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ABSTRACT 

A real-time method for detecting GPS spoofing in a narrow-

bandwidth civilian GPS receiver has been implemented and 

tested, both in the absence of and in the presence of spoofing.  

The system was implemented as a software-defined radio 

system on a personal computer, using a pair of narrow-

bandwidth radio front-ends that were geographically 

separated, with data transmitted between the two over the 

Internet. 

The presence of a spoofing signal is determined by mixing and 

accumulating the base-band quadrature channel samples from 

the two receivers, with the aim of cross-correlating the P(Y) 

code that should be present in both signals in the absence of 

spoofing. 

Cross-correlation of spurious signals and undesired 

autocorrelation of C/A codes precluded the reliable detection 

of a spoofing signal in the real-time system, though further 

post-processing in MATLAB resolved these issues. 

I. INTRODUCTION 

As the reliance of the civilian community on GPS signals for 

timing and positioning in mission-critical applications grows, 

so does the vulnerability to and potential cost of an attack via 

signal spoofing.  GPS signal spoofing is a type of attack 

whereby a GPS receiver is fooled into tracking counterfeit 

signals, generally with the intention of misleading the receiver 

with regards to position, time, or both.  In 2001 the U.S. 

Department of Transportation warned of the vulnerability of 

civilian GPS receivers to attacks such as spoofing
1
, and such 

attacks have since been demonstrated by a variety of parties
2,3

. 

Given the potential damage a successful spoofing attack could 

inflict, detecting this kind of attack is of paramount 

importance.  The spoofing detection method implemented here 

was proposed by Lo et al. 
4
, and is based on the presumed 

security of the encrypted P(Y) code.  This paper seeks to 

examine the efficacy of this method in the context of a 

narrow-bandwidth real-time software receiver using only those 

components that would normally be used in a civilian receiver 

(that is, using only a patch antenna rather than a high-gain 

antenna and no additional timing hardware).  

The Lo method assumes that a spoofer can only spoof the C/A 

code, and in doing so thereby changes the relationship 

between the C/A code and P(Y) for a particular spoofed 

signal.  Let us assume that there exists a “reference” receiver 

that is trusted (that is, the signals are believed genuine), and a 

“user equipment” receiver which may or may not be under a 

spoofing attack.  If one can isolate that portion of the signal 

that should contain the P(Y) code from the reference receiver, 

a cross-correlation of this data and similar data from the user 

equipment receiver can be carried out.  Only if the user 

equipment receiver is not being spoofed should there be a 

large correlation value due to the cross-correlation of the P(Y) 

code from both sets of data.  Properly executing this cross-

correlation requires isolating the portion of the signal that 

should contain the P(Y) code and temporal alignment of the 

two data streams. 

A good discussion on the probable efficacy of several other 

spoofing detection methods can be found in the paper by 

Humphreys. 
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Section II of this paper contains a description of the hardware 

used in this work.  Section III is an overview of the software 

used in implementing this spoofing detection method 

including the algorithm in general terms, derivation and 

analysis of the spoofing detection statistic threshold, and 

peculiarities that are necessary due to the particular software 

receiver used.  Section VI contains initial results from testing 

the algorithm under a variety of conditions including when the 

UE receiver is being subjected to a spoofing attack.  Section V 

contains a discussion of the results, including an in-depth 

analysis of the algorithm shortcomings and challenges (done 

in MATLAB), the possibility of spoofing of the reference 

receiver, and one possible method of C/A code interference, 

and Section VI contains conclusions. 

II. HARDWARE OVERVIEW 

Data for this experiment was collected using custom designed 

radio-frequency front-ends (RFEs) paired with data acquisition 

units.  The RFEs used have intermediate frequency filters with 

a bandwidth of 1.9 MHz, and produce 2-bit quantized data at a 

sampling frequency of approximately 5.7 MHz.  The 

quantized data is recorded to a personal computer using a data 

acquisition peripheral and then transmitted over the internet 

from the reference receiver to the user equipment receiver, 

where all processing is done.  As the sampling rate is only 5.7 

MHz and the data are sampled with 2-bit quantization, this 

means the data link between the reference and user equipment 

receivers need only support rates of 11.4 megabits per second, 

which is well within the capabilities of standard internet 

connectivity. 

All processing was done on a personal computer with a quad-

core Intel i7 930 CPU, and only standard hemispherical patch 

antennas were used at both the reference and user equipment 

receivers. 

A block diagram of the system architecture is shown in Fig. 1. 
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Fig. 1.  Spoofing detection receiver architecture. 

III. SOFTWARE OVERVIEW 

In this section we will examine the general theory behind the 

spoofing detection method implemented here, how the 

spoofing detection statistic threshold was calculated, and 

general algorithms required due to the particular software 

receiver that was used. 

A.  Spoofing detection algorithm 

In this implementation of the Lo spoofing detection method, 

temporal alignment of the two data streams is first step taken.  

Rather than time-stamping the data streams using additional 

equipment, the embedded navigation message data is used.  To 

do this, both data streams are tracked until the time of week 

(TOW) has been decoded in both.  Using this information, the 

latency between the two streams can be determined.  

Whichever stream lags is then tracked while the other stream 

is buffered, until the receiver is processing the exact same C/A 

code period on both data streams.  The estimated start time of 

the n
th

 C/A code period for the reference receiver is defined as 

tref(n).  Similarly, the estimated start time of the n
th

 C/A code 

period for the user equipment receiver is defined as tue(n).  

Given that we know tref(n) and tue(n) from the normal, 

continuous tracking of the C/A signal, and given that any 

group delay between the C/A and P(Y) codes is determined by 

the transmitter and common to both the reference and UE 

receivers, the P(Y) code phase in the reference receiver data 

stream at tref(n) should be the same as the P(Y) code phase in 

the UE receiver data stream at time tue(n). 

Due to low sampling rate (5.7 MHz) of the receivers used in 

this work as compared to the chipping rate of the P(Y) code 

(10.23 MHz) there is the question of sub-sample alignment as 

well as the coarse alignment described above.  That is, to 

achieve a large cross-correlation value, we must temporally 

align the P(Y) codes to within a fraction of a chip.  The P(Y) 

chip period of about 97 ns and the data sampling period of 175 

ns means that if alignment is done only to the nearest sample it 

could be off by as much as 0.55 chips, leading to significant 

correlation loss.  However, as the sampling period is not a 

multiple of the P(Y) code chipping period, this error will vary 

over the course of each accumulation, sometimes being close 

to zero.  The computational resources that would be required 

to interpolate the data on a sample-by-sample basis to the 

estimated start times of the P(Y) code chips was deemed 

prohibitively expensive, so instead we have elected to simply 

choose the sample nearest the estimated P(Y) code chip start 

time, updating it every millisecond based on the estimated C/A 

code start time. 

The GPS C/A and P(Y) codes are both transmitted on the L1 

frequency, with the C/A code being transmitted ninety degrees 

out of phase with respect to the P(Y) code.  As the P(Y) code 

is encrypted and generally unavailable to civilians, it is 

necessary to track the C/A code in such a way that the phase is 

known.   

A phase-locked loop (PLL) is used to accurately measure the 

phase of the desired C/A code signal.  The PLL discriminator 
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requires mixing of the signal with both an in-phase and a 

quadrature carrier replica, as illustrated in Fig. 1.  The PLL is 

formulated to steer the carrier such that the C/A code power 

lies entirely in the in-phase channel after carrier wipe-off.  As 

the P(Y) code is in quadrature with the C/A code, all that is 

required to isolate the portion of the signal that should contain 

the P(Y) code is to save a replica of the data after mixing with 

the quadrature carrier replica.  It should be noted that it is 

assumed that the receiver is tracking many satellites (say, ten) 

concurrently.  Due to memory constraints, it was desirous to 

avoid storing a replica of the data after carrier mixing for 

every satellite, so instead the only the data along with a copy 

of the frequency and phase of the carrier replica used for 

mixing is retained.   This is further discussed in section III.C 

below. 

Once the portion of the signal containing P(Y) code has been 

isolated in both the reference receiver and the user equipment 

receiver, it only remains to multiply the two data streams on a 

sample-by-sample basis and accumulate the result.  If the 

receiver is not being spoofed, one is essentially computing the 

autocorrelation of the P(Y) code as modified by the receiver 

front-end and with the inclusion of noise. 

B.  Detection Threshold Calculation and Analysis 

It is necessary to analyze the cross-correlation spoofing 

detection statistic in order to determine how much integration 

time would be required in order to achieve a reasonably small 

probability of false alarm and, at the same time, a reasonably 

large probability of detecting an actual spoofing attack.  This 

analysis is particularly important given the unusual approach 

used here, one which relies on a heavily filtered version of the 

P(Y) code that retains only the central 1.9 MHz of its 20 MHz 

bandwidth. 

The analysis begins with mathematical models of the 

quadrature base-band mixed versions of the two signals for the 

GPS satellite in question.  One is from the reference receiver, 

Receiver A, and the other is from the UE receiver that seeks to 

detect a possible spoofing attack, Receiver B.  Normalized 

models of these two signals take the form:   

AiiFAAi ntPNC∆ty += )()/( 0    (1a) 

BiiFBBi ntPNC∆ty += )()/( 0    (1b) 

where yAi is the quadrature base-band-mixed signal from 

Receiver A that is sampled at time ti, and yBi is the quadrature 

base-band-mixed signal from Receiver B sampled at the same 

time.  The sample period of the RF front-end is ∆t = ti+1-ti.  

The quantities (C/N0)A and (C/N0)B are the two P(Y) code 

signals' received carrier-to-noise ratios in absolute Hz units.  

These quantities include the attenuation effects of the narrow-

band RF front-end filter, about 7 dB of P(Y) code attenuation 

in the case of a 1.9 MHz filter.  The signal PF(t) is the 

distorted version of the P(Y) code that comes out of the 

narrow-band RF front-end filter, but re-normalized to have 

unit power.  This re-normalization is consistent with lumping 

all of the power loss into the received carrier-to-noise ratios 

(C/N0)A and (C/N0)B. 

The terms nAi and nBi are the base-band-mixed receiver noise 

terms, which are assumed to be Gaussian, zero-mean, 

uncorrelated from sample to sample, and uncorrelated between 

the two receivers.  The normalization used to derive these 

equations assumes a unit variance for the Gaussian noise in 

each receiver's raw RF front-end samples.  This normalization 

implies that nAi and nBi both have standard deviations equal to 

2/1 .  The derivation of this normalized model assumes the 

use of a unit-amplitude sinusoidal in order to implement the 

quadrature base-band mixing that generates yAi and yBi. 

The formulas in Eqs. (1a) and (1b) can be used to analyze the 

following cross-correlation spoofing detection statistic 

∑=
=

M

i
BiAi yy

1

~γ  

 BA NCNC∆tM )/()/( 00≅  

  ∑ ++
=

M

i
BiiFABiAi ntPNC∆tnn

1
0 )()/([  

   ])()/( 0 AiiFB ntPNC∆t+     (2) 

where M is the number of quadrature base-band-mixed RF 

samples used to compute the statistic.  This number is related 

to the correlation statistic's accumulation interval as follows: 

Tcorr = M∆t. 

The mean and variance of this detection statistic are 

BA NCNC∆tME )/()/(}~{~
00== γγ          (3a) 
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M
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)~(}~{ 00

222
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 (3b) 

These are the mean and variance of the test statistic under the 

assumption of no spoofing at Receiver B.  Note that it is 

always assumed that there is no spoofing at reference Receiver 

A. 

If Receiver B is being spoofed, then the mean and variance of 

the test statistic will change because the P(Y) code will 

disappear from Receiver B.  The modified mean and variance 

can be computed by setting (C/N0)B = 0 in both equations.  The 

results are spoofedγ~  = 0 and 

{ }Aspoofed
NC∆t

M
)/(21

4
0

2
~ +=γσ                  (4) 

Given this spoofed variance for γ~ , it is helpful to re-

normalize the detection statistic through division by the value 

spoofedγσ ~ .  This re-normalized detection statistic is 
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This statistic has a spoofed mean of 0 and a spoofed variance 

of 1.  Its un-spoofed mean and variance are 
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Suppose that the probability density function of the detection 

statistic γ under the null hypothesis of no spoofing is p(γ|H0), 

and suppose that its probability density function is p(γ|H1) 

under the hypothesis of spoofing.  Both of these probability 

densities involve a sum of products of Gaussian random 

variables: the noise product on the third line of Eq. (2).  Due to 

the central limit theorem, however, it is reasonable to 

approximate both of these distributions as being Gaussian 

because they are the result of summing many small random 

components, typically thousands to millions of them.  

Therefore, these two distributions can be approximated as: 
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As is obvious from Eqs. (7a) and (7b), N(x;µ,σ) refers to a 

normal distribution in x with mean µ and variance σ 2
. 

The probability density function in Eq. (7a) can be used to 

compute a spoofing detection threshold γth that has the false 

alarm probability α.  It is computed by solving the following 

integral equation: 

∫=∫=
∞−∞−

thth

ddHp
γ

γ

γ
γσγγγγα ),;()|( 0 N         (8) 

This equation can be solved using the MATLAB function 

norminv.m: γth = norminv(α, γ ,σγ).  This detection statistic is 

applied as a minimum value.  A spoofing attack has been 

detected if γ < γth. 

Given the spoofing detection threshold γth, the probability 

density function in Eq. (7b) can be used to compute the 

probability of detection.  It is  

∫=∫=
∞−∞−

thth

ddHpPdetect

γγ
γγγγ )1,0;()|( 1 N        (9) 

This probability can be computed using the MATLAB function 

normcdf.m: Pdetect = normcdf(γth,0,1). 

A real implementation of the spoofing test γ < γth requires an 

ability to compute the properly normalized statistic γ and the 

corresponding value of γth.  The necessary computations 

assume knowledge of the actual noise power (i.e., noise 

variance) in the receiver's raw RF front-end samples along 

with knowledge of the carrier-to-noise ratios of the two 

received P(Y) code signals.  The noise power normally can be 

determined based on an understanding of the RF front-end's 

analog automatic gain control (AGC) unit.  An alternate, 

perhaps superior, noise power estimate can be developed by 

considering the variance of the in-phase and quadrature 

accumulations that are produced by the C/A code tracking 

loops.  The received carrier-to-noise ratios of the P(Y) code 

can be inferred from those of the tracked C/A code.  This 

inference uses the fact that received P(Y) code carrier-to-noise 

ratios are typically 2 to 3 dB lower than those of the C/A code 

on L1 even for a wide-band RF front end.  This inference also 

factors in the loss of P(Y) code power in the RF front-end's 

narrow-band filter.  The needed normalization calculations are 

developed in the following paragraphs. 

The normalization calculations start by computing the mean 

and variance of the squared magnitudes of each receiver's 

C/A-code prompt in-phase/quadrature accumulation vector: 

}{
22

/
// akcakc

QIEz ac +=                               (10a) 

2
/

2222
/ }]{[

//
acazc zQIE

akcakc
−+=σ              (10b) 

where Ic/ak and Qc/ak are, respectively, the receiver's prompt in-

phase and quadrature C/A-code accumulations for the k
th

 

accumulation interval.  The two expectation operations can be 

carried out using time averages over many accumulations.  

These two statistics can be used to compute the Ic/ak and Qc/ak 

accumulations' equivalent noise-free power and their noise 

variance: 

2
/

2
/

2
azcacIQ zA σ−=                                    (11a) 

)(5.0 2
/

2
//

2
azcacacIQ zz σσ −−=                      (11b) 

where AIQ is the estimated magnitude of the noise-free [Ic/ak; 

Qc/ak] vector and 
2
IQA  is its power.  The accumulations' noise 

variance can be used to estimate the noise variance of the raw 

RF front-end samples: 

22 2
IQ

accum
RF

T

∆t
σσ =                                   (12) 
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where Taccum is the accumulation interval that the receiver has 

used to compute the Ic/ak and Qc/ak accumulations.  This 

estimate is independent of any knowledge of the receiver's 

AGC unit.  This calculation assumes that unit-amplitude 

sinusoids have been used to perform the base-band mixing of 

the raw RF samples in preparation for calculation of the Ic/ak 

and Qc/ak accumulations. 

The C/A-code carrier-to-noise ratio in absolute Hz units is 

computed using the results of Eqs. (11a) and (11b): 

accumIQ

IQ
ac

T

A
NC

2

2

/0
2

)/(
σ

=                           (13) 

The results in Eqs. (12) and (13) can be computed for 

Receivers A and B in order to yield the quantities σRFA, σRFB, 

(C/N0)c/aA, and (C/N0)c/aB.  The latter two quantities can be used 

to estimate the P(Y) code received carrier-to-noise ratios as 

follows: 

FaAcA LNCNC
25.0

/00 10)/()/(
−=                (14a) 

FaBcB LNCNC
25.0

/00 10)/()/(
−=               (14b) 

where the 10
-0.25

 factors implement the assumption that the 

unfiltered received P(Y) code has 2.5 dB less power than the 

received C/A code.  The loss factor LF accounts for P(Y) code 

power losses in the two RF front-ends' narrow-band filters.  LF 

= 0.2039 (i.e., a 6.9 dB loss) if both receivers use a 1.9 MHz 

wide RF front-end filter.  This value has been determined by 

numerically integrating the usual sinc
2
 power spectral density 

of the P(Y) code over the narrow-band filter's bandwidth.  

This calculation has assumed a "brick-wall" filter roll-off 

curve.  The correct LF value associated with a different filter 

bandwidth can be calculated using similar techniques. 

Note that the assumption of equal filtering losses in both 

receivers is consistent with the assumption of this method that 

both receivers' RF front-ends use similar filters.  This 

assumption is important to the validity of the model in Eqs. 

(1a) and (1b).  Without this condition, the PF(t) function would 

not be identical in the two receivers' signal model equations, 

and the differing distorted versions of the P(Y) code might not 

correlate as well with each other as is assumed in the present 

developments. 

Given the estimates of the received P(Y) code carrier-to-noise 

ratios from Eqs. (14a) and (14b), one can compute the 

expected mean and variance of the non-spoofed γ detection 

statistic by using Eqs. (6a) and (6b).  These values, along with 

the desired probability of false alarm, can be used in Eq. (8) in 

order to compute the spoofing threshold γth.  This threshold 

value is then compared to the normalized spoofing statistic, 

which is calculated as follows: 

{ }ARFBRFA
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where yrawAi and yrawBi are the un-normalized base-band 

quadrature RF samples.  They will have been computed by 

mixing the raw RF samples to base-band using a unit-

amplitude version of the quadrature base-band-mixing 

sinusoid. 

In order to better appreciate the power of this spoofing 

detection test, consider the following example:  Suppose that 

the P(Y) codes have carrier-to-noise ratios of 45 dB-Hz before 

they pass through each receiver's 1.9-MHz-wide RF front-end 

filter.  Then their filtered carrier-to-noise ratios are (C/N0)A = 

(C/N0)B = 10
3.809

 Hz (i.e. 38.09 dB-Hz).  Suppose that the RF 

sample interval is ∆t = 175x10
-9

 sec and that the correlation 

statistics are computed by summing over intervals of length 

Tcorr = 1.2 sec, i.e. by summing over M = 6,857,143 samples.  

Suppose, also, that the desired probability of a false spoofing 

alarm is 0.13 %, i.e., α = 0.0013.  Then the computed mean 

and standard deviation of the detection statistic are, 

respectively, γ  = 5.9029 and σγ = 1.0011.  The detection 

threshold from Eq. (8) is γth = 2.8881, and the probability of 

detection from Eq. (9) is Pdetect = 0.998062 (99.8062 %).  

Thus, a 1.2-second correlation interval can produce acceptable 

levels of false-alarm probability and spoofing detection 

probability even when using the greatly attenuated and 

distorted version of the P(Y) code that comes out of a 1.9 

MHz wide RF front-end filter. 

C.  Implementation-specific issues 

The code for this work was based on a previously existing 

software GPS receiver
5
 written in the C and C++ 

programming languages.  This receiver implements several 

techniques with regards to carrier mixing and data storage that 

required the development of additional algorithms. 

Phase errors due to non-continuous carrier base-band 

mixing phases across accumulation boundaries.  Carrier 

replicas in this receiver are pre-computed on a grid of Doppler 

frequencies and with an initial phase of zero and stored in 

memory as a way to reduce computational load.  Carrier 

mixing is done over a 1 millisecond period that is defined to 

be the sub-accumulation period.  This leads to an average 

phase error over the sub-accumulation period that is defined as 

∆φ.  After code and carrier wipe-off, the resultant (I,Q) vector 

is rotated by  ∆φ prior to processing by the PLL to obtain the 

true phase.  Consider now a single sample of the data from one 

receiver after carrier-wipe off as a complex sample (A+jB).  

As previously stated, the goal is to mix the quadrature 

component of the base-band mixed samples from the reference 

and UE receivers, but each sample after carrier wipe-off has 

the aforementioned phase error ∆φ.  One way to resolve this 
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would be to rotate each sample by ∆φ, then mix the resultant 

quadrature portions of the data.  Let this post-rotation 

quadrature accumulation be denoted Qrot.  It can be written as 

follows: 

∑
=

∆−+∆−+=
N

i

iiiirot jjBAjjBAQ
0

222111 )]exp(*)Im[(*)]exp(*)Im[( ϕϕ
    (16) 

Where the subscript 1 or 2 denoted which receiver the sample 

is from, the subscript i denotes a time index, and the A and B 

are the data samples after carrier wipe-off with in-phase and 

quadrature carrier replicas, respectively.  Rearranging this 

expression and evaluating the sum leads to 

)sin()cos()cos()sin(

)sin()sin()cos()cos(

21212121

21212121

ϕϕϕϕ

ϕϕϕϕ

∆∆−∆∆−

∆∆+∆∆=

IQQI

IIQQQrot    (17) 

Where Q1Q2 indicates the cross-correlation of the quadrature 

base-band mixed data from receivers 1 and 2, I1I2 is the in-

phase base-band mixed cross-correlation, and the other terms 

are cross-terms.  Thus the cross-correlation rotation can be 

done after mixing and accumulation of the two data streams 

rather than on a sample-by-sample basis, but at the cost of 

having to carry out four times the number of cross-

correlations. 

Bit-wise parallel algorithms.  Bit-wise parallel algorithms as 

described in Ref. 6 were implemented as an optimization.  In 

this bit-wise approach, the data are stored as 32-bit integers.  

The data are quantized to two bits, with the sign bits from one 

set of 32 samples stored in one integer, and the associated 

magnitude bits in another.  The carrier replicas are similarly 

packed into integers with sign and magnitude being two 

separate words.  As stated in section A above, carrier wipe-off 

has not yet actually been done; we have only a copy of the 

data and the parameters used for carrier mixing.  Thus to 

execute a cross-correlation, me must multiply and accumulate 

four things: the carrier replicas from both the reference and 

UE receivers, and the associated data from the reference and 

UE receivers.  To enable a look-up table implementation all of 

the above inputs were split into 4-bit chunks.  The sign bits are 

all logically exclusive-or’ed together, leaving only the data 

magnitude and carrier replica bits from each receiver.  The 4 

bits chunks of each of the above elements (dataref, dataue, 

carrierref, carrierue, sign) are combined into a 20 bit word and 

then used as an index into a pre-computed look-up table, 

where the value at that index is the result of multiplying and 

accumulating the two base-band mixed data streams.  It was 

determined that the largest possible accumulation value could 

be stored in two bytes, so the resultant table size was 2
20

 *2 

bytes = 2MB. 

IV. RESULTS 

Several different tests were conducted using this algorithm.  

The first such test was a using data from two receivers located 

in Ithaca, New York (42.44 E, 76.48 W), spaced about 1 

kilometer apart.  Neither of the receivers were being spoofed.  

The cross-correlation statistic versus time for this test is shown 

in Fig. 2.  In the interest of clarity only three channels are 

shown, though there were a total 9 satellites in view of both 

receivers. 

  
Fig. 2.  Cross-correlation statistic vs. time for two nearby 

receivers, neither of which is being spoofed. 

Rather than the expected large positive cross-correlation 

power, there is a large amplitude oscillation present on two of 

the signals, though their mean value is large and positive.  

Other signals from this data set also showed oscillations.   

The second test used data from one receiver located in Ithaca, 

New York, and a second receiver located in Austin, Texas 

(30.33 N, 97.68 W), with neither of the receivers being 

spoofed.  Cross-correlation statistics versus time for this test 

are shown in Fig. 3. 

Similarly to the result from test 1, there is a large amplitude 

oscillation present on one of the signals, though two others 

show a relatively large and positive cross-correlation value 

over the length of the test. 

The third test again used data from one receiver in Ithaca, New 

York, and one receiver in Austin, Texas.  For this test neither 

receiver was spoofed for the first 65 seconds, after which time 

spoofing was turned on at the Austin receiver.  For the next 65 

seconds, although the signal was being spoofed, the spoofed 

signal was held as closely as possible to the true signal (that is, 

the spoofed signals had the same pseudorange and time as the 

true signal).  After this point, the pseudoranges were modified 

to make it appear that the receiver was moving in the ECEF y 

direction with a velocity of 2 m/s for the remainder of the test.  

Cross-correlation statistic time histories for this test are shown 

in Fig. 4.  Some of these time histories differ qualitatively 

from those in Fig. 3, but these results do not show a clear drop 

of all detection statistics nearly to zero after spoofing has 

commenced. 

The result from test 1 was duplicated, to a large extent, using 

an independently developed MATLAB-based software receiver 

(discussed in depth in section V.A).  This fact implies that Fig. 

2's anomalous results are not caused solely by errors in the 

processing. 



 7 

 
Fig. 3.  Cross-correlation statistic versus time for two widely 

separated receivers, neither of which is being spoofed. 

 
Fig. 4.  Cross-correlation statistic vs. time for two widely 

separated receivers, one of which is spoofed starting at 65 

seconds. 

V.  DISCUSSION 

A. MATLAB Analysis 

The anomalous initial results from the spoofing detection 

process represent a significant concern.  As is reasonable for a 

complicated receiver software development task, a candidate 

explanation of these results is that the receiver software might 

be incorrect.  Therefore, an independent MATLAB software 

receiver has been used to process the data from two receivers 

in order to check whether it yields similar or different cross 

correlation results.  It is an off-line software receiver that 

works in a post-processing mode. 

The MATLAB software receiver has confirmed the results of 

the C-code software receiver.  Consider Fig. 5, which plots the 

cross-correlation for PRN08 for the case with the two 

receivers located in Ithaca.  This cross-correlation time history 

is plotted as the green dashed curve in Fig. 5.  Its values have 

been computed using correlation intervals of Tcorr = 1.2 sec.  

These are normalized detection statistic values, γ as defined in 

Eq. (15), which is why their scale differs from the 

corresponding cross-correlation plot for the C-code receiver 

(red solid curve of Fig. 2), the latter being given in raw, un-

normalized units.  This cross-correlation curve exhibits similar 

oscillations to those of the C-code receiver.  Unfortunately, 

there are unexplained differences.  The MATLAB plots pass to 

negative values, while the C-code values do not.  Given the 

reliability of the MATLAB software receiver, this result implies 

that the C-code software receiver calculations need 

modification. 
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Fig. 5.  The γ detection statistic with and without prior 

excision of the C/A code signals for two receivers near each 

other (PRN08, Tcorr = 1.2 sec). 

Additional calculations have been used to determine the 

expected mean value of this curve, γ  from Eq. (6a), and the 

spoofing detection threshold for a probability of missed 

detection α = 10
-4

, γth from Eq. (8).  They are also plotted on 

Fig. 5 as, respectively, the red dash-dotted horizontal line at γ  

= 9.42 and the black dash-dotted horizontal line at γth = 5.70.  

These values correspond to received P(Y) code carrier-to-

noise ratios of (C/N0)A = 10
4.31

 Hz (43.1 dB-Hz) and (C/N0)B = 

10
3.71

 Hz (37.1 dB-Hz) as inferred from the corresponding 

tracked C/A code carrier-to-noise ratios by using Eqs. (14a) 

and (14b).  The small false-alarm probability still allows a 

large probability of detection, Pdetect = 0.99999999397 

(99.999999397 %), because of the two signals' relatively high 

carrier-to-noise ratios. 

As is evident from the green dashed curve of Fig. 5, false 

spoofing alarms occur in the ranges t = 27.5 to 45.4 sec, t = 

66.0 to 83.1 sec, and t above 104.0 sec.  These are the times 

when the green dashed curve lies below the black dash-dotted 

horizontal line that indicates γth. Something is obviously 

wrong with this spoofing detection test. 
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One conjecture about the problem with this spoofing detection 

statistic is that it is affected by the other C/A codes that are 

present.  A second C/A code could produce these results if its 

differential C/A code start/stop relative to that of PRN08 were 

the same for both receivers and if its differential carrier 

Doppler shift relative to PRN08 were also the same in the two 

receivers, as will be discussed in further detail below.  In such 

a situation, the second signal's C/A code would look almost 

identical between the two receivers after base-band mixing in 

quadrature with the C/A code for PRN08.  The second C/A 

code would likely not be at base band itself after this 

operation, but its time variations would be nearly identical in 

the two receivers.  When cross-correlated between the two 

receivers, these nearly identical time variations would produce 

significant power. 

This conjecture has been tested by re-computing the inter-

receiver quadrature cross-correlation for PRN08 using a 

modified algorithm.  The modified algorithm first removes all 

C/A code signals from the raw RF samples of both receivers 

before mixing to base-band in quadrature with the C/A code of 

PRN08.  Removal of the C/A code signals is a straight-

forward, though computationally intensive, task after their 

carrier and code phases have been successfully acquired and 

tracked using a PLL and a DLL, as was done in Ref. 7.  Given 

these modified base-band-mixed quadrature signals, the 

remaining calculations of the modified cross-correlation 

algorithm are identical to those that culminate in Eq. (15).  

The result for PRN08 is the blue solid curve in Fig. 5.  

The modified cross-correlation curve in Fig. 5 has about the 

same mean value as the green dashed curve, but its oscillations 

are greatly reduced.  This reduction provides a clear indication 

that the other C/A code signals played a significant role in 

producing the large oscillations of the green dashed spoofing 

detection statistic.  Their removal produces a much more 

reasonable curve, one whose mean value is relatively close to 

the expected mean shown in the red dash-dotted flat line and 

whose variations never produce a spoofing false alarm:  Note 

how the blue solid curve never drops below the black dash-

dotted spoofing alarm threshold.  The spoofing-detection 

cross-correlations of additional signals have been re-calculated 

using C/A-code excision, and similar improvements have been 

observed. 

The results shown in Fig. 5's blue solid curve provide strong 

evidence that the filtered P(Y) code is present in the signal in 

sufficient strength to be used for spoofing detection.  

Otherwise, the mean value of the solid blue curve would not 

have been near its expected mean value, the level of the red 

dash-dotted line.  The residual oscillations of the blue solid 

curve, however, are still considered to be anomalous, i.e., to 

differ from what is expected based on a simple analysis of 

spoofing detection.  It is believed that these oscillations are 

caused by the filtered P(Y) codes of the other signals.  These 

filtered P(Y) codes have a correlation length of 150 m due to 

their 1.9 MHz filtered bandwidths.  Therefore, it is believable 

that the other signals' filtered P(Y) codes could have had 

similar offsets relative to the filtered P(Y) code of PRN08 in 

the two receivers, similar at the 150 m level.  Variations of 

their offsets relative to the PRN08 filtered P(Y) code could 

cause the observed oscillations in the blue solid curve.   

An additional analysis has been performed in order to assess 

whether the encouraging results of the blue solid curve of Fig. 

5 are caused by the presence of filtered P(Y) code.  This test 

computes the correlations of the base-band-mixed PRN08 

quadrature signals for various time offsets of the two receivers' 

signals relative to each other, as defined by first lining up their 

corresponding PRN08 C/A codes.  The resulting cross-

correlation vs. delay plot is the blue solid curve in Fig. 6.  It 

applies to the 2
nd

 1.2-sec cross-correlation interval associated 

with Fig. 5.  This curve should have a shape that is consistent 

with the autocorrelation function of the filtered P(Y) code.  

For comparison purposes, that shape is also plotted in Fig. 6 as 

the red dash-dotted curve.  This latter curve assumes a "brick-

wall" filter in the RF front-end with a bandwidth of 1.98 MHz.  

This bandwidth has been "tweaked" up from the advertised 1.9 

MHz 1dB bandwidth of the RF front-end in order to better 

match the blue solid curve.  As can be seen, these two curves 

match relatively well.  This close match further supports the 

conjecture that the good cross-correlation results of the blue 

solid curve in Fig. 5 are caused by filtered P(Y) code on the 

PRN08 quadrature signal. 
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Fig. 6.  Filtered P(Y)-code cross-correlation as a function of 

delay between Signals A and B, experimental result for PRN08 

with nearby receivers (blue solid) and theoretical result based 

on 1.98 MHz RF front-end filter (red dash-dotted). 

Note that some of the corresponding correlation curves at 

different time offsets show multiple correlation peaks of 

similar magnitude.  These alternate correlation curves are the 

equivalents of the blue solid curve of Fig. 6, but taken from 

correlation time intervals other than the 2
nd

 interval associated 

with Fig. 5.  The presence of multiple peaks provides an 

indication that P(Y) codes of other satellites may be playing a 

role in the generation of the blue solid curve in Fig. 5.  They 

may constitute the cause of that curve's oscillations.  Of 

course, with distant receivers, such effects would likely 

diminish to below the noise level. 
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Three additional MATLAB analyses are planned.  The first 

analysis will apply the C/A-code excision technique to data 

from distant receivers, one in Ithaca, NY and one in Austin, 

TX.  Spoofed and unspoofed cases will be considered.  The 

analysis goal will be to determine whether the presence of 

other C/A codes caused any of the problems that have been 

noted for the C-code spoofing detection algorithm when 

applied to distant receivers. 

The second analysis will attempt to detect the filtered P(Y) 

code in each signal by using semi-codeless techniques, as 

discussed in Refs. 8, 9, and 10.  These techniques will need to 

be modified in order to account for the effects of the narrow-

band filter on the P(Y) code.  The principle effect is to 

broaden the square pulse function of a chip of the P(Y) code 

into a sinc-like function.  The goal of this analysis will be to 

verify the presence of the filtered P(Y) code in the RF front-

end's output and to check its characteristics. 

The third analysis will study the effects of applying semi-

codeless P(Y) techniques to the problem of spoofing detection.  

This will be a generalization of the semi-codeless techniques 

of Refs. 8, 9, and 10 to the spoofing detection cross-

correlation calculation.  It is hoped that such a method will 

eliminate the oscillations that appear in the blue solid curve of 

Fig. 5.  This is expected to happen because the semi-codeless 

technique makes use of the known P code and the known 

timing, relative to the P code, of the W anti-spoofing bits that 

transform P code into P(Y) code 
8,9,10

.  The low cross-

correlations of the P codes of different PRN numbers, if 

suitably exploited by a semi-codeless technique, are expected 

to eliminate extraneous signal correlations between the two 

receivers.  This holds true even when the reference and UE 

receivers are close to each other.  There is an additional 

expected benefit of using a semi-codeless spoofing detection 

technique.  A good technique should significantly reduce the 

required cross-correlation interval Tcorr for a given false alarm 

probability α and probability of detection Pdetect. 

B.  Reference Station Spoofing 

One might suspect that spoofing of the reference receiver 

would not be a problem for the proposed architecture.  The 

reference receiver knows its location, and therefore, it might 

be able to use this knowledge in order to detect a spoofing 

attack.  In fact, a spoofer could attack the reference receiver 

using the method of Ref. 2 in a way that does not try to spoof 

its position or its receiver clock time.  Rather, this "auxiliary" 

spoofer would have another, more subtle goal in its spoofing 

attack.  It would seek to spoof the reference receiver about 

what is the proper P(Y) code signal that is in phase quadrature 

with each received C/A code signal.  Given such spoofing, the 

reference receiver would not detect any error in its position or 

even in its receiver clock.  It would, however, transmit an 

erroneous base-band-mixed quadrature signal to the UE 

receivers that it was supposed to aid in detecting spoofing.  If 

another spoofer, the main spoofer, then attacked the UE 

receivers using the same false P(Y) code in phase quadrature 

with each spoofed C/A code, then such an attack would defeat 

the present method and, indeed, the method of Ref. 4. 

C.  C/A Code Interference 

In this section we examine one of the possible mechanisms by 

which the C/A code could contribute to the quadrature channel 

cross-correlation result, a mechanism that has already been 

suggested in the MATLAB analysis section. 

To illustrate this mechanism, imagine that both the reference 

receiver and the UE receiver are only observing two GPS 

satellites, which we shall denote SVA and SVB.  As discussed in 

section III, cross-correlation of the P(Y) code from SVA 

involves mixing the data from the reference and UE receivers 

to baseband using the estimated phase, Doppler shift, and 

intermediate frequency of the signal.  This will produce 

signals of the form 

BREFBREFAAREF CAtYPS ])cos[()( αωω +−+= −−  (18a) 

BUEBUEAAUE CAtYPS ])cos[()( βωω +−+= −−   (18b) 

where SREF and SUE are the base-band mixed signals from the 

reference and UE receivers, respectively.  The ω terms here 

are the Doppler shift of the signal from either SVA or SVB as 

observed at either the reference of UE receivers, α and β are 

arbitrary phases, P(Y)A is the P(Y) code from SVA, and CAB is 

the coarse/acquisition code from SVB We are neglecting noise, 

data bit modulation, and signal amplitude terms here. 

Once these two signals are mixed to base-band, we multiply 

them together and accumulate, noting that the result contains 

the following term: 

∑
=

−−−− ++−−−
N

i

BBiUEBUEAREFBREFA iCAiCAt
1

)(*)(])}()cos[{( βαωωωω  (19) 

Where the sum is over N samples, i is a sample index, and 

other terms remain as before.  Several cross-terms have been 

omitted here.  We see that if the observed difference in 

Doppler shift between SVA and SVB is close to the same for 

both the reference and UE receiver, this term will possibly 

have a large magnitude due to the auto-correlation of the C/A 

code from SVB, and will be amplitude modulated as 

determined by this Doppler shift double difference.  Of course 

it is also required that the C/A code from SVB have the same 

relationship in terms of code phase to the C/A code from SVA 

on both receivers (i.e., the pseudorange double difference must 

also be small modulo one C/A code period), otherwise the 

auto-correlation properties of the C/A codes means there will 

not be a large correlation value. 

Referring again to Fig. 2, it should be noted that the observed 

difference in Doppler shift between PRN 7 and PRN 8 was 

nearly identical at both the reference and UE receivers, 

presumably leading to the observed large-amplitude 

oscillation.  PRN 11 had no such small Doppler double 

difference, thus the lack of a large oscillation.  This result is 

more expected when the reference receiver and the UE 

receiver are very close together, but is simply a function of the 
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geometry of the system and can happen with widely spaced 

receivers.  

VI. CONCLUSIONS 

In summary, an attempt has been made to apply a recently 

proposed spoofing detection method within a software 

receiver.  This method seeks to verify the absence of spoofing 

by looking for strong cross correlations between two receivers, 

one a reference receiver and the other the potential spoofing 

victim, of the portion of the P(Y) code that passes through 

each receiver's narrow-band RF front-end.  This heavily 

filtered P(Y) code should be present in phase quadrature with 

the C/A codes of both receivers if neither is being spoofed.  

Lack of a strong cross-correlation should indicate a spoofing 

attack. 

The real-time version of this system performs poorly at 

present.  In at least one case, that of nearby receivers, an 

offline software receiver analysis has determined the cause of 

much of this poor performance:  It results from additional 

cross-correlation power that arises from other C/A codes.  This 

analysis, however, also confirms that the narrow-band-filtered 

remnants of the P(Y) are present in sufficient strength to 

develop a reasonable spoofing detection statistic.  One strategy 

for synthesizing a successful test statistic is to excise the C/A 

codes from the signals before cross-correlation between 

receivers.  Another possible technique might resort to semi-

codeless cross correlation, though the practicality and efficacy 

of such an approach has yet to be demonstrated.   

This paper's negative result for the original simple-minded 

version of this spoofing detector is at odds with another 

published work on this subject.  It is possible that this 

discrepancy has been caused by the present algorithm's use of 

a narrow-band RF front-end.  The other work used a wide-

band front-end, one that captures most of the P(Y) power.  It is 

possible, however, that alternate, stronger explanations for this 

discrepancy may be found. 

The only certainty at present is that significant further study is 

required of this concept and of the challenges of implementing 

it successfully.  Its ability to tolerate a narrow-band filter in 

the RF front-end may make this type of spoofing detection 

system practical for low-cost, low-power receivers, but this 

approach may be difficult to implement because of the 

significant attenuation and distortion of the encrypted P(Y) 

code signal that constitutes its basis for spoofing detection. 
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