounts for possible differences between the total weights of the original and
new sub-mixture components, differences between wy,,, and wg,,:

2
T ~T Y Wsb ~T Y Wsb
‘]ISDm - W HaamW 2WamHabmem( S ] + Wbmebmem( = J (23)

sam sam
One can use the modified ISD in Eqg. (23) to construct the following conservative upper bound for the relative

fit-error in Eq. (21):
M = M
)3 Wsam \]‘]ISDm Wsam "psam (X) (Wvbm )psbm (X)”2

e () =pPp(Mll2 . m=1 _mA (24)
”pa (X)"2 \/ AZ/IZIVSZam sz—m H yam Wam \/ by Wszam ”psam (X)”%

The derivation of the left-hand inequality in Eq. (24) relies on the triangle inequality
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M
” Pa (X) —Pp (X) ”2S z | Wsam Psam (X) ~ Wsbm Psbm (X) ”2 ' (25)

m=1

on the inequality

M
I 2a ) 1B2 S w2 | Psam (X113 (26)

m=1
and on straightforward manipulations of Egs. (25) and (26). The result in Eqg. (26) can be proved as follows:
Replace p,(x) on the left-hand side by the Eq. (11a) sum of sub-mixtures. Next, expand the result into a double sum
involving squared functional norms and functional inner products. Finally, eliminate the inner products to change
the equality into an inequality because al of the inner products are non-negative due to the fact that p,,,(x) = 0 for
al x and al m.

It is possible that p,,,(X) will be undefined for one or more values of m. This will happen if no elements have
been assigned in the new Gaussian mixture to approximate the corresponding origina p;.,(X) sub-mixture. The
term (Wl Weam)Pssm(X) in the numerator on the extreme right-hand side of Eq. (24) is replaced by zero for al such
values of m.

Equation (24) implies that its right-most expression is a conservative measure of how well the new Gaussian
mixture p,(x) fits the original mixture p,(x). Suppose that the new mixture yields a value for this expression that is
sufficiently small relative to 1. Then the origina relative fit measure, e, from Eq. (21), is at least this small, and
pi(X) isagood approximation of p,(x).

The importance of EQ. (24) isthat its conservative right-most bound is inexpensive to compute. It only requires
the computation of blocks along the diagonals of the origina H,,, H,,, and H,, matrices of Eq. (15). The following
expression gives the scaling law of the leading term in the number of computations needed to produce all of these
matrix sub-blocks:

Number of ops ~ »° AZ4(Na2m + N, Ny + N2y) (27)
m=1

Again, if most of the QR factorizations in Eq. (18) can be eliminated due to re-use of R square-root information
matrices for many mixands, then the leading »° term changes to n>. Consider the same problem dimensions as
discussed in the beginning of this section, i.e.,, N, = 2000, N, = 1000, and » = 5. Assume, also, that Gaussian
mixtures p,(x) and p,(x) have both been decomposed into M = 500 sub-mixtures with N,,, = 4 components for each
origina p;,.(x) sub-mixture and with N, = 2 components for each new p,,(X) sub-mixture. Then the number of
operations given in Eq. (27), but with ° replaced by 7 is 350x10°. Thisis smaller by afactor of 500 than the cost
of exact computation of e,.;;,. Therefore, this conservative measure of the p,(x) approximation accuracy is preferred
based on computational considerations.

V. Weight Calculation for New Gaussian Mixture Components using | SD and Quadratic
Programming

A. Quadratic Programsto Minimize the | SDs of New Sub-Mixtures

This paper's re-approximation algorithm develops a new set of Gaussian mixture elements and weights to
define p,(x) in away that seeks to closely approximate p,(x). In order to avoid too much computation, it adopts a
divide-and-conquer approach in which it breaks p,(x) into the weighted sub-mixtures p,,,(X) for m = 1, ..., M, as
defined in Eq. (10a). For each original sub-mixture p,,,(x) that has a sufficiently large weight wy,,,, the algorithm
determines components and weights of a new sub-mixture p,,(X) that enable it to approximate p,,.(X) with
sufficient accuracy. The procedures for picking the means and square-root information matrices of the new sub-
mixture components are discussed later, in Sections V and VII.

The present section develops a method for choosing the component weights of the new sub-mixture, wy,, =
[ Wojtom 3 Whjpim ]. This method is used in the 7" block of the algorithm flow chart in Fig. 1. This procedure starts
from the assumption that the new means and square-root information matrices have already been chosen. Note that
this section’s weight calculation algorithm could be matched with any algorithm that selects the means and
covariances of new mixands, e.g., the algorithms defined in Refs. 9, 11, and 12.

A good method of choosing w;,, isto minimize the value of the fit error between p,,(X) and psm(X), Jispm
from Eq. (22). Under the assumptions of this section, the only unknown quantity on the right-hand side of Eq. (22)
is the relative weight vector w;,, . The fit error cost in Eq. (22) has terms that are linear and quadratic in this
vector. Therefore, the optimal fit is obtained by solving the following constrained quadratic program (QP):
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find: W g, (28a)

tominimize:  J,, =g} W, +%W;mH bim Wom (28b)
subject to: 1= ch“vbm (28c)
0<W,, (28d)

where gy, = - Hjbmwam and c is an N,,-dimensional vector of ones. The cost function J,, has been derived from
Jispm DY subtracting off the first term on the right-hand side of Eq. (22), the one that does not depend on w,,,, , and
then halving the result. This has been done in order to frame the QP in a standard form **. The value of W, that
minimizes the cost in Eq. (28b) also minimizes Jisp,, from Eq. (22). Equation (28c) is the scalar unit normalization
equality constraint. Equation (28d) constitutes N,,, separate scalar inequality constraints on the elements of wy,,, .
These two constraints guarantee that sub-mixture pg;,,(x) will be a unit-normalized, non-negative probability density
function.

B. Quadratic Program Solution Strategies

The linearly-constrained quadratic program in Egs. (28a)-(28d) can be solved using standard active-set methods
such as those described in Ref. 14. There exist standard software packages for solving such problems, e.g., the
MATLAB function quadprog.m, which is part of MATLAB's optimization toolbox.

There are three reasons to develop special software for solving this QP. First, the Hessian matrix H,,,, will be
positive definite for a well chosen set of mixture components of py,,(X) that have minimal overlap with each other.
Thisfact can be exploited to speed the solution of the QP.

If, on the other hand, Hy,,, is not sufficiently positive definite, then the QP should be restarted after choosing
one or more alternate new components of sub-mixture p,,,,(x). A specialy-designed QP algorithm could determine
whether H,,, was not sufficiently positive definite. Such a determination could signal this paper's re-sampling
algorithm to replace one or more components of sub-mixture pg,,(X).

The second reason for developing a special-purpose QP algorithm is to exploit the method by which
components of p,,,(X) are chosen. This paper proposes choosing one new component at a time and computing a
new rel at|ve weight vector W, after adding each new component. A general-purpose QP solution would require
order me scalar operations for the factorization of its N,,-by-N,,, Hessian matrix. A special-purpose algorithm
could exploit the following facts: each successive QP involves the addition of only one new row and column to
Hy,,,,, ONe new element to g,,,, one new element to ¢, and one new scalar inequality constraint in Eq. (28d). A WeII
defined rank-1 update and re-solution based on the previous QP solution typically would require only order N? o
scalar operations. Such an approach could save a considerable amount of computation.

The third reason for developing a special-purpose QP agorithm is aso related to the method of choosing new
mixture components. When a single new mixture component is added to py,.(x), the corresponding element of the
new optimal W,,,, may equal 0. If this happens, then the other elements of the optimal w,,,, al remain unchanged.
This situation indicates a poor choice of the new component, one that should be rejected. A special-purpose QP
solution algorithm would be able to check for this condition using only order N? »m caculations.

A good strategy for developing a special-purpose QP solver is to Cholesky factorize the Hessian matrix and to
use that factorization in order to define a transformed weight vector and a transformed QP. Suppose that L, is the
lower-triangular Cholesky factor of Hy,,:

LyLyy = Hypp (29)

The transformed QP is posed in terms of the transformed weight vector w,, = LLv'v,,m . It takes the equivalent
form:

find: Wy, (30q)
tominimize:  J,, = G} Wy, + %W;mwbm (30b)
subject to: 1= cm Wp,, (30c)

0< Lm Wp,,, (30d)

where gy, = L',,}gbm and C,, = L',,}c . When applied to this transformed QP, an active-set method works with a
guess of the inequality constraints in Eq. (30d) that are active, i.e., thaI are satisfied exactly as equalities. It QR-
factorizes a matrix whose rows include c,, and the active rows of L . Given this factorization, it uses simple
linear algebra operations and a line search to compute the optimum under its active set assumption or to determine a
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new inequality constraint to add to the active set. Once it reaches an optimum for a given assumption, it checks the
Kuhn-Tucker multipliers for the active constraints to see whether any should be dropped from the active set in order
to further decrease the cost.

The importance of the transformed problem lies in the fact that it can be efficiently re-solved after the addition
to pam(X) Of one new mixture component, and therefore, the addition of one element to wy,, . The corresponding
additional row and column of H,,, can be used to compute a new L in order me scalar operations by adding
one new row to the previous Cholesky factor. If the new mixand produceﬁ anew Hy, that i |s insufficiently positive
definite, then this fact will become apparent in the process of computing the new row of Lm , and the new mixand
can be rejected. The corresponding updates of g,,, and c,, are computable in order N,,m operations, and the
corresponding rank-1 update of the active set constraint matrlx can be computed in order me in the usual case of
few active constraints. Of course, order me scalar operations will still be a large number of operations if N, is
large. Therefore, care will be taken to avoid creating more elements of the sub-mixture p,,;,(X) than are absolutely
necessary. Strategies for achieving thisaim are discussed in Sections VI and VI1I.

V. LMI Boundson the Covariances of the New Mixture's Components

A. Covariance and Square-Root | nformation Matrix Bounds

This section defines and solves a Linear Matrix Inequality. This solution is needed in order to compute the
constrained covariances of the new mixture elements, as per the 3 block of the main algorithm in Fig. 1. The LMI
is used to enforce the following lower bound on the information matrices of the elements of the new Gaussian
mixture py(X):

Ry'Ry >R} R, foralj=1,..,N, (31)

where the matrix inequality is defined in the sense that the symmetric matrix on the left minus the symmetric matrix
on the right equals a positive semi-definite matrix. This lower bound on the mformatlon matrix of each mixture
element translates into an upper bound on each element's covariance: Py = Ry, Rb < RmmR,;lTn = P Onecan
prove equivalence between thls covariance ineguality and Eg. (31) as foIIows The latter matrix inequality is
equivalent to Rypin Ry R Rmm < 1. Equation (31) is equivalent to RmmijijRn;,ln > . The left-hand sides of
these last two matnx mequalltleﬁ are the inverses of each other. These last two inequalities are interchangeable
because the first implies that the symmetric matrix on its left-hand side has eigenvalues all less than 1, and the
second implies that its left-hand-side matrix has eigenvalues all greater than 1.

If the re-sampling algorithm must be constrained to choose the elements of p,(x) to have covariances less than
P,..x, then it suffices to enforce the LMI in Eq. (31). This LMI provides a means of trying to ensure that element-
by-element UKF or EKF operations on the mixture, as per Ref. 7, will yield a good approximation of optimal
Bayesian nonlinear filtering. An example in Section |X demonstrates that this approach works as desired if the
UKF or EKF approximations are accurate over a range of state variations commensurate with P, i.e., if P, is
sufficiently small. Choice of the bound P, is problem-dependent, and no general method has yet been devel oped
for choosing P, based on the degree of nonlinearity of the filtering problem’s model functions.

Each R, square-root information matrix will be subject to at Ieast one additional bound beyond that of Eq. (31).
In its simplest version, the algorithm of Section VI chooses the ;" component of p,,(x) with the goal of improving
the accuracy with which p,(x) approximates a particular element of p,(x), call it the /" element. In order for the re-
sampling agorithm to work well, it is necessary that the covariance of the /™ component of p,(x) not exceed the
covariance of the corresponding i component of p,(x). Otherwise, the re-sampling algorithm might not be able
produce a good approximation of the /™ component of p,(x) because the new approximation’s covariance can be no
smaller than the smallest covariance of any of its components. The resulting additional bound on the new element's
square-root information matrix becomes

Ry'Ry 2 Ry 'Ru (32)

One might be tempted aso to impose an LMI upper bound on Rb,-TRb,-. Instead of enforcing an upper bound, an
optimization of R;; provides a means of limiting the size of R;;"Ry;.

B. Optimal Solution to a Pair of LMIs
The standard algorithm for choosing R,; seeks the smallest resulting information matrix that setisfies the two
LMIs in Egs. (31) and (32). The smallest possible information matrix results in the largest possible covariance

11
American Institute of Aeronautics and Astronautics



matrix. Thisis a good choice because the largest possible covariance matrix tends to enable p,(x) to approximate
p.(X) accurately with the fewest possible elements.

The optl mal solution procedure for this LMI starts by computing the singular value decomposition of the matrix
R, R:

al min *
UpSpiVey = RaiRonpy (33)

where U,; and ¥}, are orthonormal matrices and S,; = diag(cy1....,0y,) is a diagonal matrix with the n positive
singular values o, ..., oy, ON its diagonal.

If o = 1, foral k =1, ..., n, then Ry = R,; respects the LMIs in Egs. (31) and (33) in an optimal manner.
Otherwise, one forms the n-by-n diagonal matrix

max(k-05;,0) - 0
dgbjfull = KR (34)

0 Jmax(l—ofjn 0)

Next, one deletes all of the zero-valued rows of 85y, in order to form the matrix &, That is, row k of Sy is
deleted for every & such that o = 1. Thislatter matrix is then used to form the matrix:

ORy = &8y Vb}Rmin (35)
Finally, one uses QR factorization in order to compute R, as follows:

. = 36

o ] = | @)

where Q,; is an orthonormal matrix and R, is a square, upper-triangular matrix.

One can prove that this R, matrix satisfies the LMIs of Egs. (31) and (32) if one recognizes the following

implication of Eq. (36): that

Ry Ry = Rui Rui + SRy, ORy, (37)
The LMI in Eq. (32) follows directly from this relationship. One can derive Eq. (31) by multiplying this
relationship on the Ieft by Rmm and on the right by Rmm . One can then substitute in Egs. (33) and (35) to show
that R;D RIRy RS =V (SLSy + 8885, )Wy = V. (SESy; + 081 188,21 )V, . The last matrix expression

mint'bj ¥ bj mm bj \PbjRbj bjPbj Vb — Vhi\PbjRbj bjfull P bjfull 1" bj

in parentheses is a diagonal matrix, al of whose diagonal elements are no less than 1. Therefore,
anLijR,,]Rmm > [, which isequivalent to Eq. (31).

The R,; matrix of Eq. (36) has two significant properti% First, it is optimal in that it minimizes both of the
following sgquared weighted-norm metrics: Trace( RmmR%,Rb] mm) and Trace( Ra, Ry, Rb]R_l) Second, consider
the eigenvalues of the two matrix differences (Rb,TRb, RyinRmin ) and (Rb,TRb, -R,'R,;). Both sets of eigenvalues are
non-negative, in accordance with the LMIs in Egs. (31) and (32). Consider the union of the eigenvalues of these
two positive semi-definite matrices, as set of 2n eigenvalues. It is straight-forward to prove that » or more of these
eigenvalues equal zero. These properties indicate that Rb,-TRb,- is as close as possible, in some matrix sense, to
R;,,,Rmm and to R,;'R.;. Closenessto R, R, tends to reduce the number of required new mixands for a given level
of probability density approximation accuracy.

Note that the LMI solution R, is not unique. It can be left-multiplied by any orthonormal matrix without
changing any of the properties described in this sub-section, except for upper-triangularity. This non-uniqueness
presents no problems. Any R, square-root information meatrix with the given properties will serve for the
development of the new Gaussian mixture p,(x).

C. Differential Covariance Matrix Squar e Roots
Differential covariance matrices are used to develop the modified sub-mixture distributions from which new
elements means are drawn, asin the 6" block of Fig. 1. The matrix OR,; represents the square-root of an increment
to an information matrix. The corresponding covariance increment is
— — p-lp-T p-1p,-
éPaihj = Py - ij - Rai Rai _ij ij é‘Yalbjé‘Yalb] (38)

The matrix increment &P, is positive semi-definite, and Y, is its matrix square-root. The following is a valid
formulafor this non-unique matrix square-root
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= pip-T
éyﬂfbj - Ral éij Rdjal (39)
where the matrix R, is determined from the QR factorization

Ry -TspT
0 dj[ ‘g‘”} = {Ral Iéij} (40)

with Q, being an orthonormal matrix and R,;,; being a square, upper-triangular matrix. One can prove that &Y,
from Eq. (39) satisfies Eq. (38) by squaring the 6., expression in Eq. (39), as on the right-hand side of Eq. (38),
and by algebralcally manlpulatlng the result to show that it equals R‘lR T R,;le,;jT . This manipulation requires
the formula Rdja,Rdja, =1- éRblelebj %l This formula can be proved by squaring both sides of Eq. (40) to
show that R;jm-Rdja, I+ éijR éR and by using the classic matrix inversion Iemma along with a
substitution based on Eq. (37). One compI etes the proof by substituting the Rdjm Rd]a, expression into the
expression for the square of 8Y,; and by performing several associative re-groupings of matrix multiplications and
two substitutions for éRbT/éij that are based on Eq. (37).

The sguare-root covariance increment matrix 0Y,;; has only as many columns as dR,; has rows. This number
equals the number of singular values of S, that satisfy oy < 1.

It is possible to develop asimilar expression for the covariance increment

— — p-1p-T —
épmwbj = Puax = Poj = Rypjy Ry — Rb] R - &Imaxb]éymaxb] (41)
It takes the form:
— p-1 p-T T -1
éymaxbj - RmanmméijahRdjmin (42)
where
éija/f = $bjaltU};Rai (43&)
Jymax(t0;5,0) - 0
OSpjair = : : but with its all-zeros rows deleted (43b)
0 1/max(l—o,jj,zi,O)
R -
0, a_’jmin|: dJ(;nm:| - |: mminjalt:| (43¢)

where Eq. (43c) represents a QR factorization that produces the orthonormal matrix Q... and the square, upper-
triangular matrix R .

Note that the square-root covariance increment matrices 6Y,;; and 0Y,..«; are not unique. They can be right-
multiplied by any orthonormal matrix without changing their respective satisfaction of Egs. (38) and (41). Any
0Y iy and 87,y Matrices that satisfy these equations will serve for this paper's re-sampling algorithm.

D. Ad Hoc Solutionto 3LMIs

It is necessary to compute an R,; matrix that satisfies 3 LMIs in the situation where a sub-mixture of p,(x) has 2

elements. Oneisthe LMI in Eq. (31), the second isthe LMI in Eq. (32), and the third LMI is similar to EqQ. (32):
Ry'Ry > Ruy'Ru (44)
Theindex k£ # iisthat of asecond component of Gaussian mixture p,(X).

An ad hoc solution to this system of 3 LMIs can be developed by applying two successive solutions of a2-LMI
problem, as in Sub-section V.B. Suppose that the 2-LMI algorithm of that sub-section is applied, but with R
replacing R,.;,. Suppose that the resulting solution is R.., and that the corresponding square-roots of the
covariance matrix increments from Egs. (39) and (42) are, respectively, Y ujemp @A OY yijremp- ONE can then find a
solution to the 3-LMI problem by re-applying the 2-LMI agorithm of Sub-section V.B, only this time using Ry;eem,
in place of R,;. This second solution will be the final Ry, and it will satisfy Egs. (31), (32), and (44). Suppose that
the square-root of the covariance matrix increment that is generated by Eq. (39) for this second 2-LMI solution is
OYyjempry- Then the total square-root covariance increments are

éY aibj = [é‘Yaibjtempy 5ijtempbj] (45a)
éYakbj = [&akhjtempy 6ijtempbj] (45b)
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so that P,; - Py = 5Yaibj5YaTib;‘ and Py - Py = 6Yakbj6YJ(bj . It may be possible to use QR factorization of 5Y;bj or
oY, ka]- in order to develop aternate square-root covariance increment matrices that preserve the values of

a
oY, -é‘YaTibj and é‘Yukbdeakaj, but with fewer columnsin oY, or &Y .

aib

Ijn this 3-LMI case, nothing definite can be said about the number of zero-eigenvalues in the set of 3n
eigenvalues that is the union of the eigenvalues of the three matrix differences (R, 'Ry -R,Tu-anin ), Ry Ry
R.'R.), and (R, Ry-R.'R.). It is possible, maybe even likely, that this ad hoc algorithm is a sub-optimal solution
to the 3 LMIsin Egs. (31), (32), and (44). That is, it may fail to minimize any sensible norm of R,,jTR,,j subject to
the three LMI constraints. If so, then an optimized R, solution might improve part of this paper's Gaussian mixture
re-sampling algorithm; it might enable a sub-mixture of p,(x) to accurately approximate a 2-element sub-mixture of

P.(X) using a smaller number of new elements.

VI. Algorithm for Decomposing the Original Gaussian Mixtureinto Sub-Mixtures

A. The Need for a Decomposition of p,(x) into Sub-Mixtures

This section develops a strategy for decomposing original Gaussian mixture p,(x) into the Gaussian sub-
MiXtUres, pya.(x) for m = 1, ..., M, as described in Sub-section I1.B. This decomposition is used in the 1% block of
Fig. 1's main re-sampling algorithm. It is needed for several reasons. First, as noted in Sub-section I11.D, it is often
impractical to compute the relative fit metric defined in Eq. (21). Therefore, sub-mixtures are needed to enable use
of the more practical, but conservative, metric found on the extreme right-hand side of Eq. (24). Second, this
paper's method for choosing weights for new elements relies on decomposition into sub-mixtures and solution of a
separate low-order QP in order to determine the relative weights of each sub-mixture. One could pose a QP for the
entire weight vector w, by optimizing J;sp from Eqg. (15). The resulting QP, however, often would be too large and
require far too much computation to solve in a reasonable amount of time. Third, the method of selecting new
elements of p,(x), as defined in Section VIII, adds new elements one at atime. Its method for selecting each new
element is intimately linked with the decomposition of p,(X) into sub-mixtures.

B. The Use of One- and Two-Component Sub-Mixturesof p,(x)

A simple decomposition of p,(x) uses only single-element sub-mixtures. That is, it chooses M = N, and p,,.(X)
= No(X; Mo Ram) TOr m =1, ..., N,. In the notation of Sub-section I1.B, this choice would imply that i, = im = m
and that N, = 1 for m =1, ..., M. Although simple and sometimes effective, this decomposition has one significant
drawback when used in conjunction with the algorithms of Sections VII and VIII: It will never allow those
algorithms to merge a pair of very similar components of origina Gaussian mixture p,(X) into a single new
component of Gaussian mixture p,(X).

The ability to merge components can be important, and this capability is the subject of a number of research
efforts, e.g., see Refs. 9, 11 and 12. In Gaussian mixture filtering applications, the dynamic propagation and
measurement update processes can tend to make different mixture components converge towards each other over
time. This is especialy true in cases where an initially large state uncertainty converges to a much smaller
uncertainty over time, as experienced during the project that produced Ref. 10.

Therefore, this paper's algorithm also considers 2-component sub-mixtures in its decomposition of Gaussian
mixture p,(x). In general, the decomposition can consist of some sub-mixtures with one component and others with
two components.

It might be sensible to consider the possibility of alowing some of the sub-mixtures of p,(x) to have more than
two components. The consideration of higher numbers of sub-mixture components might enhance the algorithm's
ability to reduce the number of components in going from mixture p,(X) to p,(X). In the interest of simplicity,
however, the possibility of using more than two components has not been considered. The two-component limit
enables the re-sampling algorithm to reduce the number of mixture components, when possible, while avoiding
undue complexity.

Thereisno limit to N, the number of elementsin new sub-mixture p,,,(x), for any m intherange 1 to M. The
matrix LMI restriction on the covariance of the new components, if coupled with alimit on N, could preclude the
possibility of developing a pg.,(X) sub-mixture that accurately approximated its p,,.(X) counterpart. Therefore, an
upper bound on N,,, could preclude p,(x) from ever being a sufficiently accurate approximation of p,(x).
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C. An Algorithm to Select the Sub-Mixturesof p,(x)

This sub-section describes how the sub-mixture decomposition is determined for an original Gaussian mixture
p4(X). The decomposition seeks to pair two components into a single sub-mixture if they are deemed likely to be
mergeable and if they have high enough weights. Multiple criteria are used to make a determination about
mergeability, criteria that are somewhat like those given in Refs. 9 and 11. Note that no decision to merge two
components is made at the point of deciding to pair them to form a single sub-mixture p,,(x). A sub-mixture
pairing decision merely causes two components of p,(x) to become candidates for merging. An actual decision to
merge is mechanized indirectly via the operations that select new components. They occur in Blocks 4-6 of Fig. 1
and are described in Sections V11 and VIII.

The sub-mixture decomposition procedure works with a candidate set of components of mixture p,(X).
Suppose that this set isindicated at the start of any given stage of this procedure by the corresponding indices of its
components of p,(x), the index set {i.1, iz, i, --., icx}. This set has K elements, with K < N,. Suppose, also, that

these indices have been sorted so that they are in order of descending weights. Thatis, w,; > w, > w, _ >

ate1 aite.p areg — °°°

at "

A Iétage of the decomposition procedure executes by considering K-1 candidate pairs for forming a new sub-
mixture. The first component of each candidate pair is W, (X; &,; ,, R4 ,) ,» @nd the second component of the K"
candidate pair is N, (X; Mo, Ry ) fOr k =ic, ica, icas ..., ick. The procedure selects the pair N, (X; Ly; 12 Rai )
and NV, (X; 44, Ry ) for the first index & in this sequence which yields a pair that passes all of the procedure's
criteria for possible merging, criteria which are defined below. These two components are used to define a new
sub-mixture p,,..(X), their corresponding indices are dropped from the set {i.1, i., i, ---, ik}, Which causes K to
decrement by 2, and the procedure repeats starting with the next available candidates for merging. If none of these
K-1 pairs passes al of the criteria for possible merging, then a 1-component sub-mixture is formed from
N or (X; Bi g+ Raig) + fcx 1s dropped from the set of candidate indices, X is decremented by 1, and the procedure
continues. This procedure terminateswhen K =1 or 0. If it terminates with K = 1, then the remaining component is
used to form a sub-mixture p,,,,(X) that has only one component.

Before entering this procedure, the initial index set {i., i, i, ..., ik} IS formed from al components of
Gaussian mixture p,(x) whose weights are above a small minimum threshold. That is, w,; , = w,;, for al k=1,
..., K for theinitial set. If any original mixture component does not have a weight above the threshold w,,,;,, then it
is used to form a 1-component sub-mixture p,,,(X). This positive threshold is a tuning parameter of the algorithm.
Typicaly it is set very low, w,,;, < UNy,q, Where Ny,... 1S the upper limit on the number of components in the new
Gaussian mixture p,(x). It is not worthwhile to try to merge elements with very small weights because they are
unlikely to be sampled by the new component selection algorithm of Section VII.

The following criteria are used to determine whether a given pair of components of p,(x) should be grouped to
define a two-component sub-mixture by virtue of being reasonable candidates for merging. For notational
convenience, let W, (X; 4y, Ryi) and N, (X; My, Ry ) bethe two candidate components during the remainder of
this discussion of pairing criteria. The first two criteria test whether the two means are sufficiently close:

VR (it 1T TR s (haittog ] < 740 800 IRt (it | (R (it )] < 74l (46)

where yis atuning parameter of the algorithm. Typically yis chosen to be less than 1 in order to ensure that the two
means are close in a statistical sense. A typical tuning valueis y= 0.1. Both of these inequalities must be satisfied
in order for componentsi and k to be considered for possible grouping into a single sub-mixture py,,.(X).

If the criteria in EqQ. (46) are satisfied, then a second test is applied. It checks whether there is a small ISD
between the proposed two-component sub-mixture and a single new Gaussian component candidate that tries to fit
the entire proposed sub-mixture. In order to carry out thistest, it is necessary to define the candidate new Gaussian
component. Its mean equals the mean of the proposed sub-mixture

Kok = (Waiouai + Wakﬂak) /(Wai + Wak) (47)
Its square-root information matrix is calculated based on the technique of Sub-section V.B, but with R, replacing
R, in the calculations of that sub-section. Let this candidate sguare-root information matrix be called R,;. It
optimally satisfies the LMIS R, Rux = Ru Ry ad Ry Ry = Ru Ra. Thus, it is the square-root information
matrix of a Gaussian distribution whose covariance is no greater than the covariance of either the i or the 4™
component of p,(X). The second test is based on the ISD between the candidate merged Gaussian component
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g\fs‘r(X;ﬂaikiRaik) and the candidate tWO'Component sub-mixture psamc(x) = [Wai-qur(x;ﬂaiiRai)+Wak-7v;r(X;;uak’Rak)]/
(waitwa). Thistest is passed if

.[[Wsr (X; Haik » Raik ) ~ Psame (X)] de
= <1 (48)

[ Pome (X)dx

where A is another tuning parameter of this algorithm. It is normally chosen to be significantly smaller than 1. A
typical valueis 4 = 0.1. Note that the integral in the numerator on the left-hand side Eq. (48) isan ISD. It and the
integral in the denominator can be evaluated analytically by using techniques defined in Sub-section I11.B.

The two criteria in Eq. (46) and the one criterion in Eq. (48) all must be satisfied in order for a given pair of
components of Gaussian mixture p,(X) to be deemed mergeable. If any pair satisfies these three criteria during the
search procedure defined above, then they air paired to form asingle actua p;,,,(x) sub-mixture of p,(x).

Note that it is possible for a particular pair of components to satisfy these three criteria and yet not be paired
into a p,.»(X) sub-mixture. Thiswill happen if one or the other of the pair has already been successfully paired with
a different component of higher weight. Thus, this pairing algorithm prefers pairs with the highest combined
weight, subject to the constraintsin Egs. (46) and (48).

VII. Algorithm for Choosing New Sub-Mixture Componentsto Fit a Corresponding Old Sub-
Mixture

Part of the overall Gaussian mixture re-sampling algorithm involves choosing the elements of sub-mixture
Psom(X) SO that it will closely approximate the origina sub-mixture p,,.(x) after its relative weights have been
determined by solving the QP of Section IV. Recall that the elements of p,,,(X) are N, (X;4,Rz;) TOU = jiomy «vs Jnims
as per Eqg. (6b). The choice of elements of pg,.(X) involves choosing their means and square-root information
matrices, i, and Ry, fOr j = jiom, ... juim- ThiS section describes how these choices are made.

A. Choosing Square-Root Information Matrices of New Components

The square-root information matrices are pre-selected to be the same for all components of a given sub-mixture
Of py(X): Ry = Ry FOT j = jiomy -y juim- This rule is consistent with the 3 and 6™ blocks of Fig. 1's algorithm. The
common sguare-root information matrix Ry, is chosen by using the LMI solution procedure in Section V. If p,..(X)
has only one component, N,.(X;&.,R.:;), then Ry, is chosen to satisfy the LMIs in Egs. (31) and (32), as per Sub-
section V.B. If py,..(X) consists of two component, N, (X;4:,R.;) and N,(X; i Rar), then Ry, is chosen to satisfy the
LMIsin Egs. (31), (32), and (44) as per Sub-section V.D.

The LMI constraints on R, enable py;,,(X) to better approximate p,,,(x) because each component of pg;,.(x) has
asmaller covariance than each component of p,,.(x). Therefore, it is possible to have a set of components of p;,,(X)
with distributed means whose net total covariance equals that of p,,.(X). If the covariances of the components of
psom(X) Were larger than those of the components of p,...(X), then this covariance matching might be difficult or even
impossible because the covariance of a weighted sum of probability density functions can be no smaller, in an LMI
sense, than the smallest covariance of any of its components. Thus, the LMI constraints on Ry, alow latitude in
choosing the new components' means g, for j = jim, ..., jum While maintaining the new sub-mixture's potential to
accurately model the covariance of the corresponding original sub-mixture.

For purposes of the remainder of this section, let dY,;, be the square root of the covariance increment P,; - Py,
= R;l-lR;iT - R;hlm R;,,Tn = N yim &Jm , Where i is the index of the first component of py,(X). If psun(X) has two
components, then let & be the index of this second component, and let 6Y,,, be the square root of the covariance
increment Py - Py = R;,}R;,(T - R;,,%R;bfn = O yim éYaTkm . Methods for computing Y, and &Y, are described
in Sub-sections V.C and V.D, though they are called Y, and 6, in those sub-sections.

B. Initial Candidate Distribution for Choosing M eans of New Components
A candidate method for generating the new components mean values is to sample the following modified form
of the original sub-mixture probability:
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W(x;ﬂm,&mm[m if pgqm (X) haslelement

plum(x) - 171}aij\[()(;/uazv aim zm) if X) has 2 e ements
+ wakw(x.ﬂak &akméyakm) psam( )
That is, pm(x) is amost the &ame as Psam(X), except for the following: The respective covariance of the first
component is reduced from Rm R, to éYmmJYa,m, and if there is a second component, then its covariance is
reduced from R;klR to OY 4, Y, “i;{m .
The usefulness of the distribution p,,.,(x) can be understood by considering the following scenario: Suppose
that p,..(x) has many elements with their means independently sampled from p,,.,(x), their square-root information
matrices all equa to R,,,, and their weights all equal. One can show that the resulting distribution has the same
mean and covariance as p;,,,(x) in the limit of alarge number of components. This result relies on the varlab|I|ty of
the mean values ,; for j = jiom, ..., jum t0 Mmake up for the fact that each new component's covariance, vangbm o
less than the covariance of any of the components of p,..(X). In fact, the 8Y,;, and Y, matrices have been
specifically designed to compensate for any such covariance differences, as per Sub-sectionsV.C and V.D.

(49)

C. A Modified Distribution for Choosing M eans of New Components

The above approach for choosing means and relative weights of new components relies too much on the brute-
force statistical properties of large numbers. It achieves a high probability density in a given region by locating
many equally-weighted new components close together in locations of x space where p,..(x) is large. A better
approach would be to locate fewer components in such regions, but to increase their weights. The QP solution
procedure of Section IV provides the needed means of increasing weights in regions of high p,,.(x) values. The
present sub-section develops a method for spreading out the means of the new elements in order to exploit the
ability of QP-based weight selection to obviate the need for many new components with closely spaced mean
values. This method is used in the 6™ block of the Fig. 1 algorithm. Adequate spacing of new elements mean
values helpsto avert the degeneracy problems that can occur in typical particle filters.

Suppose that the means g, for j = jim, ..., (um-1) have been chosen for py,,(x). Thereisno loss of generality in
assuming that means have already been chosen for all but the last component of pg,,(x). The main algorithm of
Section VI adds a single component to a given py,,(X) a any given stage of its procedure. The procedure always
assumes that the newly added component may be the last. Under this assumption, a better approach for choosing
the next mean of a new component is to sample it from the following modified probability density function:

e — T
P (x) = C{Jhﬁ 1|:1_ e—O.S(Rsbm{ X=pip}) " (Rpm{ X—ftp;}) }}Pﬂm (x)=Cr,, (X)Pﬂm (x) (50)
J=Jlom
where C is anormalization constant. The factor 7,,(X) is a scalar multiplicative factor involving terms of the form
1-¢). 1t takes on values in the range 0 < 7,(x) < 1. It takes on values very near 1 in regions of x space that are
remote from the existing component mean values g, for j = jim, ..., (un-1). IN regions near the existing means, on
the other hand, this scaling factor is very near 0. Thus, the new mean g, is nominaly sampled from p,,(x),
unless the resulting value would be too near to one of the existing mean values, i, for j = jiom, ..., (aim=1).
An example p,(X) distribution is shown in Fig. 2 for a 1-dimensional x space. The black dash-dotted curveis
Punm(X)/C, and the grey curveis p,,(x). The means of new mixands that have already been selected, w,; for j = jiom
o Guim-1), e 3.5, 6, and 7.5 in this case. p,,(X)/C equals zero at these values, and it nearly equals p,,,(x) remote
from these values. Thus, the next mean, ., is unlikely to be near the values 3.5, 6, and 7.5. This is a good
property because the pre-existing components are already able to approximate p,,,(x) accurately near these values.

D. How to Sample a New Mean from the Modified Distribution

It is necessary to develop a specia algorithm in order to properly sample from the probability density function
in Eq. (50). This distribution is ideally suited to use a form of Metropolis-Hastings (M-H) sampling * because it is
the product of the following three factors: the easily-sampled distribution p,,,(x), the constant C, and the uniformly
bounded function z,(x). The M-H agorithm for sampling p,..(x) consists of an algorithm for sampling p,,.(x)
coupled with an agorithm for accepting or regjecting the sample based on evaluation of z,(x) a the current
candidate sample and, typically, at a number of alternate candidate samples.

The algorithm for sampling the distribution p,,,(x) of Eq. (49) is straightforward. If it has only one Gaussian
component, then a Gaussian random vector is sampled from a distribution with a mean of zero and a covariance
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equal to theidentity matrix. Its dimension equals the number of columns of the square-root covariance matrix oY,
This sampled vector is multiplied by 6Y,;,, and the result is added to #,; in order to produce a sample of p,,,(X).
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Fig. 2. Theoriginal and modified sampling distribution functionsfor the mean values of components of a
new sub-mixture, a 1-dimensional example.

If pux(X) has two components, then its sampling procedure must start with an importance sampling step. A
scalar is sampled from the uniform distribution between 0 and 1 0[0,1]. If that scalar is no greater than the relative
weight w,; , then the desired sample of p,,(x) is drawn from the Gaussian distribution N(X; g O i OY o)+ 8S
described in the preceding paragraph. If the uniform sample exceeds w,;, on the other hand, then the desired
sample of p,,(X) is drawn from the alternate Gaussian distribution v (X; &, Y ymO¥ ) . N Pun(X) were allowed
to have more than 2 Gaussian components, then this method would be modified to make the importance sampling
step decide between the multiple Gaussian components based on their relative weights, as per standard procedures
that are given in Ref. 2 and elsewhere.

Given an ability to sample from p,,,(x), a mixture of the accept/reject method and an M-H method are used to
sample from p,,(X). Pseudo-code for this sampling algorithm is

Initialize / = 0, a counter of the number of M-H accept/reject cycles.
Draw ¢; from 1[0,1] and draw x; from p,,,(x).
If 7,(x;) = o, then stop and accept X,.
Whilel < 1,4,
[=1+1.
Draw ¢; from 1[0,1] and draw X, from p,.,(x).
If z,(X;) = o4, then stop and accept X;.
Draw f from 1]0,1]
If ﬂlﬂ-m(xl—l) > ﬂ-m(xl)
Xi = X1
end
end

Let 'ubjhim =X
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The M-H iteration limit /,,. must be chosen large enough to ensure that the final sample is from a distribution
that nearly approximates p,;,,,(X) 2 This limit must not be too large; otherwise, it wastes computational resources.
Computational experience suggests that a good value might be /,,,. = 30.

One acceptance test for the sample takes the form: if 7z,(x;) = a sample from U[0,1], then stop and accept X;.
This is a classic accept/rgject test. It would suffice to generate the p,,,,(X), but the accept/rgject algorithm can be
very inefficient.

The final if/fend block implements the M-H part of the sampling method. It automatically keeps x; as a better
candidate sample from pu,(X) if m.(X.1) < 7.(X;) because f sampled from ¢]0,1] will aways obey 5 < 1.
Whether or not it keeps x; when 7,,(X.1) > 7,(x;) depends on how small z,(x)) is relative to x,(x.1) and on how
small the sampled vaue g is, consistent with the M-H method. The accept/reject operations and the M-H
operations both increase the likelihood of choosing a given x; if its 7,(x;) isnear 1. Thisis exactly what is needed
in order modify the distribution p,.,(x) from Eqg. (49) in order to yield samples from the p,,(x) distribution of Eq.
(50). Note that the algorithm never needs to know the scaling constant C.

E. Additional QP-Based Accept/Reject Criteria

Two additional accept/reject tests are applied to the candidate component mean val ue iy, . These criteria
implement the decision in the 8" block of Fig. 1's main agorithm. They involve the new QP that gets generated, as
per Egs. (28a)-(28d) of Section V. The new mean and the corresponding new component of p,,,(X) giverise to a
new last component of the relative-weight QP solution vector w;,,, a new last row and column of the Hessian
matrix Hy,,, and new last elements of the gradient vector g,,, and of the normalization constraint vector c.

As discussed in Section IV, the new QP may have two deficiencies. One is that H,,;, may not be sufficiently
positive definite. The second is that the optimal value of the new component of w,,, may be zero. Both of these
situations indicate that the new Gaussian mixture component does not enable the augmented p;,,(X) sub-mixture to
approximate the origina sub-mixture p,,,(X) with significantly better accuracy. In this case, the candidate mean
M. isrejected, and the sampling algorithm of the previous sub-section is re-executed with the goal of generating
a better candidate.

These rejection criteria tend to correlate with ,ubjh being too close to the mean of an existing element of
Dsm(X), 1.€., to one of the means ,; for j = jiom, .. (/h,m 1). One would expect the sampling algorithm of the
previous sub-section to avert this situation in most cases. Computational experience indicates that this situation is
not completely precluded. Therefore, these two accept/reject criteria are worth including in the algorithm. Note,
the first of these criteria maintains the uniqueness of the global solution of the QP in Egs. (28a)-(28d), and it ensures
that one can use a Cholesky-factorization-based solution procedure for this QP, as outlined in Section 1V.

F. Selection of Mean of First Sub-Mixture Component

The algorithm of the previous two sub-sections presumes that at |east one component of p,;,(X) has aready
been selected. That is, it assumes that ;.. - jim = 1. Therefore, an auxiliary algorithm is needed in order to select
the first mean value of the first component of p,.(x). One reasonable choice is to sample Ky, from the p,,,(X)
distribution of Eqg. (49).

An alternative approach is to choose the initial mean om 10 equal the mean of p,,,(X), which also equals the
mean of p,,(x). An adaptation of the mean formula in Eq. (4) can be used to compute this mean value. The
adaptation substitutes relative weights w,; for absolute weights w,;, and it sums only from i,,, to i,;. Note: the
merging criteria of Sub-section V1.C ensure that this mean will not lie in aregion of low probability.

The use of the alternative scheme may be advisable for many situations. It is particularly important if the
differential covariance 6Y,;, é‘Yalm is small and p,,(X) has only one component, or if py,,(X) has two components
with each component’s differential covariance being small and with both components being very much aike. In
this case, a single component of p,,,(X) may be able to approximate p,,,.(x) to a very high degree of accuracy. The
use of the mean of p,,,,(x) for o increases the likelihood of achieving such a good approximation.

There is no need to apply the additional accept/reject criteria of the previous sub-section to the first component
of pewm(X). The scalar Hessian H,,,, is guaranteed to be positive definite in this special case, and the new element of
Wy, IS guaranteed to be non-zero. In fact, it will be the only element. It must equal 1 because of the unit
normalization constraint in Eq. (28c).
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VIII. Main Algorithm for Generating the New Gaussian Mixtur e p,(x)

This section uses the definitions and results of Sections I1-VIl and severa additional definitions in order to
develop the main algorithm for generating the new Gaussian mixture p,(x) from the original Gaussian mixture p,(x).
This agorithm starts by decomposing p.(x) into a set of M 1- and 2-component sub-mixtures, as described in
Section VI. Next, it recursively selects individual component sub-mixtures of p,(x) as candidates for improved
approximation. This selection process is similar to importance re-sampling in a traditional particle filter 2, except
that it uses a modified set of weights that reflect both the original sub-mixtures’ weights and the residua fit errors
between each original sub-mixture and its new counterpart. For the sub-mixture p,,,(X) that is selected by this
modified importance re-sampling procedure, the algorithm adds one new component to p,(X), as per Section VII,
and it uses a QP to re-calculate the relative weights of the modified py,,,(x) in away that minimizes its fit error, as
per Section 1V. This process repeats itself, adding one new component to p,(x) per recursion, until it has achieved a
sufficiently good fit of p,(x) to p,(x), or until it reaches a pre-allotted number of Gaussian mixture components of

Pu(X)-

A. Modified Importance Re-Sampling
The modified re-sampling procedure uses the following relative fit parameter between the old and new sub-
mixtures py,,(X) and p,.(X):

- T = =T = = T =
f = mi n[:L \/ Wam Haam Wom — 2WamHabm (Wbm )opt + (Wbm )opt bem (Wbm )opt ]
=

R (51)
Wam Haam Wam

where (Wp,, ), isthe optimal solution of the QP in Egs. (282)-(28d) . Recall from the analysis of Section I11 that
the right-hand argument of the min[ , ] function in Eq. (51) equals ||psum(X)-Psan )|/ IPsan(X)ll- The value of £, is
initialized to 1 when there are not yet any components of new sub-mixture p;,,(X). Themin[ , ] function in Eg. (51)
restricts 1, to be no greater than 1. Aswill become evident from what follows, this restriction avoids the possibility
of amplifying the weight of an original sub-mixture due to a very poor fit between it and the corresponding new
sub-mixture. These fit parameters are initialized in the 2™ block of the main algorithm of Fig. 1, and they are
updated in the 7"" block.

The modified sub-mixture weights used in the modified re-sampling procedure are

B = MWsanIm o form=1 M (52)

sam M

2 Wsal fl
=1

These weights are computed in the 4™ block of the Fig.-1 algorithm. They indicate both the importance of a given
sub-mixture and the current inaccuracy of its fit by the corresponding sub-mixture of p,(x). The weight will be
small if the original weight is small or if the current fit parameter is small, smallness indicating a good fit. In either
case, the algorithm probably will not add a new component to the corresponding sub-mixture of p,(x). Thiswill be
a reasonable decision because larger modified weights of other sub-mixtures would indicate that those other sub-
mixtures have relatively higher importance, relatively poorer fit accuracy for their corresponding p,(x) component,
or both. The algorithm, therefore, would do well to improve the fit of one of those other sub-mixtures by giving it a
new component.

The following modified importance re-sampling algorithm chooses which new sub-mixture to augment: First,
sample 77 from U[0,1]. Next, seek the lowest index m such that

1O ifm=1 m
mz "T}sal if m>1 i< lglwsal (53)
=1 -

This index chooses sub-mixture py,.(X) as being the one for which a new component will be selected and for which
new relative weights will be calculated in order to better fit the origina sub-mixture p,,.(X). This modified
importance re-sampling algorithm is implemented in the 5" block of Fig. 1.

B. Weights of New Sub-Mixtures

No information has yet been given about how the weight wy,, of the new sub-mixture pg,.(X) will be
calculated. The chosen ad hoc method seeks to keep wy, close to wy,,, the weight of the corresponding original
sub-mixture. This technique is reasonable given that the components and relative weights of p,,,(x) are chosen in a
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way that tries to fit p,,.(X) accurately. An optimal method, on the other hand, might rely on definition and solution
of some sort of QP. Asnoted in Section |11, however, the size of such a QP might be prohibitively large.

The ad hoc algorithm tries to choose the new weights wy,, = wy,, for m = 1, ..., M, but it cannot use this choice
if any pgm(X) sub-mixture has no components. An empty sub-mixture can occur if the corresponding original
weight wy,, isvery small. In this case, the w,,,, weights are used to define un-normalized wy,,, weights for the non-
empty pm(X) sub-mixtures, un-normalized weights of zero are assigned to the empty p,;,,(X) sub-mixtures, and the
final weights are determined via re-normalization.

The calculation procedure for the new weights relies on the mask weights
_ {O if me 0 (54)

Zm i
1 if Ny, >0

Recall from the text after Eq. (8b) that N, is the number of Gaussian components in p,(X). Given these values,

the chosen weights of the new sub-mixtures are

o = form=1,.., M (55)
zwsalzl
=1

w

C. Main Re-Sampling Algorithm
Given the foregoing definitions, it is possible to define this paper's main Gaussian mixture re-sampling
algorithm. It takes the following form, as defined using pseudo-code:

Decompose p,(x) into sub-mixtures p,,.(x) with weights w,,, and relative weight vectors
W, form =1, ..., M. Do this using the decomposition definition of Sub-section 11.B, the
relative weight vector definition after Eq. (22) in Sub-section I11.D, and the decomposition
algorithm of Section V1.

Initialize the fit parameters and the mask weights to, respectively, f,, =1 and z,, = 0 for m = 1,
..., M as per Sub-sections VIII.A and V1I1.B.

Compute the new square-root information matrices R, and the corresponding 6Y,;,, and
oY, SQuare-root covariance increment matrices for m = 1, ..., M as per Sub-section
VIILA.

Pre-compute miscellaneous quantities that will be used in calculating the H,,,,, H,pn, and Hy,,
matrices for m = 1, ..., M, as per Section |11.B. These include the factor to the left of e on
the right-hand side of Eq. (17) and that equation's R.; matrix for all possible pairings of
Gaussian components between py,,,(X) and py(X).

Initialize N, = 0 and jjom = 1, juim = O, Ny = 0, and wy,,, = the empty vector for m =1, ..., M.
Thisinitialization indicates that all of the p,,,(X) sub-mixtures start with no elements.

Initialize E,,; = oo.

While (Nb < meax) and Erel > Erelmax

Use Eq. (52) to re-compute the modified weights w,,,, form =1, .., M

Do modified importance re-sampling to select sub-mixture py,,,(X) as the one to which
anew component will be added, as per Eq. (53) in Sub-section VIII.A.

If m < M, then re-index the existing components of p,(x) in order to open up the
quantities associated with index (1) = jim+1) for the new component. That is,
MOVeE Ly INLO fy(;+1) @Y Ry iNtO Ryigy FOr j = jiomeays ... Np. Afterwards, increment
by 1 the quantitiesj,,, and jj; for [ = (m+1), ..., M.

Increment by 1 the quantities N, juin, and Ny,,.

Let Ry, = Rsom-

If Ny, > 1, then use the sampling and accept/reject methods of Sub-sections VI1.D and
VIILEin order to determine 4, otherwise, determine 4, .~ as per Sub-section
VIIIF. Jnim Jnim

Set up and solve the QP in Egs. (28a)-(28d) in order to determine w,,, . Use the
previous problem matrices, factorizations, and solution in order to perform low-
rank updates to efficiently re-pose and re-solve the QP as discussed in Section 1V.
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Set z,, = 1 and use the new definition of p,,(x) along with the new optimal relative
weight vector Wy, inorder to update f,, as per Eq. (51).

Update wy, for /=1, ..., M as per Eq. (55).

Compute the updated E,.; as the right-most term in Eq. (24).

end
Forl=1M
For j = jiorijnit
wej = Want Wi I jjp,,42)
end
end

This algorithm is structured into 3 main sections. Everything before the main “while” loop constitutes an
initialization and corresponds to the 1%-3“ blocks of Fig. 1. The main “while” loop implements blocks 4-10 of Fig.
1, adding one new component to p,(x) for each pass through its operations. This component is the new last element
of sub-mixture py,,(X). The main “while” loop terminates when p,(x) has N,,... Gaussian components or when E,.;,
the conservative bound on the relative norm error between p,(x) and p,(x), fallsto a value no greater than the upper
limit E,.qe. This upper limit is typically set to a small number relative to 1, for example, something in the range
0.01 to 0.0001. The final pair of nested “for” loops computes the final absolute weights of the components of p;(x),
as called for in the 11" block of Fig. 1. Each component’s final weight equals the product of its relative weight
within its sub-mixture and the absolute weight of that sub-mixture.

D. Discussion of Algorithm

The main algorithm has been designed with the goal of approximating elements of p,(x) with as small a number
of py(x) elements as possible. Suppose that an original mixture element has a sufficiently small covariance such that
it does not violate the covariance upper limit on the new mixture elements, the limit defined in Eq. (31) using
square-root information matrices. If the old mixture element's weight is large enough, then the new mixture will
retain the old element exactly, and it will yield a perfect approximation of this component of the original mixture
using only one component of the new mixture. This new component may have a modified weight if such a
modification might allow it to also approximate another one of the original elements, one that is very similar to it.
Thus, this algorithm will tend to be frugal about creating components of the new distribution if the components of
its original distribution have sufficiently small covariances.

There are three computationally expensive parts of the algorithm. One is the pre-computation of new square-
root information matrices, which occurs in the 3" block of Fig. 1. The expensive parts of the corresponding LM
solutions are the singular-value decomposition in Eg. (33), the matrix algebra in Egs. (33) and (35), and the QR
factorization in Eq. (36). These calculations require order Mn> operations. Block 3 also contains the second
expensive part, the pre-computation of quantities that are used to set up the QP problems for the relative weights.
The expensive parts of this calculation are the QR factorization in Eq. (18) and the matrix algebra in Eq. (19).
These calculations also require order Mn® operations. The third expensive component is the setting up and solving
of the QP problems that determine the relative weights in the 7" block of Fig. 1. The expensive parts of the QP
calculations are the computation of the off-diagonal elements of the H,,,, Hessian matrices, as per Egs. (16¢) and
(17), and the Cholesky factorizations of the Hessian matrices, as per Eg. (29). The cumulative count of these QP
operations will be on the order of > ‘,‘,,4:1(n2N me +N fm) if the QP solutions do not require many changes of their
active constraint sets. |If the average N, me exceeds n or if the average N Em exceeds 1°, then the QP operations in
Block 7 constitute the dominant computational cost. Otherwise, the set-up operationsin Block 3 dominate the cost.

This analysis does not consider the computational costs associated with the sub-mixture decomposition
calculations in the 1% block of Fig. 1. The second test of candidate sub-mixture pairs, the one implemented in Eq.
(48), requires many of the same calculations as are required for Block 3 of Fig. 1. The preceding analysis assumes
that any such results from the execution of Block 1 are saved until the execution of Block 3 so that they can be used
to reduce the number of computations that must be carried out in Block 3.

The algorithm in the previous sub-section reverts to the standard importance re-sampling of a particle filter 2
(one that does not include regularization), in the limit of vary small covariances of the Gaussian components. This
limit corresponds to a very large R,,;, minimum square-root information matrix for the components of the new
mixture. In this case, the original and new Gaussian mixture components will be Dirac delta functions. The mean-
value selection procedure of Sub-section VI1.D collapses to a selection of means of the new components from the

22
American Institute of Aeronautics and Astronautics



set of means of the old components because the 6Y,,;,, and 6Y,,, matrices are very small in this case. Similarly, the
modified re-sampling associated with Eq. (53) collapses to standard importance re-sampling because the f,, values
from Eq. (51) aways equal 1, which causes the re-sampling weights in Eq. (52) to equal the original weights. The
QP solution in Egs. (28a)-(28d) will tend to yield nearly equal relative weights in this case. The expected number
of elements of each new sub-mixture, when combined with the near equality of the relative weights from the QP,
tends to produce equal weights in the main algorithm’s final pair of nested “for” loops. All of these propertiesyield
afilter that functions like a standard PF.

I X. Examples of Algorithm Performance

The algorithm described in Sections I1-VI11 has been implemented in MATLAB and tested on several problems.
Consider the n = 2-dimensional example whose original Gaussian mixture p,(x) is depicted in the top plot of Fig. 3.
The figure’'s 3-D view of the distribution lies along a direction that is ailmost parallel to the x;-x, plane, thereby
projecting the x;-x, plane amost onto a horizontal line in the plot. This mixture has 5 elements. Their standard
deviations range from 0.18 to 1.70 for the first element of x and from 0.47 to 1.39 for the second element. The
maximum p,(x) component standard deviations, as imposed by R,,;,, are 1.04 for the first element of x and 0.95 for
the second element.

0.6-
0.4
0.2+

0.6-
0.4+
0.2~

5 0 -5 -5 0 5

X, X,

pb(x) - pa(x) (prob. dens. units) pa(x) (prob. dens. units)

Fig. 3. Original N,=5 element 2-D Gaussian mixture p,(x) -- top plot, and error of N, = 40 element Gaussian
mixtur e p,(x) -- bottom plot.

The fit of p,(x) was carried out using the following tuning parameters: Nj,,.. = 100 components and E,;,.. =
0.01 to control termination criteriaasin Section VIII; w,,;, = 0.001, y= 0.1, and A = 0.1 to control decomposition of
p.(X) into sub-mixtures asin Section V1; /,,,. = 30 iterations of the M-H sampling procedure asin Section V1.

The actua fit of p,(x) to p.(x) is very good, as shown on the fit error plot, the bottom plot of Fig. 3. The
achieved conservative measure of the relative error is E,, = 0.0084, and the actual relative error norm, as
determined numerically, is |p,(X)-p.(X)|l/|lp.(¥)|l2 = 0.0056, thus demonstrating the conservatism of the computed
E,; as defined by the extreme right-hand term in Eq. (24). This good fit has been achieved using only N, = 40
components in the new distribution. Their standard deviations range from 0.18 to 0.82 for the first element of x and
from 0.47 to 0.75 for the second element. Thus, they are narrower than the widest elements of p,(x) due to the
covariance restrictions imposed by the R,,;,, LMI in Eq. (31).

The weights of the Gaussian components of p,(x) range from 0.0002 to 0.2912. The mean weight is /N, =
0.025, and the standard deviation of the weightsis 0.0451. Unlike particle filtering re-sampling, this procedure does
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not produce equal-weighted components. This feature enables the new method to fit p,(X) to p.(x) with much
greater accuracy for a given number of components.

Another useful metric of this algorithm's performance is the accuracy with which it approximates the mean and
covariance of the original distribution as computed using Eq. (4). Reasonable metrics of the relative accuracies of
the mean and covariance are

Au = \/(lugmb_lugma )T Pg_njz-a (lugmb_ﬂgma) and 4P = "Pgmb_Pgma” / ”Pgma” (56)
where the ()g., subscripts indicate the mean and covariance of original Gaussian mixture p,(x), and the ()gus
subscripts denote the new approximate mixture p,(x). The matrix norms in the AP expression are induced matrix 2-
norms. These performance metrics evaluate to Ay = 0.0042 and AP = 0.0102 for this example. Thus, both the mean
and the covariance of p,(x) closely match those of p,(x) in arelative sense, despite the fact that there is no explicit
matching constraint in the algorithm that constructs p,(x).

Asapoint of comparison, 40 particles have been sampled independently from p,(x), and they have been used to
approximate the mean and covariance. The relative mean error for these 40 equal-weight Dirac delta functions is
Au = 0.2748, and the relative covariance error is AP = 0.2068. Thus, the mean estimate from the 40 particles is 66
times less accurate than the mean estimate from the 40-component re-sampled Gaussian mixture, and the particles
covariance estimate is 20 times less accurate. The non-infinitesimal widths of the p,(x) Gaussian mixture
components enable them to do a much better job of approximating p,(x).

Of course, MATLAB requires much less time to sample 40 particles from p,(x) than it requires to construct p,(x)
using this paper’s algorithm. A better comparison uses 8000 particles, which require about the same amount of
processor time to sample asis required to construct p,(x). The average Au and AP fit metrics decrease significantly
when using 8000 particles, but they are still larger than those achieved by the 40-component Gaussian mixture
p»(X). The 8000 particles’ average Au fit metric is larger by afactor of 3.7 than that of p,(x), and their average AP
metric is 2.1 times larger. Thus, the new algorithm offers a clear advantage over particle methods for this example
problem.

This paper's algorithm could have fit p,(X) to p,(x) very accurately with many fewer mixands if the LMI bound
in Eqg. (31) had been less restrictive. The re-sampling algorithms in Refs. 9, 11, and 12 could have done the same.
With a very loose LMI bound, the algorithm could achieve a perfect fit with just 3 elements, the original elements.
The next example, however, demonstrates the usefulness of adding extra elements, even many extra elements, in
order to satisfy an LMI that enforces a restrictive bound on the new elements’ covariances.

The required number of components of p,(x) grows significantly if the maximum covariance of each
component is reduced, that is, if R,,;, increases in the LMI of Eqg. (31). Thisisillustrated by the example in Fig. 4.
The original p,(x) has 3-components and is plotted in solid blue along the horizontal axis. The approximate p,(x)
has 100 components and is plotted as the dash-dotted red curve along the same axes. The 3 components of p,(x) are
plotted as dashed green curves, and the 100 components of p,(x) are plotted as dotted blue-grey curves. The
standard deviations of the components of p,(x) are 0.42, 0.75, and 2.06. The components of p,(x) all have the same
standard deviation: 0.20, the upper limit imposed by R,,;,. As can be seen from Fig. 4, p,(X) approximates p,(x) very
well. The relative fit error is |[ps(X)-p.(X)|l/|lp.(X)]l. = 0.0034. The cost of achieving this good fit is the need to use
100 components to construct p,(X).

Figure 4 illustrates an important point about why this Gaussian mixture re-sampling method has been
developed. It plots an example nonlinear function f(x) as the dash-dotted black curve. It also shows the exact
propagation of the probability density function p,(x) through f(x) to produce the corresponding probability density
function for f: p(f) = p.[x(f)])/|of/ox|, where x(f) represents the function inverse of f(x). This probability density is
plotted as the solid blue distribution that is shown aong the left-hand vertical axis (after being moved to have its
zero value line up at the horizontal position x = -12 and after being scaled down by a factor of 3 in order to fit well
within the figure's horizontal range). p(f) is plotted along the vertical f axis because f is its independent variable.
Also plotted on that axis are two approximations of p(f). The dashed green curve is the p(f) that results from
performing EK F-type propagations through f(x) of the 3 components of p,(x). The dash-dotted red curveis similar,
except that it applies the EKF-type propagations to the 100 components of p,(x). It is obvious from this plot that the
latter approximation is much closer to the truth. 1t even reproduces the bi-modal peaks of the true distribution.
Thus, there can be significant benefit in terms of nonlinear filtering accuracy if one re-approximates p,(x) by a
Gaussian mixture p,(x) with bounded covariances on each of its components.

A different calculation is required in order to illustrate the benefits of using a re-sampled Gaussian mixture with
bounded component covariances when performing the measurement update of a nonlinear filter. Suppose that p,(X)
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of Fig. 4 is the a priori probability distribution for x, and suppose that f(x) of Fig. 4 is a nonlinear measurement
function rather than a nonlinear dynamic propagation function. Suppose that the measurement model takes the
form:

y=f(x)+v (57)
wherey is the observed measurement vector and v is a Gaussian measurement noise vector with a mean of zero and
acovariance of P,,. Then Bayes' rule dictates that the a posteriori probability distribution of x is

T -1,
POYIXPa(X) - -08y-f ()] Bvly=1001, (x) (58)

P posterior (x) = -
[P(Y [X)p (X)dx
where C is a normalization constant. This posterior distribution can be approximated as a Gaussian sum by using
EKF or UKF calculations to do individual updates for each of the Gaussian components followed by re-weighting
of the components. The re-weighting is based on chi-sgquared statistics of the components' normalized innovations,
asinRef. 7.

! ] ! !
Approximate pf(f) from 3-component
EKF propagtion of pa(x) through f(x)

p,(x) (solid blue) &
p,(X) (dash-dotted red)_ _ __|

Exact p(f) = p,x(")}|df/dx
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Fig. 4. A 3-component original Gaussian mixture, a 100-component approximation, and their propagation
through a nonlinear function.

Figure 5 presents three a posteriori probability density functions for this example. The example’'s measurement
error covariance is P,, = (0.1)>. A truth-model simulation generated x,,,. = -2.0965 and y = 0.2996. The solid blue
curve is the true a posteriori probability density, the dash-dotted red curve is based on 100-element multiple-model
EKF calculations involving the approximate a priori distribution p,(x), and the dashed green curve is based on 3-
element multiple-model EKF calculations involving the true a priori distribution p,(x). The dash-dotted red curve
is obviously a much better approximation of the solid blue curve than is the dashed green curve. Thisimprovement
further illustrates the advantages for nonlinear Kalman filtering of this paper's technique of re-sampling a Gaussian
mixture in order to limit the covariance of its individual elements. In this example, the technique is used to
intentionally over-sample the original 3-element Gaussian mixture in order to produce accurate transformations of
probability densities through nonlinear functions.
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The components of p,(X) act like basis functions in the re-approximation of p,(x). The main idea of this
technique is to provide a means of dynamically updating the basis functions for the nonlinear Kalman filter's
probability distribution. This update seeks to maintain the accuracy with which the basis functions approximate the
underlying distribution. At the same time, it seeks to limit the covariances of the basis functions in order to
maintain the accuracy of the approximate EKF or UKF calculations that will be used to dynamically propagate them
and to update them when new measurement data become available.

—True
=-= Approx. based on multiple-model EKFs applied to p, (X)

a posterior p(x)

Fig. 5. Trueand approximate a posteriori probability distributions after a nonlinear measurement update.

X. Summary and Conclusions

A new Gaussian mixture re-approximation/re-sampling algorithm has been developed. It hasthree goals. First,
it seeks to create a new mixture that is a close approximation of the original mixture. Second, it limits the
covariances of the elements of its new mixture so that each one will propagate accurately through typical EKF or
UKF nonlinear filter calculations, provided that the covariances have been limited to a sufficient degree for a given
problem model. The algorithm’s third goal is to limit the number of components of the re-sampled mixture. It
employs two complementary strategies for achieving thisgoal. Oneisto use optimal weight calculations rather than
large numbers of components in order to accurately approximate the original distribution in regions of high
probability density. The other isto merge components of the original mixture when possible.

The re-sampling algorithm’'s form represents a natural generalization of particle filtering techniques.
Covariance matrices of the new mixture components are determined by solving systems of linear matrix inequalities
that set lower bounds on the corresponding information matrices. Mean values of new mixture components are
sampled from sub-mixtures that have decreased covariances. These decreased covariances compensate for the fact
that the total covariance consists of contributions from the variability of the new means and from the new
covariances. The weights of new elements are determined by quadratic programs that optimally fit sub-mixtures of
new components to sub-mixtures of old components.

The re-sampling agorithm has been tested on two example problems. The results show that good
approximations can be achieved with reasonable numbers of narrowed components of a new Gaussian mixture. The
re-sampled mixture is not constrained to preserve the mean or covariance of the original mixture. Nevertheless, the
algorithm’s concern for accurate approximation of the original probability density function tends to result in better
reproduction of the original mean and covariance than is achieved by the same number of particlesin a standard PF.
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It is reasonable to inflate the number of particles in a comparison PF until the PF processing time equal s the amount
required by the new algorithm. Even in this case, however, the PF fails to achieve mean and covariance accuracies
as good as those of the new algorithm.

Another example calculation demonstrates good EKF/multiple-model propagation and measurement-update
results in the presence of significant nonlinearities. The approximate EKF/multiple-model probability density
functions closely match the true density functions, as determined numerically, if the approximate EKF calculations
are applied to are-sampled mixture that has sufficiently narrow components.
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