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ABSTRACT 

A method is developed that processes Global Navigation 
Satellite System (GNSS) beat carrier phase measurements 
from a single moving antenna in order to determine 
whether the GNSS signals are being spoofed.  This 
technique allows a specially equipped GNSS receiver to 
detect sophisticated spoofing that cannot be detected 
using receiver autonomous integrity monitoring 
techniques.  It works for both encrypted military signals 
and for unencrypted civilian signals.  It does not require 
changes to the signal structure of unencrypted civilian 
GNSS signals.  The method uses a short segment of beat 
carrier-phase time histories that are collected while the 
receiver's single antenna is undergoing a known, high-
frequency motion profile, typically one pre-programmed 
into an antenna articulation system.  The antenna also can 
be moving in an unknown way at lower frequencies, as 
might be the case if it were mounted on a ground vehicle, 

a ship, an airplane, or a spacecraft.  The spoofing 
detection algorithm correlates high-pass-filtered versions 
of the known motion component with high-pass-filtered 
versions of the carrier phase variations.  True signals 
produce a specific correlation pattern, and spoofed signals 
produce a recognizably different correlation pattern if the 
spoofer transmits its false signals from a single antenna.  
The most pronounced difference is that non-spoofed 
signals display variations between the beat carrier phase 
responses of multiple signals, but all signals' responses 
are identical in the spoofed case.  These differing 
correlation characteristics are used to develop a 
hypothesis test in order to detect a spoofing attack or the 
lack thereof.  For moving-base receivers, there is no need 
for prior knowledge of the vehicle's attitude.  Instead, the 
detection calculations also provide a rough attitude 
measurement.  Several versions of this spoofing detection 
system have been designed and tested.  Some have been 
tested only with truth-model data, but one has been tested 
with actual live-signal data from the Global Positioning 
System (GPS) C/A code on the L1 frequency.  The live-
data tests correctly identified spoofing attacks in the 4 
cases out of 8 trials that had actual attacks.  These 
detections used worst-case false-alarm probabilities of 10-

6, and their worst-case probabilities of missed detection 
were no greater than 1.6x10-6.  The ranges of antenna 
motion used to detect spoofing in these trials were 
between 4 and 6 cm, i.e., on the order of a quarter-cycle 
of the GPS L1 carrier wavelength. 

INTRODUCTION 

The U.S. government has been aware of the vulnerability 
of unencrypted civilian GNSS signals to spoofing at least 
since the Department of Transportation released its Volpe 
report in 2001 1.  A spoofer intentionally broadcasts 
signals that look like true signals to User Equipment 
receivers (UE).  These false signals can fool a receiver 
into an incorrect determination of its position, receiver 
clock time, or both 2,3,4. 

Spoofing of civilian GNSS signals is straightforward 
because their full characteristics are publicly available, 
e.g., Ref. 5 gives full information about the GPS civilian 
signals.  It is relatively easy to synthesize false signals 
with the same characteristics 3,4.  Encrypted military 
signals, such as the GPS P(Y) and M codes, are much 
harder to spoof.  One must break their encryptions or use 
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a meaconing-type attack, an attack which involves 
reception and rebroadcast of actual encrypted signals. 

Spoofing of GPS receivers has been in the news recently.  
In December 2011, Iran captured a highly classified 
stealth drone that belonged to the U.S. government.  An 
Iranian engineer claimed that they spoofed the drone's 
GPS in a way which fooled it into thinking that it was 
landing at its home base in Afghanistan.  In reality, it was 
descending into the hands of waiting Iranian military 
personnel 6.  It remains unclear how much of the Iranian 
claims are true, but their claims are not outlandish and 
have to be taken seriously. 

In June 2012, a group led by Todd Humphreys of UT 
Austin spoofed a small helicopter Uninhabited Air 
Vehicle (UAV) using live, on-air spoofing signals as part 
of a specially authorized test at White Sands Missile 
Range, NM.  The UT Austin team caused the UAV to 
execute unintended maneuvers by spoofing its GPS-
derived position and velocity.  One of the untended 
maneuvers involved a near landing when the UAV had 
been commanded to hover about 20 m above the ground 7. 

Existing anti-spoofing technology known as Receiver 
Autonomous Integrity Monitoring (RAIM) 8 will not 
suffice to detect sophisticated spoofing attacks like the 
one described in Refs. 3 and 4.  Therefore, a number of 
recent and on-going efforts have sought to develop 
advanced spoofing detection methods that can alert a user 
to a sophisticated attack.  These methods include 
advanced RAIM algorithms that operate at the 
correlator/discriminator/tracking-loop level 9,10,11, 
algorithms that cross-correlate the unknown encrypted 
parts of a signal between a potential victim receiver and a 
secure receiver 12,13,14,15, Navigation Message 
Authentication (NMA) that relies on proposed insertions 
of encrypted authentication elements within the low-
bandwidth navigation message 16,17, multiple-antenna 
techniques 18,19,20,21,22, and moving-antenna techniques 
21,22,23,24. 

Reference 25 also describes a multiple-antenna technique, 
but it does not perform spoofing detection.  Rather, it is a 
technique to mitigate spoofing by attenuating it without 
the need to formally detect it.  Such techniques are not 
directly comparable to the detection methods under 
development here. 

Each of the newer techniques has strengths and 
weaknesses.  Advanced RAIM methods require only 
modest changes to receiver software and hardware, but 
they may only be able to detect spoofing at the onset of an 
attack.  If an advanced RAIM algorithm misses the attack 
during this short window, then it may go undetected. The 
cross-correlation techniques can detect spoofing rapidly at 
any time during an attack, perhaps in as little as 0.2 
seconds, but they rely on a high bandwidth 
communications link between the defended receiver and a 
secure receiver.  NMA introduces encryption-level 

security into the civilian GNSS community, but it requires 
changes to GNSS message structures that are difficult to 
bring about.  It may require additional signal processing 
in order ensure against estimation-and-replay by the 
spoofer of the NMA message components 26.  NMA 
techniques may be slow, requiring 10 seconds or more in 
order to detect an attack.  A UAV may already be in the 
hands of an enemy by the time such a method discovered 
the attack.  Multiple-antenna methods can be made 
reliable and fast if implemented well, but they require a 
significant amount of additional hardware and signal 
processing.  The multi-receiver cross-correlation 
technique and the NMA technique share an additional 
drawback: they offer no protection against a meaconing-
type receive-and-replay attack.  Even an encrypted 
military signal is vulnerable to a meaconing attack. 

The moving antenna technique can be implemented using 
simple hardware and algorithms, but the method of Refs. 
23 and 24 requires long observation intervals, and it does 
not develop a clearly defined hypothesis test.  
Furthermore, its reliance on signal amplitude variations as 
an indication of spoofing may prove unreliable.  A 
spoofer could easily create time-dependent amplitude 
variations between its false signals, and this particular 
moving-antenna detection method might interpret these 
variations as indicating a non-spoofed situation. 

The present approach is a moving-antenna approach that 
is somewhat similar to that of Refs. 21 and 22, but that 
differs markedly from that of Refs. 23 and 24.  Rather 
than relying on signal amplitude as in Refs. 23 and 24, it 
relies on signal carrier phase, as suggested in and for one 
of the modes of operation in Ref. 18 and in Refs. 21 and 
22.  Contrary to the method of Refs. 21 and 22, however, 
the present method does not need explicit or implicit 
knowledge of exact position or attitude.  Those references 
check for inconsistencies between individual observables, 
such as carrier phase, on a satellite-by-satellite basis, and 
they propose to use any such inconsistencies to develop 
spoofing tests.  They are not clear about how to obtain the 
needed accurate position knowledge of the spoofed 
receiver during a spoofing attack.  Also, they offer no 
specifics about hypothesis test statistics, threshold values, 
and probabilities of false alarm and missed detection. 

The methods developed in this paper have no such 
drawbacks.  They need not know anything about vehicle 
attitude a priori, and their spoofing detection tests can 
function properly even if the receiver's position solution 
has been badly spoofed.  They use comparisons between 
multiple carrier-phase signals to develop explicit spoofing 
detection tests that have clearly defined detection 
thresholds, probabilities of false alarm, and probabilities 
of missed detection.  The embodiments discussed here do 
not require an Inertial Measurement Unit (IMU) to sense 
antenna motion, contrary to the moving-antenna system 
proposed in Refs. 21 and 22.  Instead, motion is 
implemented and sensed using a special-purpose 
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mechanical antenna deflection system.  This motion need 
not be known relative to inertial space.  Rather, it can be 
measured relative to a platform of unknown attitude, 
position, velocity, and acceleration.  The only requirement 
is that the articulation system be able to measure virtually 
all of the high-frequency content of the motion.  On the 
other hand, the new techniques proposed here could be 
aided by inertial sensing if it were available.  A high-
frequency dithering motion of the platform that carried 
the GNSS antenna, if coupled with inertial sensing, could 
constitute the principal motion/sensing system that is 
necessary to this method’s GNSS spoofing detection 
approach. 

The idea for this approach grew out of previous work by 
one of the authors on a single-antenna GNSS attitude 
determination system 27,28.  That system uses a GPS 
antenna mounted off-axis on a turntable in order to sense 
3-axis attitude based on the signals from 2 or more GPS 
satellites.  The rotation of the turntable gives rise to 
sinusoidal variations of the received beat carrier phase on 
each signal, with the frequency of the variations equal to 
the turntable rotation frequency.  The amplitude and 
phase of each signal's turntable-correlated phase 
variations give the direction vector to the given GPS 
spacecraft measured in turntable coordinates. 

A similar principle is used here to detect spoofing.  It 
operates by correlating beat carrier phase time variations 
with known high-frequency components of the receiver 
antenna's position time history.  In the non-spoofed case, 
this method has the side benefit of yielding attitude 
information, as in Refs. 27 and 28.  The antenna motion, 
however, need not be circular in order to detect spoofing, 
nor does its amplitude need to be large enough to provide 
good attitude accuracy. 

This paper's new GNSS spoofing detection method has 
some similarities to multi-antenna methods such as the 
one described in Ref. 20.  They both rely on carrier phase 
measurements, and they both rely in geometrical 
differences between the line-of-sight (LOS) vectors to 
actual GNSS satellites for non-spoofed signals and the 
LOS vector to a spoofer.  There are two important 
differences between the present method and carrier-phase-
based multi-antenna methods.  First, the use of a single 
antenna removes the need to resolve carrier-phase biases, 
and possibly integer ambiguities, between different 
antennas.  This difference allows the present method to 
use simpler signal processing and to detect spoofing using 
shorter data intervals.  Second, the present method does 
not always need to determine the full 3-axis attitude of the 
UE.  Depending on the type of antenna motion that it 
uses, it may only determine 2-axes worth of attitude 
information.  In some cases, however, it may estimate the 
full 3-axis attitude as a by-product of its spoofing 
detection calculations. 

Note that this paper's new method, like the multi-antenna 
method of Ref. 20, is effective against spoofing of both 
open-source civilian and encrypted military GNSS 
signals.  Thus, it could detect a meaconing attack against 
a U.S. Military SAASM GPS receiver. 

This paper makes 3 principal contributions.  First, it 
describes a new spoofing detection system based on 
correlation of beat carrier phase time variations with 
known high-frequency antenna motions.  Second, it 
develops precise spoofing detection hypothesis tests for 
this system, complete with analyses of false-alarm and 
missed-detection probabilities.  A number of distinct 
spoofing detection tests are developed for various 
scenarios in which decreasing amounts of a priori 
information are available to the detector.  The third 
contribution is an evaluation of the new system.  This 
evaluation involves tests using truth-model data and tests 
using actual live data.  Live data for the non-spoofed null 
hypothesis is easy to collect by simply observing GPS L1 
signals in typical outdoors environments.  Live data for 
spoofed cases presents a challenge.  One set of tests was 
conducted in an anechoic chamber using a re-radiated 
GPS signal from an outside antenna.  The single re-
radiating antenna inside the chamber provided exactly the 
same signal-in-space geometrical characteristics as are 
provided by a sophisticated spoofer along the lines of 
Refs. 3 and 4.  The other set of live spoofed-case tests was 
conducted in conjunction with the recent spoofing attack 
test at White Sands Missile Range in New Mexico that is 
described in Ref. 7.  This test was conducted under the 
auspices the U.S. Air Force 746 Test Squadron as a 
service to the Department of Homeland Security and with 
the approval of the FCC. 

The body of this paper is divided into 9 main sections 
plus conclusions.  The second section describes the multi-
antenna spoofing detection system hardware architecture 
and its data flows.  The third section develops the carrier-
phase signal models that are used to derive spoofing 
detection hypothesis tests.  The fourth through sixth 
sections develop three different versions of the spoofing 
detection hypothesis tests that apply for the case of uni-
axial antenna articulation motion.  The fourth section 
deals with the case of a known attitude of the articulations 
relative to the GNSS reference frame.  The fifth section 
deals with the case of unknown attitude.  The sixth 
section deals with unknown attitude and an unknown 
amplitude scaling factor.  These sections also develop the 
calculations needed to derive detection thresholds as 
functions of false-alarm probabilities and to determine the 
resultant probabilities of missed detection.  The seventh 
section address the issue of possible uncertainty in the 
time phasing of the articulations.  The eighth section 
discusses enhancements that would be needed for general 
3D antenna motion. The ninth section presents tests of the 
new method, both on truth-model data and on live-signal 
data.  The tenth section discusses some characteristics of 
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Fig. 1. Antenna articulation system geometry relative to base mount and 
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Fig. 2. Antenna articulation system geometry relative to base mount 
and GNSS spoofer for spoofing detection system, spoofed case. 

the new spoofing detection method along with possible 
enhancements, and it makes further comparisons to IMU-
based detection methods.  The final section provides a 
summary of the paper and presents its conclusions. 

II. SYSTEM ARCHITECTURE 

A. Antenna Hardware and Geometry 

The hardware and geometry for this spoofing detection 
method are shown in Figs. 1 and 2 for one possible 
version of this system.  Figure 1 shows the system in a 
non-spoofed scenario with 3 of the GNSS satellites whose 
signals are being tracked, satellites j-1, j, and j+1.  Figure 
2 shows the same system in which a spoofer is sending 
false versions of the signals from these 
same satellites.  The spoofer has a single 
transmission antenna.  Satellite j-1, j, and 
j+1 may be visible to the receiver antenna, 
but the spoofer has "hijacked" the 
receiver's tracking loops for these signals 
so that only the false spoofed versions of 
these signals are known to the receiver. 

The receiver antenna of the potential 
spoofing victim is mounted in a way that 
allows its phase center to move with 
respect to its mounting base.  In Figs. 1 
and 2, this motion system is depicted as 
an open kinematic chain consisting of 
three links with ball joints that allow 6-
degree-of-freedom motion.  This is just 
one example of how a system can be 
configured in order to allow antenna 
motion relative to its mounting base.  It is 
normally not necessary to allow for full 6-
degree-of-freedom motion.  The system 
can work well with just one translational 
degree of motion, such as a piston-like up-and-
down motion that could be provided by a 
solenoid which operated along the za antenna 
articulation axis. 

Yet another possible configuration is to mount 
the antenna on a cantilevered beam that points 
along the za axis and that allows for single-
degree-of-freedom vibratory motion along the xa 
or ya axis, as shown in a photograph of the first 
prototype system, Fig. 3.  A string connects to 
the left-hand side of the small metal ground 
plane below the patch antenna.  It is used to 
excite the articulation motions.  The thin beam 
extending below the antenna is cantilevered off 
of the barrel in the lower right of the figure.  The 
antenna articulation motion is a 1-dimensional 
damped oscillation from left to right across Fig. 
3's field of view, as indicated by the double-
ended arrow.  Although not present in the first 
prototype system, it is desirable to include a 

sensing system that measures the antenna motion.  It 
would measure articulations relative to the mounting base. 

Let the articulation time history vector relative to the 
(xa,ya,za) UE-fixed coordinate system be defined as 

ba(t)  =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)(
)(
)(

tz
ty
tx

a

a

a
 (1) 

If the articulation system is designed to give single-
degree-of-freedom motion along the known fixed unit 
direction vector ab̂ , then the full articulation vector can 
be written as  
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Fig. 3. Antenna articulation system for first prototype spoofing detector tests: a 
cantilevered beam that allows single-degree-of-freedom antenna phase center 
vibration along a horizontal axis. 

ba(t)  =  aa tρ b̂)(  (2) 

where ρa(t) is the antenna phase center deflection time 
history measured along the ab̂  axis. 

Note that the base of the antenna articulation system is 
mounted directly to the UE.  If the UE is statically 
mounted on a building, as for a power grid monitor, a cell 
phone tower, or a financial institution, then the (xa,ya,za) 
UE-fixed coordinate system will also be Earth-fixed.  It 
would be possible to calibrate/survey this coordinate 
system so that ba(t) could be known in Earth-fixed 
coordinates. 

If the UE is mounted to a moving vehicle, such as an 
airplane, a ship, or a wheeled vehicle, then (xa,ya,za) 
coordinate system will translate and rotate in the general 
case.  It is assumed that the rotations and translations of 
this coordinate system occur in a lower-frequency domain 
as compared to the higher-frequency ba(t) antenna 
articulations.  It should be possible to articulate ba(t) at a 
frequency of 8-16 Hz or possibly even a bit higher.  
Therefore, the maximum allowable frequency for 
significant UE rotational and translational motions is 
probably about 1-5 Hz, which is a reasonable upper limit 
for many applications. 

Figure 1 includes the unit direction vectors from the 
GNSS spacecraft to the UE.  They are 1ˆ −jr , jr̂ , and 

1ˆ +jr  for, respectively, the GNSS satellites j-1, j, and j+1.  
These vectors point from the phase centers of the 
respective GNSS spacecraft antennas to the origin of the 
(xa,ya,za) UE-fixed coordinate system.  It is assumed that 
these unit direction vectors are known to the spoofing 
detection algorithm.  In the non-spoofed case, these 

vectors are typically computed as 
part of the standard pseudorange-
based navigation solution 29.  In 
the case of spoofing, the spoofed 
pseudoranges can be used to 
compute a spoofed navigation 
solution and the corresponding 
spoofed values of the unit 
direction vectors 1ˆ −jr , jr̂ , and 

1ˆ +jr .  Even though these vectors 
are typically incorrect during a 
spoofing attack, perhaps wildly 
incorrect, they will be used in the 
spoofing detection calculations 
as though they were correct.  
Any believable spoofed scenario 
will be precluded from using a 
false set of 1ˆ −jr , jr̂ , and 1ˆ +jr  
vectors that can deceive the 
spoofing detector's hypothesis 

test, as will be demonstrated in Subsection X.B.  Note: the 
corresponding dimensional satellite-to-receiver vectors 
are 1−jr , jr , and 1+jr  in both the non-spoofed and 
spoofed cases. 

The spoofed case in Fig. 2 replaces the presumed known 
unit direction vectors 1ˆ −jr , jr̂ , and 1ˆ +jr  with the 
unknown unit direction vector spr̂ .  This vector points 
from the spoofer's transmission antenna to the UE.  In the 
spoofed case, the spoofing detector will, in effect, 
estimate one or more components of spr̂  as measured in 
its (xa,ya,za) antenna articulation coordinate system. 

This paper's methods rely on the assumption that the 
spoofing signals come from a single spoofer transmission 
antenna.  A spoofer that used more than one transmission 
antenna with significantly different spr̂  vectors would 
likely not be detectable using this paper's methods.  
Enhanced versions of its methods would be needed.  
Fortunately, successful implementation of a multi-
transmitter spoofing attack would be very difficult 
technically, and the needed hardware would be much 
more costly than the spoofer hardware used in Refs. 3 and 
4.  Much of the difficulty in mounting a multi-transmitter 
spoofing attack lies in the need to precisely phase-align 
the false RF signals from the different transmitters. 

It is important that the spoofer not know the antenna 
articulation time history ba(t), at least not in a timely 
enough manner to spoof the effects of this motion on the 
received beat carrier-phase signals.  One way to keep this 
knowledge from the spoofer is to cover the entire antenna 
articulation system with a radome.  It must be opaque to 
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Fig. 4. Example signal processing block diagram of a single-satellite receiver 
channel that provides inputs to the spoofing detector. 

visible light but transparent to GNSS RF signals.  The 
radome need not be large because antenna articulation 
motions on the order of 4-6 cm peak-to-peak are typically 
sufficient for reliable spoofing detection, and they can 
occur along a single axis.  Another possible method to 
avoid spoofing of the ba(t) carrier-phase effects is to make 
the ba(t) motions be of too high a frequency for the 
spoofer to sense and respond in a timely manner.  On a 
UAV, concealment of ba(t) can be achieved by masking 
the location of the GNSS antenna.  This approach will be 
especially effective if the antenna is mounted far away 
from the UAV center of mass and if the ba(t) motions are 
caused by high-frequency dithering commands to the 
UAV attitude. 

B. Signal Processing Hardware and Connectivity 

Much of the spoofing detection signal processing is 
carried out using standard GNSS receiver functions, as 
per Ref. 29.  Figure 4 shows the signal processing block 
diagram for an example receiver channel and its 
relationship to the other elements of the spoofing 
detection system.  All except 6 blocks, the three left-most 
blocks ("RF front-end", "Receiver clock", and "Antenna 
articulation sensor"), the two right-most blocks in the 
bottom row ("Mid-point sampler" and "Spoofing 
detection hypothesis test"), and the top-right block 
("Navigation solution") are standard processing blocks in 
a single tracking channel of a digital GNSS receiver.  A 
new function of each tracking channel is to synthesize a 
special beat carrier-phase measurement for input to the 
spoofing detection test.  This is done using the "Mid-point 
sampler" block just to the right of center at the bottom of 

the figure and using the summation junction to the right of 
this block.  A receiver uses L such channels to track L 
signals.  It provides L carrier-phase time histories to the 
"Spoofing detection hypothesis test" block in the bottom 
right-hand corner of the figure. 

The 3 blocks labeled "RF front end", "Receiver clock", 
and "Navigation solution" are also standard blocks.  They 
are common to all receiver channels.  They provide inputs 
to or accept outputs from each channel. 

The 2 blocks "Antenna articulation sensor" and "Spoofing 
detection hypothesis test" are new blocks needed for 
spoofing detection.  They are also common to all 
channels. 

The RF signal from the patch antenna on the left-hand 
side of the figure first passes through an RF front-end.  
This RF front-end mixes the signal so that the nominal 
carrier frequency is down-translated to the intermediate 
frequency (IF) ωIF.  The RF front-end uses an ADC to 
digitally sample this IF signal, and sends the result into 
the receiver's high-sample-rate digital signal processing 
hardware.  The signal first gets mixed to baseband, both 
in-phase and quadrature, as it moves from left to right 
across the center of the figure.  Next, the signal is mixed 
with the prompt replica of the pseudo random number 
(PRN) code that is particular to the satellite being tracked.  
The base-band mixing signal is provided by the Phase-
Lock Loop (PLL) feedback in the lower central portion of 
the figure.  Its estimate of the carrier Doppler shift for the 
kth accumulation interval is ωPLLk.  The prompt PRN code 
replica is provided by the Delay-Lock Loop (DLL) 

feedback in the upper 
central portion of the 
figure.  Its estimate of the 
PRN code's Doppler-
shifted chipping rate is 
fchipk.  These two tracking 
loops rely on the prompt 
in-phase and quadrature 
accumulations, Ipk and Qpk 
for the kth accumulation 
interval, which are 
computed by the 

accumulate-and-dump 
registers just to the right 
of the figure's center.  The 
DLL discriminator also 
uses in-phase and prompt 

early-minus-late 
accumulations Iemlk and 
Qemlk or related 
accumulations, but the 
signal processing paths for 
computing these standard 
accumulations is omitted 
from the figure. 
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The following quantities are the important outputs of the 
standard signal tracking hardware part of Fig. 4:  The PLL 
(negative) beat carrier phase time history φPLL(t), the mid-
point time of the kth accumulation interval τmidk = 0.5(τck + 
τck+1), and the PLL phase error discriminator value for this 
interval ΔφPLLk.  The beat carrier phase is termed 
"negative" because it has the opposite sign of the usual 
beat carrier phase definition in the GPS literature 29.  It 
equals the time integral of the received carrier Doppler 
shift, and it increase as the range from the GNSS satellite 
to the receiver decreases.  Note that the start and stop 
times for the kth accumulation interval are τck and τck+1, as 
dictated by the DLL. 

The summation junction in the lower right-hand corner of 
Fig. 4 synthesizes the following wideband estimate of the 
(negative) beat carrier phase at the accumulation interval's 
mid-point: 

φk  =  φPLL(τmidk)  -  ΔφPLLk (3) 
This modified carrier-phase observable differs in two 
significant respects from the standard beat carrier phase 
measurement produced by most receivers, that is, from 
φPLL(τmidk).  First, the measurement noise samples for 
different accumulation periods are white rather than 
colored.  Second, φk does not attenuate the effects of high-
frequency components of ba(t) that lie outside the PLL 
bandwidth; φPLL(τmidk) includes only attenuated versions of 
these components.  These distinctives of the φk observable 
are important to the proper functioning of the spoofing 
detection tests.  Note, however, that the noise power in φk 
is larger than in φPLL(τmidk).  This drawback is insignificant 
in comparison to the advantage of having a wide-band 
beat carrier phase measurement  corrupted by white noise 
rather than colored noise. 

Note that some receivers may use slightly different signal 
processing strategies that could impact the needed 
summation in Eq. (3).  In particular, the -ΔφPLLk term on 
the right-hand side of Eq. (3) must be replaced by +ΔφPLLk 
in some cases in order to properly form the wideband 
(negative) beat carrier phase. This will be the case if the 
RF front-end uses high-side mixing while the receiver 
uses the absolute value of the resulting intermediate 
frequency as its ωIF.  Alternatively, a negation of the 
quadrature baseband mixing signal used to form Qpk 
would create the need for this same sign change in the φk 
formula. 

The spoofing detection block in the bottom right-hand 
corner of Fig. 4 takes four types of inputs: the antenna 
articulation time history ba(t), the accumulation mid-point 
time τmidk for each tracking channel, the wideband 
(negative) beat carrier phase φk for each tracking channel, 
and the unit direction vector that points from each tracked 
GNSS satellite r̂ .  Suppose that there are L tracked 
GNSS satellites labeled j = 1, ..., L.  Suppose, also, that 

for satellite j the spoofing detection test uses data from Nj 
accumulations.  Then the spoofing detection receiver must 
implement L parallel DLL/PLL/wideband-beat-carrier-
phase signal processing channels as per Fig. 4.  The 
resulting outputs of these L channels that will be used in 
the spoofing detection block will be j

midkτ  and j
kφ  for k = 

1, ..., Nj and j = 1, ..., L.  Also used will be ba( j
midkτ ) for k 

= 1, ..., Nj and j = 1, ..., L along with jr̂  for j = 1, ..., L.  
This set of inputs implies that the spoofing detection 
interval is short enough to approximate each unit direction 
vector jr̂  as being constant.  The calculations 
implemented in the spoofing detection block are the 
subject of Sections III-VIII. 

III. CARRIER PHASE MODEL FOR SPOOFING 
DETECTION 

Two models of the negative beat carrier phase observable 
j

kφ  are needed in order to do spoofing detection.  The 
first model covers the non-spoofed case, and the second 
model covers the spoofed case. 

A. Non-Spoofed Carrier Phase Model and Cycle-Slip 
Repair 

The non-spoofed carrier phase model starts with a 
standard model from the GPS literature 29: 

j
kφ   =  )]([)]([2 TTT j

midkak
j

k
j

midkak
j

k AA ττ
λ
π brbr ++−  

 j
k

jj
tropok

j
ionok

j
kRkc ntt φβττδδω +++−−− )(  (4) 

where λ is the carrier wavelength, ωc is the nominal 
carrier frequency in rad/sec (= 2πc/λ, with c being the 
speed of light), Ak is the 3-by-3 direction cosines matrix 
for the transformation from the reference coordinate 
system in which the j

kr  vector is known to the (xa,ya,za) 
UE-fixed coordinate system in which ba(t) is known, δtRk 
is the receiver clock error, j

ktδ is the transmitter clock 
error for satellite j, j

ionokτ  is the ionospheric phase 
advance term, j

tropokτ  is the neutral atmosphere delay 
term, jβ  is the carrier phase bias, and j

knφ  is the random 
component of the carrier phase noise.  The leading 
negative sign on the right-hand side of Eq. (4) is what 
makes j

kφ  a negative beat carrier phase rather than a 
standard beat carrier phase.  The k subscripts on j

kr , Ak, 
Rktδ , j

ktδ , j
ionokτ , j

tropokτ , and j
knφ  indicate that they all 

vary with the time of applicability j
midkτ .  Note that ωc 

equals 2π 1575.42x106 rad/sec for the GPS L1 signal. 

The carrier phase bias term jβ  contains both the integer-
ambiguity component and the lesser-known fractional 
cycle component 30.  It does not have a k subscript 
because it will be constant in a well-designed receiver.  In 
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the current application, however, an insufficient PLL 
bandwidth coupled with a higher bandwidth antenna 
motion ba(t) can give rise to half- or full-cycle slips that 
violate this constancy assumption. 

Therefore, it may be necessary to do some extra 
processing to a given j

kφ  vs. j
midkτ  beat carrier phase 

time history for k = 1, ..., Nj in order to remove cycle slips 
and thereby ensure the required constancy of the bias.  
This amounts to a phase unwrapping operation.  The 
needed operation starts with a detrending of j

kφ  vs. 
j

midkτ , perhaps by subtracting a linear or quadratic fit of 
this curve from j

kφ .  Suppose that this detrended phase 
time history is j

dtkδφ  vs. j
midkτ . 

The following pseudocode performs the necessary phase 
unwrapping in the case of half-cycle ambiguities: 

1. Initialize the first sample of the unwrapping 
increment time history: j

uwkδφ  = 0 for k = 1. 
2. Initialize k = 2. 
3. Set j

uwkδφ   =  
)](1[ 11

j
dtk

j
uwk

j
dtkround δφδφδφ

π
π −+ −− . 

4. Replace j
kφ  by j

kφ + j
uwkδφ . 

5. Replace k by k+1. 
6. If k ≤  Nj go to Step 2; otherwise, stop. 

The round() function is the standard function that rounds 
its argument to the nearest integer. 

If the tracked channel is a dataless pilot channel, such as 
the CL code on the GPS L2 signal, then any carrier-phase 
slips will be full cycles rather than half cycles.  In this 
case, the 2-quadrant atan(Qpk/Ipk) phase discriminator in 
Fig. 4 should be replaced with the 4-quadrant 
atan2(Qpk,Ipk) discriminator, and the two π terms in Step 3 
of the above pseudocode should be replaced by 2π terms. 

The magnitude of ba(t) is typically much smaller than the 
magnitude j

kr  in Eq. (4), centimeters vs. 20,000 km.  
Therefore, the following approximation of Eq. (4) to first-
order in ba is sufficiently accurate: 

j
kφ   )]()ˆ()([2 TTT j

midkak
j

k
j

k
j

k A τ
λ
π brrr +−≅  

 j
k

jj
tropok

j
ionok

j
kRkc ntt φβττδδω +++−−− )(  (5) 

An additional approximation is reasonable, that of a 
constant jr̂ .  The actual variations of elements of the j

kr̂  
unit direction vector from their mean values over a typical 
spoofing detection interval of 0.5 sec or less are on the 
order of 6x10-5 even for a supersonic aircraft traveling at 
Mach 3 in the opposite direction of GNSS Satellite j's 
ground track.  The components of ba(t) typically are on 
the order of 10 cm or less.  Therefore, j

kr̂  can be 
approximated by the constant jr̂  value that equals the j

kr̂  

vector which applies at the mid-point of a given spoofing 
detection interval.  Thus, the new approximate (negative) 
beat carrier phase equation becomes: 

j
kφ   )]()ˆ()([2 TTT j

midkak
jj

k
j

k A τ
λ
π brrr +−≅  

 j
k

jj
tropok

j
ionok

j
kRkc ntt φβττδδω +++−−− )(  (6) 

Another simplification uses a quadratic polynomial in 
time in order to approximate all of the terms other than 
the )()ˆ( TT j

midkak
j A τbr  spoofing detection term and the 

j
knφ  noise term.  This involves the following 

approximation for the low-frequency behavior of the 
(negative) beat carrier phase: 

)( j
midk

j
lf τφ j

k
j

k rr T)(2
λ
π−=  

  jj
tropok

j
ionok

j
kRkc tt βττδδω ++−−− )(  

 2
122

1
110 )()( j

mid
j

midk
jj

mid
j

midk
jj ττβττββ −+−+≅  (7) 

where j
0β , j

1β , and j
2β  are constant polynomial 

coefficients. 
This approximation leads to the following non-

spoofed carrier phase model 

j
kφ   )()ˆ(2 TT j

midkak
j A τ

λ
π br−≅  

j
k

j
mid

j
midk

jj
mid

j
midk

jj nφττβττββ +−+−++ 2
122

1
110 )()(  

  (8) 

Yet another simplification approximates the coordinate 
transformation matrix Ak as being constant over the 
spoofing detection interval.  This leads to a dropping of 
its k subscript so that the carrier phase model becomes: 

j
kφ   )()ˆ(2 TT j

midka
j A τ

λ
π br−≅  

j
k

j
mid

j
midk

jj
mid

j
midk

jj nφττβττββ +−+−++ 2
122

1
110 )()(  

  (9) 

One last simplification of the carrier-phase model can be 
made in the special case of uni-axial motion in ba(t), as 
defined in Eq. (2).  This takes place along the known unit 
vector direction ab̂  in antenna articulation coordinates 
and along the typically unknown vector direction ar̂  = 

aA b̂T  in reference coordinates.  The beat carrier-phase 
model in this case becomes: 

j
kφ   )(ˆ)ˆ(2 T j

midkaa
j ρ τ

λ
π rr−≅  

j
k

j
mid

j
midk

jj
mid

j
midk

jj nφττβττββ +−+−++ 2
122

1
110 )()(  

  (10) 
with the antenna deflection amplitude time history ρa(t) 
known. 
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Carrier Phase Noise Model.  The carrier phase noise 
term j

knφ  is modeled as being Gaussian white noise.  Its 
statistics are  

0}{ =j
knE φ    and  

⎪⎩

⎪
⎨
⎧

≠
==

lk
lknnE

j
j
l

j
k  if0

 if)(}{
2σ

φφ    with   

j
cavg

j
j

ΔτNC )/(2
1)(

0

2 =σ  (11) 

where (C/N0) j is the carrier-to-noise ratio of the received 
signal for GNSS Satellite j in absolute Hz units and where 

j
cavgΔτ  = mean(τck+1 - τck) is the average accumulation 

interval in the Satellite j tracking system, as depicted in 
Fig. 4, given in seconds.  The units of σ j in Eq. (11) are 
radians.  Note that the phase noise terms for different 
GNSS satellites are assumed to be uncorrelated. 

B. Spoofed Carrier Phase Model 

The spoofed carrier phase model starts with a modified 
version of Eq. (4) that includes both the effects of the 
spoofer's signal design and the relative geometry between 
the spoofer and the intended victim.  The spoofer is 
assumed to know the relative geometry between it and the 
origin of the (xa,ya,za) UE-fixed coordinate system.  It is 
assumed not to know the ba(t) antenna articulation 
motions.  As per the attack mode described in Refs. 3 and 
4, the spoofer is presumed to have compensated for the 
known part of the relative geometry so that the signal 
looks to the victim like a real GNSS signal. 

The spoofed beat carrier phase model that corresponds to 
this type of attack is  

j
kφ   =  sp

k
sp
k

j
k

j
k rrrr TT )()({2 −−

λ
π  

 })]([)]([ TTT j
midkak

sp
k

j
midkak

sp
k AA ττ brbr +++  

 )( j
tropok

j
ionok

j
kRspkRkc ttt ττδδδω +−−+−  

 j
k

j nφβ ++  (12) 

The first two terms in the braced expression on the right-
hand side of Eq. (12) are generated by the spoofer as part 
of its false signal.  The third term in that expression is the 
term due to the geometry of the spoofer/victim relative 
antenna location.  The spoofer synthesizes the second of 
its terms with the goal of canceling the effects of the third 
term.  Were it not for the ba(t) antenna articulations, this 
cancellation would be perfect. 
The spoofer also synthesizes the terms Rspktδ , j

ktδ , 
j

ionokτ , and j
tropokτ  in Eq. (12).  These terms represent, 

respectively, the spoofed increment to the victim receiver 
clock error, the spoofed GNSS satellite clock error, the 
spoofed ionospheric carrier phase advance, and the 
spoofed ionospheric delay. 

After a set of approximations similar to those used to go 
from Eq. (4) to Eqs. (6), (8), and (9) for the non-spoofed 
case, a reasonable approximation of the spoofed carrier-
phase model in Eq. (12) takes the form: 

j
kφ   )()ˆ(2 TT j

midka
sp A τ

λ
π br−≅  

j
k

j
mid

j
midk

jj
mid

j
midk

jj nφττβττββ +−+−++ 2
122

1
110 )()(  

  (13) 
This chain of approximations includes a linearization in 
terms of ba(t) of the nonlinear 3rd term on the right-hand 
side of Eq. (12).  This linearization is reasonable because 
the magnitude of ba(t) is normally much smaller than the 
magnitude of sp

kr , less than 10 cm vs. 10s of meters or 
more.  The approximation also involves replacing the 
time-varying unit-direction vector sp

kr̂  with the constant 
mid-point direction spr̂ .  This approximation is 
reasonable because a spoofer typically maintains a 
relative geometry to the victim that does not vary very 
rapidly with time; otherwise, it might have trouble 
spoofing the victim.  If either of these approximations 
were to break down, either because the spoofer was very 
close to the victim or because it changed geometry very 
rapidly, then Eq. (13) should and could be modified 
appropriately. 

The approximation in Eq. (13) involves a modified low-
frequency polynomial approximation for the non-
articulation terms in the beat carrier phase model of Eq. 
(12).  This approximation takes the form 

)( j
midk

j
lf τφ   j

k
j

k rr T)(2
λ
π−  

  jj
tropok

j
ionok

j
kRspkRkc ttt βττδδδω ++−−+− )(  

 2
122

1
110 )()( j

mid
j

midk
jj

mid
j

midk
jj ττβττββ −+−+≅  

   (14) 
with j

0β , j
1β , and j

2β  again being constant polynomial 
coefficients.  The only differences between this low-
frequency approximation and that of Eq. (7) are the 
presence of the spoofed receiver clock error increment 

Rspktδ  and the fact that most of the terms in this model 
are spoofed quantities rather than true quantities. 

The salient feature of the spoofed carrier phase model in 
Eq. (13) is the first term on its right-hand side.  In 
comparing this model to the non-spoofed model in Eq. 
(9), a single difference stands out:  The non-spoofed 
satellite-to-receiver direction vector jr̂  in Eq. (9) is 
replaced by the spoofer-to-receiver direction vector spr̂ .  
The most important aspect of this replacement is that this 
direction is the same for all satellites j = 1, ..., L for the 
spoofed case, but different for the non-spoofed case.  This 
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fact implies that all signals' beat carrier phase time 
histories, j

kφ  vs. j
midkτ  for k = 1, ..., Nj and j = 1, ..., L, 

will display identical ba(t) effects in the spoofed case but 
different ba(t) effects in the non-spoofed case.  This is the 
central principal upon which this paper's spoofing 
detection tests are based. 

Similar to the non-spoofed case, a modified form of Eq. 
(13) can be developed for the special case of rectilinear 
antenna articulation motion, as defined in Eq. (2).  It takes 
the form 

j
kφ   )(ˆ)ˆ(2 T j

midkaa
sp ρ τ

λ
π rr−≅  

j
k

j
mid

j
midk

jj
mid

j
midk

jj nφττβττββ +−+−++ 2
122

1
110 )()(  

  (15) 
Recall that ar̂  = aA b̂T  is the articulation unit direction 
vector in reference coordinates and that ρa(t) is the 
articulation magnitude.  The former quantity is often 
unknown, but the latter is usually known exactly. 

IV. SPOOFING DETECTION HYPOTHESIS TESTS 
WITH UNI-AXIAL ANTENNA ARTICULATIONS 
AND KNOWN ATTITUDE 

A. Restriction to Uni-axial Antenna Articulations 

The spoofing detection test and analyses of the present 
section and of Sections V and VI deal with the special 
case of uni-axial antenna articulation motion as defined in 
the antenna coordinate system, i.e., as in Eq. (2).  
Therefore, Eq. (10) models the beat carrier phase in the 
non-spoofed case, and Eq. (15) is the spoofed-case model.  
This restriction to uni-axial motion is not necessary to the 
method.  It is adopted here for two reasons:  First, it 
simplifies the resulting spoofing detection statistic 
calculations and the analyses of their false-alarm and 
missed-detection probabilities.  Second, it simplifies the 
design of the articulation hardware.  Section VIII outlines 
methods to modify the detection statistic calculations and 
the corresponding probability analyses for a general 3-
dimensional ba(t) antenna articulation time history. 

B. High-Pass Filtering via Linear Least-Squares 
Estimation 

High-pass filtering of the carrier-phase measurements can 
be used to remove the low-frequency effects of unknown 
UE motion and unknown UE receiver clock drift.  This 
high-pass filtering amounts to least-squares estimation of 
the unknown polynomial coefficients j

0β , j
1β , and j

2β  
in Eq. (10) or Eq. (15).  The same calculations can be 
used to isolate the uni-axial antenna motion effects into a 
single equation per GNSS signal. 

The needed filtering calculations for the jth GNSS signal 
start with the following over-determined system of linear 
equations 
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 (16) 

This same set of equations is repeated once for each 
satellite j = 1, …, L.  In the non-spoofed case, the unit 
direction vector xr̂  in Eq. (16) is jr̂ , but it equals spr̂  in 
the spoofed case. 

The high-pass filter works by computing the 
orthogonal/upper-triangular (QR) factorization 31 of a 
normalized version of the Nj-by-4 coefficient matrix on 
the right-hand side of Eq. (16).  This factorization takes 
the form: 
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   (17) 
The Nj-by-Nj orthonormal matrix jQ  and the jR11 , jR12 , 

jR13 , …, jR44  elements of the corresponding upper-
triangular matrix are computed as the QR factorization 
algorithm's outputs, and the matrix on the right-hand side 
of Eq. (17) is the input 31. 

The high-pass filter operations also compute the 
transformed, normalized beat carrier phase time history, 
and they are used to define the corresponding noise time 
history: 
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The orthogonal nature of jQ  and the 1/ jσ  normalization 
factor cause the transformed, normalized Gaussian noise 
vector [ jn1 ; ... ; j

N j
n ] to have an identity covariance 

matrix.  Note that this vector has a mean of zero. 

The important output of these high-pass filtering 
operations is a single equation for each GNSS signal that 
contains all the information about whether or not it has 
been spoofed.  This equation is the 4th scalar equation in 
the transformed, normalized version of Eq. (16).  It takes 
the form: 

j
a

xjj nRz 4
T

444 ]ˆ)ˆ[( += rr  (19) 

where jn4  is a zero-mean, unit-variance Gaussian random 
scalar.  The 1st through 3rd equations in the transformed 
system do not affect any of the spoofing detection tests 
because their effects can be integrated out of any standard 
Neyman-Pearson test 32 under the diffuse prior 
assumption about the polynomial coefficients j

0β , j
1β , 

and j
2β .  The resulting integrals are identical under the 

non-spoofed and spoofed hypotheses.  Equations 5 
through Nj are identical under the non-spoofed and 
spoofed hypothesis.  Therefore, neither do they contribute 
to the optimal Neyman-Pearson detection statistic.  They 
serve only to isolate the residual error terms jz5 , ..., j

N j
z .  

The data in Eq. (19) for j = 1, ..., L will form the basis for 
the spoofing detection tests of this section and of Sections 
V and VI. 

C. Spoofing Detection Hypothesis Test for Fixed-Base 
UE with Known Attitude 

The optimal Neyman-Pearson test statistic is based on the 
ratio of the probability densities of the carrier-phase data 
given the two hypotheses, the H0 hypothesis of no 
spoofing and the H1 hypothesis of spoofing.  Stated in 
terms of the high-pass-filtered result in Eq. (19), the two 
relevant probability densities are: 
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In the fixed-location case with a known attitude, ar̂  is 
known as are 1r̂  through Lr̂ .  The dot product quantity 

a
sp rr ˆ)ˆ( T  is the only unknown quantity.  In an optimal 

detection test, this unknown quantity would be integrated 
out of the probability density expression in Eq. (20b).  A 
simpler sub-optimal approach, however, is to use the 
value of a

sp rr ˆ)ˆ( T  that maximizes the probability density 
in Eq. (20b), i.e., to use the maximum-likelihood estimate 
of a

sp rr ˆ)ˆ( T  under the spoofed assumption.  This 
maximum-likelihood estimate also minimizes the 
negative natural logarithm of the spoofed likelihood 
function.  If this unknown dot product is defined to be η = 

a
sp rr ˆ)ˆ( T , then the negative-log-likelihood cost function 

for estimating it is: 

]ln[)],ˆ|,...,(ln[)( 14
1
4 wHzzpJ spL

sp +−= rη  
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=

L

j

jj zR
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2
4442

1 )( η  (21) 

Note that this cost definition cancels the constant negative 
natural logarithm of the normalizing probability density 
constant w without affecting any subsequent results. 

The optimal value of this dot product under the spoofing 
assumption can be computed by first solving for its 
unconstrained minimizing value.  Standard linear least-
squares techniques yield: 
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Afterwards, the constraints -1 ≤  η ≤  1 are enforced to 
produce the final solution: 

⎪
⎩

⎪
⎨

⎧

<
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uopt

uoptuopt

uopt

opt
η

ηη
η

η
 1 if1

11 if
1 if1

 (23) 

This constraint arises from the fact that the η dot product 
is defined between two unit direction vectors. 

Given the dot product estimate in Eq. (23), the associated 
spoofing detection statistic can be defined in terms of the 
difference between the negative logarithms of the spoofed 
and non-spoofed probability density functions in, 
respectively, Eqs. (20b) and (20a).  The former quantity is 
Jsp(ηopt).  The latter quantity is  
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This latter quantity is defined using the cost-function-like 
notation “J” even though it contains no unknown 
quantities that need to be determined via maximum-
likelihood optimization.  This notation has been adopted 
because spoofing detection tests for later cases will 
involve unknown quantities for the non-spoofed H0 
hypothesis in addition to the unknown dot product η for 
the spoofed H1 hypothesis. 

Given these values, the spoofing detection hypothesis test 
statistic is 

nonspoptsp JJ −= )(ηγ  (25) 

The corresponding spoofing detection test takes the form:  
Accept the non-spoofed hypothesis H0 if γ ≥  γth; 
otherwise, accept the spoofed hypothesis H1.  The 
quantity γth is the detection threshold.  Its value is 
determined based on a desired false-alarm probability, as 
described in the next subsection.  Under the reasonable 
assumption that the use of ηopt in ),ˆ|,...,( 14

1
4 Hzzp spL r  

yields nearly the same detection performance as would 
integration of the η uncertainty out of 

),ˆ|,...,( 14
1
4 Hzzp spL r , this detection test is nearly 

optimal.  This is true because there is a monotonic 
relationship between γ and the optimal hypothesis test 
ratio )|,...,( 04

1
4 Hzzp L / ),ˆ|,...,( 14

1
4 Hzzp spL r . 

Before conducting a rigorous analysis, it is worthwhile to 
note that this detection test makes sense intuitively.  If the 
signals from GNSS satellites j = 1, …, L are not being 
spoofed, then the non-spoofed carrier-phase model in Eq. 
(10) should fit the data well.  The corresponding weighted 
sum of squared residual errors, Jnonsp in Eq. (24), should 
be small.  The spoofed carrier-phase model in Eq. (15), 
however, should not fit the data well, and the associated 
optimized weighted sum of squared residuals, Jsp(ηopt), 
should be large.  Therefore, Eq. (25) should produce a 
large, positive value of the spoofing detection statistic γ.  
This value will exceed any reasonable choice of γth, and 
the lack of spoofing will be correctly identified.  In the 
case of spoofing, however, it is Jnonsp that should be large 
due to the poor fit of the non-spoofed model in Eq. (10), 
and Jsp(ηopt) should be small due to the good fit of the 
spoofed model in Eq. (15).  The resulting γ from Eq. (25) 
will likely be negative and lie below any reasonable γth 
threshold value.  The threshold test will successfully 
detect a spoofing attack in this case. 

D. Approximation of Non-Spoofed and Spoofed 
Probability Density Functions of Spoofing Detection 
Statistic 

Design of the spoofing detection threshold and analysis of 
the detection power starts with derivation of two 
probability density functions.  One is the probability 
density function for the detection statistic γ under the non-
spoofed hypothesis, p(γ|H0).  The other is the γ probability 
density function under the spoofed hypothesis, p(γ|η,H1).  
The random variability of γ which gives rise to its 
probability density function in each of these cases derives 
from the detection statistic's dependence on the zero-
mean, identity-covariance L-by-1 Gaussian random vector 
ν = [ 1

4n ; 2
4n ; 3

4n ; ... ; Ln4 ] 

Analysis of the non-spoofed density function p(γ|H0) 
yields the result that γ can be expressed as the sum of two 
uncorrelated random terms: 

nonspy+−= 2
12

1 χγ  (26) 

where 2
1χ  is a sample from a chi-squared distribution of 

degree 1 and where ynonsp is a Gaussian random variable 
with mean and variance: 
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  (27b) 
The derivation that leads to Eqs. (26)-(27a) is based on an 
analysis of the ways in which Jsp and Jnonsp depend on ν 
and on arr ˆ)ˆ( T1 , ..., a

L rr ˆ)ˆ( T  in the non-spoofed case.  It 
assumes that the optimal estimate ηopt from Eq. (23) is 
based on the middle condition.  This is the typical 
situation, and the expected errors from this assumption 
are small when the first or third conditions of Eq. (23) 
apply.  Therefore, this is a reasonable simplifying 
assumption.  This simplifying assumption is used in the 
analysis of every test statistic that is developed in the 
present paper. 

An additional feature of the analysis leading to Eqs. (26)-
(27a) involves a special transformation of the Gaussian 
random vector ν.  It is transformed orthogonally into a 
new vector whose first component is parallel to the unit-
norm L-by-1 vector qR44 = [ 1

44R ; ...; 
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LR44 ]/ 2
44

21
44 )()( LRR ++K .  The remaining (L-1) 

components are orthogonal to this vector.  The first 
component of this transformed random vector gives rise 
to the 2

1χ  term in Eq. (26), and the last (L-1) components 
give rise to the randomness in the Gaussian term ynonsp. 

One final approximation leads to a model of p(γ|H0).  This 
approximation assumes that the randomness in ynonsp 
dominates the randomness in 2

1χ  in determining the 
variability of γ for the non-spoofed case.  This is 
reasonable because the variance 2

ynonspσ  is typically 
much larger than the variance of the term 2

12
1 χ− , which 

equals 0.5.  This approximation leads to  

])(),(;[)|( 5.02
2
1

2
1

0 ynonspnonspyNHp σγγ ++−≅  

 ],;[ nonspnonspN γσγγ=  (28) 

where N(x; x ,σx) denotes the usual scalar Gaussian 
distribution: 

)2/()( 22

2
1),;( xxx

x
x exxN σ

σπ
σ −−=  (29) 

and where the mean and standard deviation of the non-
spoofed detection statistic are 

nonspnonsp y+−= 2
1γ  (30a) 

2
2
1

ynonspnonsp σσγ +=  (30b) 

An analysis of the spoofed density function p(γ|η,H1) 
yields the following expression for γ: 

spnc y+−= 2
12

1 χγ  (31) 

where 2
1ncχ  is a sample from a non-central chi-squared 

distribution of degree 1 and where ysp is a Gaussian 
random variable.  These two random quantities are 
uncorrelated.  The non-centrality parameter of 2

1ncχ  is  
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so that 2
1ncχ  is the square of the sum of a zero-mean, unit-

variance Gaussian random variable and the constant 
ncλ .  The mean and variance of ysp are 
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The analysis that yields Eqs. (31)-(33b) involves the same 
orthonormal transformation as was used in the non-
spoofed case, the one that transforms the Gaussian 
random vector ν into a first component parallel to the unit 
direction vector qR44 and the remaining (L-1) components 
perpendicular to it. 

The final form of p(γ|η,H1) approximates the randomness 
in the spoofed version of γ as being dominated by the 
Gaussian term ysp, similar to the approximation used in 
the non-spoofed case.  Again,  This is reasonable because 
the variance 2

yspσ  is typically much larger than the 
variance of 2

12
1

ncχ− , which equals 0.5+λnc.  The resulting 
p(γ|η,H1) approximation is the Gaussian: 

),|( 1Hp ηγ  
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and where the mean and standard deviation of the non-
spoofed detection statistic are 

spncsp y+−−= ληγ 2
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E. Design of Spoofing Detection Threshold and 
Analysis of Detection Probability 

Given the approximation of p(γ|H0), the spoofing 
detection threshold γth can be computed as a function of 
the desired false-alarm probability α.  It is determined by 
solving the following implicit equation for γth: 

∫=
∞−

th
dHp

γ
γγα )|( 0  
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−−th nonspnonsp de
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γ σγγ

γ
γ

σπ
γ )2/()( 22

2
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Standard software functions exist that can solve this 
equation for γth, e.g., MATLAB's "norminv" function. 

Given the spoofing detection threshold γth and the spoofed 
probability density function approximation p(γ|η,H1), the 
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probability of a missed spoofing detection can be 
calculated as follows: 

∫=
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dHpPMD
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γηγ ),|( 1  
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Again, standard software functions, such as MATLAB's 
"normcdf" function, can be used to compute this 
probability. 

Note how the spoofed mean and standard deviation, 
)(ηγ sp  of Eq. (35a) and )(ησγsp  of Eq. (35b), both 

depend on the actual spoofed value of the vector dot 
product η = a

sp rr ˆ)ˆ( T .  This value is never actually 
known.  One could use its estimate from Eq. (23) in order 
to carry out the calculations in Eqs. (35a), (35b), and (37).  
Alternatively, one could postulate an a priori distribution 
for η and integrate out the dependence of PMD on this 
unknown quantity.  A preferred approach, however, is to 
use its worst-case value to compute a worst-case PMD.  
This value, designated as ηwc, is the value that maximizes 
PMD as computed using Eqs. (35a), (35b), and (37).  In 
typical situations, ηwc is the η value that maximizes 

)(ηγ sp  in Eq. (35a).  This value is 
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This is the value which minimizes the sum on the extreme 
right-hand side of Eq. (35a).  This maximization of 

)(ηγ sp  tends to push more of the area under the p(γ|η,H1) 
vs. γ curve above the detection threshold γth, thereby 
increasing PMD.  Given this worst-case value, it can be 
used to define the worst-case mean and standard deviation 
of γ under the spoofed assumption along with the worst-
case probability of missed detection: 
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V. SPOOFING DETECTION HYPOTHESIS TEST 
FOR MOVING-BASE UE WITH UNKNOWN 
ATTITUDE 

The spoofing detection test of the previous section can be 
adapted to the situation of an unknown receiver attitude 
by explicitly considering the possible orientations of the 
unknown articulation direction vector ar̂ .  In the spoofed 
case, the lack of a priori knowledge of ar̂  adds no further 
complication because the lack of knowledge of the 
direction to the spoofer, spr̂ , renders the dot product η = 

a
sp rr ˆ)ˆ( T  unknown regardless of whether ar̂  is known or 

not.  In the unspoofed case, however, lack of knowledge 
of ar̂  has a significant impact. 

A. Spoofing Detection Hypothesis Test, Unknown 
Attitude 

The optimal Neyman-Pearson spoofing detection test 
would multiply ),ˆ|,...,( 04

1
4 Hzzp a

L r  from Eq. (20a) by an 
a priori probability distribution for ar̂  and compute the 
integral over all possible unit-normalized ar̂  values.  A 
more practical approach, however, is to compute the 
maximum-likelihood estimate of ar̂  and to use it in 

),ˆ|,...,( 04
1
4 Hzzp a

L r .  The maximum-likelihood estimate 
is the solution to the following minimization problem: 

find: ar̂  (40a) 
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   (40b) 
subject to: 1ˆ)ˆ( T =aa rr  (40c) 

This takes the form of a quadratically-constrained 
quadratic program.  Its minimization of )ˆ( anonspJ r  is the 
equivalent of maximizing ),ˆ|,...,( 04

1
4 Hzzp a

L r  because 
the former function equals a constant plus the negative 
natural logarithm of the latter. 

The constrained optimal estimation problem in Eqs. 
(40a)-(40c) can be solved using a singular value 
decomposition coupled with a Lagrange-
multiplier/constraint calculation 31.  The computation 
begins with the singular value decomposition 
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where U is an L-by-L orthonormal matrix, V is a 3-by-3 
orthonormal matrix, and σa ≥  σb ≥  σc ≥  0 are the three 
non-negative singular values, in decreasing order, of the 
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L-by-3 matrix B that is defined by the expression on the 
extreme right-hand side of Eq. (41).  The B matrix is the 
input to the singular-value matrix factorization 
calculations 31, and U, V, σa, σb, and σc are its outputs.  
Note that the singular values σa, σb, and σc do not 
represent standard deviations. 

Next, the U matrix is used to transform the non-
homogeneous terms from the squared-error cost function 
in Eq. (40b): 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Lr

c

b

a

z

z
z
z

U
z
z
z

4

3
4

2
4

1
4

T

Mz

 (42) 

where za, zb, and zc are scalars and zr is a vector of 
residuals. 

Next, one defines the transformed unit direction vector of 
the antenna articulations: 
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The singular-value decomposition and the vector 
transformations in Eqs. (42) and (43) can be used to pose 
an equivalent optimal estimation problem in terms of the 
unknown components of r( : 

find: r(  = [ ar
( ; br

( ; cr
( ] (44a) 
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subject to: 1222 =++ cba rrr (((  (44c) 

This optimization problem can be solved by first 
adjoining the unit-norm constraint in Eq. (44c) to the cost 
function in Eq. (44b) using the undetermined Lagrange 
multiplier μ/2.  Next, one takes the first derivatives of the 
resulting Lagrangian with respect to the elements of r(  
and one solves the resulting equations to yield: 
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  (45) 
These results are then substituted into the equality 
constraint in Eq. (44c) to yield a single equation in the 
single unknown μ: 
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This equation can be transformed into a 6th-order 
polynomial in μ via multiplication by the product of all 
the denominator factors in Eq. (46): 

222222 )()()(0 cba σμσμσμ +++=  

 222222 )()( cbaa z σμσμσ ++−  

 222222 )()( cabb z σμσμσ ++−  

 222222 )()( bacc z σμσμσ ++−  (47) 

The polynomial in Eq. (47) is solved using standard 
numerical techniques.  The solution procedure will 
normally yield 6 possible values of μ.  The correct value 
must be real.  Typically, it is the minimum real value that 
is no smaller than 2

cσ− , which guarantees that the 
minimum is global.  Special cases might arise in which a 
smaller value of μ yields the optimum if 022 =cc zσ .  A 
detailed discussion of this special case is beyond the 
scope of this paper.  The interested reader can refer to the 
discussion of Fig. 2 in Ref. 33 for treatment of the same 
special case in a similar optimization problem.  Given the 
globally-optimizing value of μ, it can be substituted into 
Eq. (45) to determine the elements of optr( , and Eq. (43) 
can be inverted to determine aoptr̂ = V optr( .  This value of 

aoptr̂  is guaranteed to satisfy the unit normalization 
constraint in Eq. (40c) by virtue of the unit normalization 
constraint on optr(  in Eq. (44c) and by virtue of the 
orthogonality of the V matrix. 

Given this non-spoofed aoptr̂  estimate and a spoofed-case 
ηopt estimate computed as per Eqs. (22) and (23), the 
spoofing detection hypothesis test statistic for this 
scenario is 

)ˆ()( aoptnonspoptsp JJ r−= ηγ  (48) 

As in Section IV.C, the spoofing detection test takes the 
form:  Accept the non-spoofed hypothesis H0 if γ ≥  γth; 
otherwise, accept the spoofed hypothesis H1.  This makes 
sense because one would expect )ˆ( aoptnonspJ r  to be 
small, )( optspJ η  to be large, and γ to be a positive 
number if there were no spoofing.  Conversely, one would 
expect )ˆ( aoptnonspJ r  to be large, )( optspJ η  to be small, 
and γ to be a negative number if a spoofing attack were in 
progress.  This is not an optimal Neyman-Pearson test 
because of the use of optimal estimates for the unknown 
values of η and ar̂  rather than integration over their 
possible ranges, but experience shows that this type of test 
is likely to have good detection power. 
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B. Approximation of Non-Spoofed and Spoofed 
Probability Density Functions of Spoofing Detection 
Statistic, Unknown Attitude 

The spoofing detection threshold design begins with a 
derivation of the probability distribution of the detection 
statistic under the assumption of no spoofing, p(γ| ar̂ ,H0).  
This analysis must account for the effects of the zero-
mean, identity-covariance Gaussian random vector ν as it 
propagates through the two optimizations involved in 
computing γ, the ηopt calculation and the aoptr̂  
calculation.  The important new aspect of this analysis for 
the moving-base/unknown-attitude test is the effect of the 
optimal estimation of aoptr̂  on this propagation. 

Analysis of the non-spoofed case yields the following 
approximation for the spoofing detection statistic: 
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where the L-by-1 vector )ˆ( anonsp rg  and the L-by-L 
symmetric matrix )ˆ( anonspH r  are 

aRRanonsp BI rqqrg ˆ)()ˆ( T
4444−=  (50a) 
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The formula for γ in Eq. (49) is exact to second order in 
the noise vector ν.  It can be derived by approximating the 
first-order optimality necessary conditions for the solution 
to the problem in Eqs. (40a)-(40c).  This particular 
approximation is carried out to first order in ν starting 
with recognition that the non-homogeneous vector [ 1

4z ; 
...; Lz4 ] is equal to B ar̂ +ν in the non-spoofed case.  The 
resulting derivation is straightforward, but somewhat 
lengthy. 

Note that the )ˆ( anonspH r  matrix in Eq. (50b) is a 
projection matrix.  Two of its eigenvalues equal 1, and the 
rest equal 0; it projects onto a 2-dimensional subspace. 

The dominant random term in Eq. (49) is ν)ˆ(T
anonsp rg .  

Its variance is typically much larger than that of the 
quadratic term νν ])ˆ([

2
1 T

4444
T

RRanonspH qqr − .  It is also 
typically much larger than the variance of the neglected 
higher-order terms in ν. 

The dominance of the randomness in ν)ˆ(T
anonsp rg  implies 

that a Gaussian approximation of γ is reasonable for this 
non-spoofed case.  Thus 

)]ˆ(),ˆ(;[),ˆ|( 0 anonspanonspa NHp rrr γσγγγ ≅  (51) 

where the mean and standard deviation of this 
approximation are: 
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The trace() function is the usual sum of the diagonal 
elements of its square matrix argument. 

Analysis of the spoofed case yields a detection statistic 
approximation that is somewhat similar to that from the 
non-spoofed case: 
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1 TT ηηηγ spspsp g gg +−≅  

 νν ])([
2
1 T

4444
T
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where the L-by-1 residuals vector )(ηspg  and the L-by-L 
symmetric matrix )(ηspH  are 
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The 3-by-1 unit direction vector )(~ ηar  in these formulas 
is the solution to an auxiliary articulation direction 
estimation problem that takes the form of Eqs. (40a)-
(40c), except with jz4  replaced by ηjR44  for all GNSS 
satellites j = 1, ..., L.  The scalar Lagrange multiplier 

)(~ ημ  is the value that solves Eq. (47) in the process of 
solving for )(~ ηar . 

The approximation in Eq. (53) is valid to second order in 
the noise vector ν.  It can be derived by approximating the 
first-order optimality necessary conditions for the solution 
to the problem in Eqs. (40a)-(40c).  This latter 
approximation is carried out to first order in ν by 
recognizing that the non-homogeneous vector [ 1

4z , ..., 
Lz4 ]T is equal to [ η1

44R ,..., ηLR44 ]T+ν in the spoofed case.  
The resulting derivation is lengthy and somewhat tricky. 

One difficult part of the derivation relies on the equation: 
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aaasp ΔΔBΔ rrrg ˆˆ)(~ˆ)( T
2
1T ημη =  (55) 

in order to recognize that a seemingly first-order term in 
the unit-vector perturbation aΔr̂  = ar̂  - )(~ ηar  is actually 
second-order in this small quantity.  This substitution is 
crucial to the proof that a first-order approximation of 
how aΔr̂  depends on ν can be used to achieve a second-
order approximation of how the optimized )ˆ( anonspJ r  
depends on ν.  Equation (55) can be derived by 
considering the first-order necessary conditions that are 
obeyed by )(~ ηar  and )(~ ημ  and by recognizing that the 
unit normalization constraint on the perturbed solution 

aa Δrr ˆ)(~ +η can be manipulated into the form 0 = 
aaaa ΔΔΔ rrrr ˆˆˆ)(~ T

2
1T +η . 

Similar to the non-spoofed case, the term ν)(T ηspg  on the 
right-hand side of Eq. (53) is usually the dominant source 
of random variations.  That is, its variance is much larger 
than those of the quadratic term 

νν ])([
2
1 T

4444
T

RRspH qq−η  and the neglected higher-
order ν terms.  Therefore, a Gaussian approximation of 
the spoofing detection statistic is reasonable in this 
spoofed case: 

)](),(;[),|( 1 ησηγγηγ γspspNHp ≅  (56) 

with the mean and standard deviation: 
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C. Design of Worst-Case Spoofing Detection 
Threshold and Analysis of Worst-Case Detection 
Probability, Unknown Attitude 

One might be tempted to compute the spoofing detection 
threshold γth using ),ˆ|( 0Hp arγ  in Eq. (51) along with 
the desired false-alarm rate α, similar to what is done in 
Eq. (36) for the known-attitude case.  This is impractical, 
however, because the mean and standard deviation that 
define ),ˆ|( 0Hp arγ  are functions of the unknown true 
antenna articulation direction ar̂ .  One might try using 
the estimated value of this vector, aoptr̂ , but a safer 
approach is to use a worst-case direction. 

The worst-case value of the articulation direction ar̂  can 
be defined as follows:  It is the direction which gives the 
highest possible false-alarm probability for the designed 
spoofing detection threshold value γth.  Suppose that the 

worst-case direction is denoted as awcr̂ .  This direction 
and the corresponding spoofing detection threshold γth can 
be computed simultaneously for a given worst-case false-
alarm probability αwc. 

The first step is to compute the transformed detection 
threshold that would produce the false-alarm probability 
αwc if p(γ|H0) were a Gaussian with zero mean and unit 
variance.  Call this value κwc.  It is the solution of  

∫=
∞−

−wc
nd ndwc de

κ γ γ
π

α 2/2

2
1  (58) 

This value is a measure of the offset of the spoofing 
detection threshold from the mean of ),ˆ|( 0Hp arγ  
measured in units of standard deviations of ),ˆ|( 0Hp arγ .  
This κwc is normally a negative number because αwc is 
normally much less than 0.5. 

The transformed detection threshold is used to define an 
optimization problem that can be solved in order to 
determine the worst-case antenna articulation direction 
vector and the corresponding worst-case spoofing 
detection threshold.  The optimization problem is: 

find: ar̂  (59a) 
to minimize: )ˆ()ˆ()ˆ( anonspwcanonspathJ rrr γγ σκγ +=  
    (59b) 
subject to: 1ˆˆT =aa rr  (59c) 

The antenna articulation direction that minimizes the cost 
function in Eq. (59b) is awcr̂ , the one that produces the 
highest probability of false alarm for the given spoofing 
detection test.  The corresponding worst-case spoofing 
detection threshold is equal to the value of the minimum 
cost: γth = )ˆ( awcthJ rγ .  Given that )ˆ( athJ rγ ≥ )ˆ( awcthJ rγ  
for any other articulation direction ar̂ , the corresponding 
false alarm probability for the direction ar̂  is 

wcnda
a

nd de αγ
π

α
κ

γ ≤∫=
∞−

−
)ˆ(

2/2

2
1)ˆ(

r
r  (60) 

where )ˆ( arκ  = )ˆ(/)]ˆ([ anonspanonspth rr γσγγ − .  The 
inequality )ˆ()ˆ( athawcthth JJ rr γγγ ≤=  can be manipulated 
algebraically and then combined with the definition of 

)ˆ( arκ  to prove that )ˆ( arκ  ≤  κwc.  This latter inequality 
leads directly to the inequality in Eq. (60).  Thus, αwc 
truly is the worst-case false-alarm probability. 

Solution of the constrained nonlinear optimization 
problem in Eqs. (59a)-(59c) can be carried out using a 
suitable numerical method.  In the tests of Section IX, 
Newton's method 31 has been used with enhancements to 
ensure global convergence and to enforce the 
normalization constraint.  The method starts with a guess 
of awcr̂  that satisfies the constraint, and it computes 
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increments that continue to satisfy this constraint while 
decreasing the cost.  The increments are computed by 
developing a second-order expansion of the cost function 
variations that applies in the 2-dimensional local null 
space of the normalization constraint 31.  Global 
convergence is enforced by using a quadratic trust-region 
step size restriction when solving for the increment in the 
null-space of the constraint 31,34. 

It is important to start the numerical solution of the 
optimization problem in Eqs. (59a)-(59c) in with a 
reasonable first guess of awcr̂ .  Otherwise, the iterative 
numerical solution procedure can take too much 
computation time or it can even fail to converge to the 
global minimum.  The first guess algorithm recognizes 
that the )ˆ()ˆ(T

anonspanonsp rgrg  terms are the dominant 
terms in the formulas for )ˆ( anonsp rγ  and )ˆ( anonsp rγσ  in 
Eqs. (52a) and (52b).  Therefore, it finds the values of ar̂  
that maximize or minimize )ˆ()ˆ(T

anonspanonsp rgrg .  
Consistent with the formula for )ˆ( anonsp rg  in Eq. (50a), 
these values of ar̂  and the associated extrema of 

)ˆ()ˆ(T
anonspanonsp rgrg  can be found by computing the 

singular value decomposition of the L-by-3 matrix 
BI RR )( T

4444qq− .  The minimum and maximum values 
of )ˆ()ˆ(T

anonspanonsp rgrg  are then used in truncated 
versions of Eqs. (52a) and (52b) to compute the 
approximations ≅)ˆ( anonsp rγ )ˆ()ˆ(5.0 T

anonspanonsp rgrg  
and ≅)ˆ( anonsp rγσ  5.0T )]ˆ()ˆ([ anonspanonsp rgrg .  These 
approximations, in turn, are used to compute 
corresponding approximations of )ˆ( athJ rγ  from Eq. 
(59b).  For the approximation of )ˆ( athJ rγ  that is the 
smallest, the corresponding value of ar̂  from the singular 
decomposition of BI RR )( T

4444qq−  is used as the first 
guess of awcr̂ . 

Given the spoofing detection threshold γth from the worst-
case analysis, the final analysis problem is to compute the 
probability of a missed detection.  This calculation 
involves ),|( 1Hp ηγ .  Unfortunately, this probability 
density function depends on the unknown true value of 
the spoofed-case dot product η.  As in the case of a 
known articulation direction vector, the case of Section 
IV, a worst-case value of η is computed and used in order 
to remove the η dependence.  The worst-case value of η 
is the one that produces the largest possible value of PMD. 

The worst-case value of η is the solution to the following 
optimization problem: 

find: η (61a) 

to minimize: 
)(

)(
)(

ησ
ηγγ

η
γsp

spth
PMDJ

−
=  (61b) 

subject to: 11 ≤≤− η  (61c) 

This is a relatively simple constrained 1-dimensional 
nonlinear optimization problem.  It is solved using 
Newton's method with enhancements to enforce the 
inequality constraints, if one or the other of them is active, 
and to ensure global convergence 31,34. 

It is helpful to start the numerical solution of the problem 
in Eqs. (61a)-(61c) with a good first guess of the solution 
ηwc.  A good first guess comes from recognizing that, in a 
well-designed spoofing detection test, the )()(T ηη spsp gg  
terms are the dominant terms in the formulas for )(ηγ sp  
and )(ησγsp  in Eqs. (57a) and (57b).  Also, the term 

)(/)( ησηγ γspsp−  in Eq. (61b) contains the dominant η 
dependence of JPMD(η).  Under these two assumptions, a 
reasonable first guess of ηwc is 
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where amineigr̂  is a unit-normalized eigenvector of the 3-
by-3 symmetric matrix 

BIB RR )( T
4444

T qq−  (63) 

It is the eigenvector associated with the minimum 
eigenvalue.  It is straightforward to prove that this 
combination of η minimizes )()(T ηη spsp gg  with )(ηspg  
defined in Eq. (54a).  The proof involves the recognition 
that the unit-vector )(~

wca ηr  = amineigr̂ , where the 
function )(~ ηar  is defined in connection with Eq. (54a).  
One can show that this first guess of ηwc is guaranteed to 
respect the inequality constraints in Eq. (61c) because it 
amounts to a weighted average of the unit-vector dot 
products amineig

j rr ˆ)ˆ( T  for j = 1, ..., L, each of which 
obeys the constraints. 

Given the value ηwc that solves the optimization problem 
in Eqs. (61a)-(61c), the worst-case probability of missed 
detection is 
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The transformation from the first integral to the second 
integral is carried out by the change of dummy integration 
variable from γ to γnd = )(/)]([ wcspwcsp ησηγγ γ− .  For any 
other actual η value, the probability of missed detection is 

MDwc
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ndMD PdeP
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nd ≤∫=
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2
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η

γ γ
π
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The inequality at the end of Eq. (65) is true because the 
lower limit in this integral will be no smaller than the 
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lower limit in the corresponding integral of Eq. (64) by 
virtue of ηwc being the value that minimizes JPMD(η). 

These false-alarm and missed-detection probability 
calculations need to be re-evaluated from time to time.  
They must be re-computed each time there is a change in 
the set of available GNSS signals and each time there are 
significant changes in any of the following quantities: the 
duration of the spoofing detection batch interval, the 
interval's antenna articulation time history ρa(t), the 
direction vectors to the GNSS spacecraft, jr̂  for j = 1, ..., 
L, or the carrier-to-noise ratios of the GNSS signals.  
Although their derivations are long and complex, these 
calculations involve only matrix-matrix, matrix-vector, 
and nonlinear optimization calculations for low-
dimensional problems.  Therefore, they can be executed 
very rapidly on typical processors, and they can be 
implemented in a practical real-time system. 

VI. SPOOFING DETECTION HYPOTHESIS TEST 
FOR MOVING-BASE UE WITH UNKNOWN 
ATTITUDE AND UNKNOWN ARTICULATION 
AMPLITUDE 

A third version of the spoofing detection test with uni-
axial antenna articulation allows for the possibility that 
the amplitude of the motion is also unknown.  This could 
happen if a system such as that shown in Fig. 3 were 
excited by an initial impulse of uncertain amplitude.  It 
also could happen with an antenna mounted on a UAV 
where the antenna articulations were caused by rapid 
controller-induced attitude motions and where the gain of 
the transfer function from the control inputs to the 
antenna motions was uncertain.  In this case, it is 
necessary to estimate both the direction of antenna 
articulation and an articulation amplitude scaling factor.  
It is assumed that there is a known minimum antenna 
articulation amplitude.  Otherwise, the spoofing detection 
test could be very weak due to having an articulation 
amplitude that was too small. 

A. Spoofing Detection Hypothesis Test, Unknown 
Attitude and Unknown Amplitude Scaling 

As with the previous two tests, a test statistic based on 
optimal estimates of unknown parameters is used in place 
of a truly optimal Neyman-Pearson test.  This approach is 
used because it is easier to implement and because it 
typically involves only a small degradation of detection 
power for a given false-alarm probability. 

For the non-spoofed case, the spoofing detection 
calculation must estimate the product of the unknown 
articulation direction ar̂  and an articulation amplitude 
scaling factor a.  This scaling factor is defined so that the 
nominal articulation amplitude time history in the ar̂  
direction is ρa(t) while the true time history is aρa(t).  

Supposed that one defines the un-normalized vector ra = 
a ar̂ .  Suppose also, without loss of generality, that ρa(t) 
and a are defined to set the known lower bound for a 
equal to 1.  Then the following optimization problem is 
solved to estimate the direction/amplitude product vector 
ra: 

find: ra (66a) 
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   (66b) 
subject to: 1T ≥aa rr  (66c) 

where jR44  and jz4  for j = 1, ..., L are computed as 
defined in Eqs. (17) and (18).  The cost function in Eq. 
(66b) is identical to the non-spoofed cost function in the 
previous spoofing detection calculation, the one in Eq. 
(40b). 

The optimization problem in Eqs. (66a)-(66c) can be 
solved in almost an identical manner to the solution of the 
equality-constrained problem for ar̂  in Eqs. (40a)-(40c).  
The only difference is that the initial trial solution 
assumes that the inequality constraint in Eq. (66c) is 
inactive.  The constraint can be ignored in this case, and μ 
can be set equal to 0 in Eq. (45) to determine the 
components of optr(  that are used to compute the initial 
trial solution raopt = V optr( .  If this trial value of raopt 
satisfies the inequality in Eq. (66c), then the solution 
procedure is done.  If this candidate raopt violates Eq. 
(66c), however, then Eq. (47) is used to determine the 
Kuhn-Tucker multiplier μ.  A negative value of μ that 
satisfies Eq. (47) must be used for the final solution in 
order to satisfy the Kuhn-Tucker first-order optimality 
conditions 31,34. 

For the spoofed case, the original unknown dot product 
between unit vectors η = a

sp rr ˆ)ˆ( T  is redefined to 
become the product of the unknown amplitude scaling 
factor and the unknown dot product: η = a a

sp rr ˆ)ˆ( T  = 
a

sp rr T)ˆ( .  The practical effect of this re-definition of η is 
that it is no longer constrained to lie in the range -1 ≤  η 
≤  1 because of the possibility that a > 1.  Therefore, the 
spoofed-case estimation problem becomes that of finding 
η to minimize the cost function in Eq. (21) subject to no 
constraints on η.  The minimizing value is just the 
unconstrained minimum ηuopt from Eq. (22). 

Given the aoptr  solution to the problem in Eqs. (66a)-
(66c) and the ηuopt estimate from Eq. (22), this case uses 
the spoofing detection hypothesis test statistic 

)()( aoptnonspuoptsp JJ r−= ηγ  (67) 
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The spoofing detection test has the same form is in the 
previous two cases:  Accept the non-spoofed hypothesis 
H0 if γ ≥  γth; otherwise, accept the spoofed hypothesis H1.  
Again, this is sensible because )( aoptnonspJ r  should be 
small, )( uoptspJ η  should be large, and γ should be a 
positive number without spoofing.  The quantity 

)( aoptnonspJ r  should be large, )( uoptspJ η  should be 
small, and γ should be a negative number during a 
spoofing attack. 

B. Approximation of Non-Spoofed and Spoofed 
Probability Density Functions of Spoofing Detection 
Statistic, Unknown Attitude and Unknown Amplitude 
Scaling 

As in the analyses of the previous spoofing detection 
statistics, design of the detection threshold and analysis of 
the probability of missed detection begin with the 
determination of p(γ|ra,H0), the non-spoofed probability 
density of the detection statistic.  This analysis quantifies 
the impact of the random vector ν on γ as propagated 
through the ηuopt and aoptr  calculations.  That 
quantification is similar to Eq. (49) for the known-
amplitude case.  It is approximated to 2nd order in ν as 
follows: 

ν)()()(
2
1 TT

anonspanonspanonsp rg rgrg +≅γ  
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2
1)(

2
1 2T

4444
'T

aRRnonspH rqq ν
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−−+ νν  (68) 

where the function gnonsp(ra) is the same as in Eq. (50a) 
and where the L-by-L symmetric matrix '

nonspH  = 
B(BTB)-1BT is a projection matrix.  The scalar random 
variable )( arν

)
 accounts for the fact that the noise vector 

ν may cause the aoptr  calculation to produce a negative 
Kuhn-Tucker multiplier μ even though μ = 0 would 
suffice in the absence of noise because the true ra respects 
the inequality in Eq. (66c).  This scalar random variable is 
correlated with the random vector ν, as is a related zero-
mean, unit-variance scalar Gaussian random variable 

)( arν) .  These two distributions and their relationships to 
each other and to ν are characterized by the following 
formulas: 
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where 
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aa rqr )) =ν  (70a) 
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with )( arq)  being the following unit-normalized L-by-1 
vector: 

aa

a
a

BB

BBB

rr

rrq
1TT

1T

)(

)()(
−

−
=)  (71) 

If aa rr T >> 1, then )(max arν) << 0, and the contribution of 
)( arν

)
 to the randomness in γ becomes negligible, as one 

would expect. 

The derivation of the approximation in Eq. (68) is similar 
to the derivation of the approximation in Eq. (49) for the 
known-amplitude case.  The terms 

)(2
2
1'T

2
1

anonspH rν
)

−νν  in Eq. (68) constitute the 
modified form of the term νν )ˆ(T

2
1

anonspH r  in Eq. (49) 
when the equality constraint in Eq. (40c) is replaced by 
the inequality constraint in Eq. (66c).  This replacement 
leads to a negativity constraint on the Kuhn-Tucker 
multiplier μ associated with the Eqs. (66a)-(66c) optimal 
solution, and this constraint is what modifies the original 

νν )ˆ(T
2
1

anonspH r  term.  There was no sign constraint on 
the corresponding Lagrange multiplier for the Eqs. (40a)-
(40c) optimum. 

Similar to the known-amplitude case, the dominant 
random term in Eq. (68) is ν)(T

anonsp rg .  Normally its 
variance is significantly larger than the variance of the 
quadratic terms νν ][ T

4444
'T

2
1

RRnonspH qq−  and 
)(2

2
1

arν
)

− .  This variance is also normally a lot larger 
than the variance of the neglected higher order ν terms.  
Therefore, it is reasonable to approximate the probability 
density function of γ in the non-spoofed case by a 
Gaussian: 

)](),(;[),|( ''
0 anonspanonspa NHp rrr γσγγγ ≅  (72) 

where the mean and standard deviation of this 
approximation are: 
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Note that the same probability integral appears in the final 
versions of the right-hand sides of Eqs. (74a) and (75a)-
(75c).  It is the cumulative probability for a scalar zero-
mean, unit-variance Gaussian distribution between 
negative infinity and )(max arν) .  Any good statistical 
functions software package should contain a standard 
function that computes this integral. 

For the spoofed case, the approximate model of the 
dependence of γ on ν is derived in a manner similar to the 
analysis that produced the corresponding known-
amplitude model in Eq. (53).  It involves consideration of 
the optimized non-spoofed and spoofed cost functions, as 
per Eqs. (66a)-(66c) and as per Eq. (22) when the actual 
data obeys the spoofed model.  The approximate model 
for the detection statistic, valid to second order in ν, is 
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where the L-by-1 residuals vector )(ηspg(  and the L-by-L 
symmetric matrix )(' ηspH  are 
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The 3-by-1 vector )(ηar
(  in these formulas is the solution 

to an auxiliary articulation-direction/articulation-scaling-
factor estimation problem that takes the form of Eqs. 
(66a)-(66c), except with jz4  replaced by ηjR44  for all 
GNSS satellites j = 1, ..., L.  The scalar Kuhn-Tucker 
multiplier )(ημ(  is the associated value that is determined 
when solving for )(ηar

( .  It is determined using Eq. (47) if 
the inequality constraint in Eq. (66c) is active, and it is 
non-positive in this case, but )(ημ(  = 0 if the inequality 
constraint is inactive, i.e., if 1)()(T >ηη aa rr (( . 
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The scalar random variable )(ην
(

 accounts for the effects 
of the inequality constraint and its variations of activity or 
inactivity, depending on the specific values of ν and η.  It 
is defined as follows: 
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where 
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with the unit-normalized L-by-1 vector )(ηq(  being 
defined as: 
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The two upper-most conditions in Eq. (78) deal with the 
active constraint case, in which 1)()(T =ηη aa rr (( .  The two 
lower-most conditions cover the inactive constraint case, 
i.e., the case when 1)()(T >ηη aa rr (( . 

The coefficient of function that multiplies )(2 ην
(

 in Eq. 
(76) is 
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When )(ημ(  = 0, i.e., in the inactive constraint case, this 
coefficient equals 1. 

As for all preceding models of all preceding detection 
statistics, the model in Eq. (76) is dominated by the term 

ν)(T ηspg( .  Its variance is typically much larger than that 
of νν ])([ T

4444
'T

2
1

RRspH qq−η , of )()(2
2
1 ηζην
(

− , or of 
the neglected higher-order terms in ν.  Given that this 
dominant term is Gaussian, the following Gaussian 
distribution is a reasonable approximation of the detection 
statistic probability density function in the spoofed case: 
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with the mean and standard deviation: 
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The calculations that determine the scalar quantities 
)(ηξsp  and )(ηψ sp  differ depending on whether the 

constrained non-spoofed optimization applies, 
1)()(T =ηη aa rr ((  and )(ημ(  < 0, or the unconstrained 

optimization applies, 1)()(T ≥ηη aa rr ((  and )(ημ(  = 0.  In 
the constrained case, these quantities are computed using 
the following formulas for various of their components: 
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In the unconstrained case, on the other hand, the 
following alternate formulas apply for the needed 
components of )(ηξsp  and )(ηψ sp : 
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C. Design of Worst-Case Spoofing Detection 
Threshold and Analysis of Worst-Case Detection 
Probability, Unknown Attitude and Unknown 
Amplitude Scaling 

Given the Gaussian ),|( 0Hp arγ  probability density 
function defined by Eqs. (72)-(75c), it is possible to 
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compute a spoofing detection threshold value γth that 
achieves a worst-case probability of missed detection αwc.  
The approach taken here is similar to what is done in 
Subsection V.C for the known-amplitude case. 

The first step of the threshold calculation computes κwc 
from αwc using Eq. (58).  The second step solves an 
optimization problem to find the worst-case product of the 
antenna articulation direction vector and scaling 
amplitude ra that produces the lowest threshold for the 
target false-alarm probability.  This problem is 

find: ra (87a) 
to minimize: )()()( '''

anonspwcanonspathJ rrr γγ σκγ +=  
   (87b) 
subject to: 1T ≥aa rr  (87c) 

The antenna articulation-direction/scaling product that 
minimizes the cost function in Eq. (87b) is awcr .  It 
yields the highest probability of false alarm for the given 
spoofing detection test.  The corresponding worst-case 
spoofing detection threshold is equal to the value of the 
minimum cost: γth = )('

awcthJ rγ .  As in Subsection V.C, it 
is easy to show that wca αα ≤)(r , i.e., that the spoofing 
detection false-alarm probability for any actual true value 
of ra is no greater than αwc. 

The optimization problem in Eqs. (87a)-(87c) can be 
solved using a numerical method.  Newton's method 31 
will serve if it has been enhanced to ensure global 
convergence and enforce the inequality constraint in Eq. 
(87c).  Such an approach has been used for the tests of 
Section IX.  It is similar to the one used to solve the 
problem in Eqs. (59a)-(59c) for the known-amplitude 
case.  In addition, it uses the same procedure to generate 
its first guess of awcr  as is used to generate the first guess 
of the awcr̂  solution to the problem in Eqs. (59a)-(59c).  
Thus, the first guess obeys 1T =awcawcrr .  This makes 
sense because this is the lowest possible amplitude, and 
the lowest possible amplitude is likely to give the highest 
probability of generating a false alarm. 

Also similar to the known-amplitude case, a worst-case 
probability of missed detection is calculated by 
computing the corresponding worst true value of η = 
a a

sp rr ˆ)ˆ( T  = a
sp rr T)ˆ( .  The worst-case value is the 

solution to the following optimization problem: 
find: η (88a) 
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This 1-dimensional nonlinear optimization problem is 
solved using a numerical technique similar to the one that 
is used to solve the corresponding problem for the known-

amplitude worst-case probability of missed detection, the 
problem in Eqs. (61a)-(61c).  The algorithm for solving 
the present problem is somewhat simpler due to the lack 
of any inequality constraints here.  The similarity of the 
problems and cost functions in Eqs. (61a)-(61c) allows 
the same procedure to be used in order to generate the 
initial guess of ηwc, as per Eqs. (62) and (63).  This guess 
produces a corresponding value of )( wca ηr(  that obeys 

1)()(T =wcawca ηη rr (( .  This makes sense because the 
worst-case probability of missed detection would tend to 
correspond to the lowest possible amplitude of antenna 
articulation. 

The optimal ηwc that solves the problem in Eqs. (88a) and 
(88b) can be used to compute the worst-case probability 
of missed detection 
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By an analysis similar to that which produced Eq. (65) in 
the known-amplitude case, it is straightforward to show 
that the probability of missed detection for any other true 
value of η will be no greater than this worst-case 
probability. 

VII. SPOOFING DETECTION HYPOTHESIS TEST 
FOR MOVING-BASE UE WITH UNKNOWN 
ARTICULATION TIME PHASING 

A fourth version of the spoofing detection test with uni-
axial antenna articulation allows for uncertainty in the 
time phasing of the ρa(t) antenna articulation time history.  
Such uncertainty can be present when a system like that 
shown in Fig. 3 is excited by an initial impulse of 
uncertain time of application.  This type of uncertainty 
also can occur for an antenna mounted on a UAV if rapid 
controller-induced attitude maneuvers are used to induce 
the high-frequency antenna motion. Any uncertainty of 
the transfer-function lag between the control inputs and 
the attitude response will translate into a time phasing 
uncertainty.  In such cases, it is necessary to estimate a 
time offset of the articulations, Δt0, in addition to other 
quantities.  This time offset is defined so that the nominal 
articulation time history ρa(t) becomes ρa(t - Δt0) after 
correcting for the time phasing error. 

A. Estimation of Time Phasing via Outer Optimization 

There are various possible approaches to dealing with Δt0 
uncertainty.  The approach adopted here is to estimate Δt0 
in an outer nonlinear optimization calculation that does 
not explicitly estimate other quantities needed to form a 
spoofing detection statistic.  The outer numerical 
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optimization problem is posed by exploiting the following 
fact of 1-dimensional antenna articulations:  All of the 
articulation-induced carrier phase time histories for all 
channels are multiples of ρa(t - Δt0) regardless of whether 
or not a spoofing attack is in progress.  Given this 
knowledge, one can solve the over-determined least-
squares estimation problem in Eq. (16) for each GNSS 
satellite j = 1, ..., L and then form a Δt0 optimization cost 
function that is a weighted sum of the residuals from each 
of the least-squares problems.  Each of these L solutions 
treats the value of the scalar a

x rr ˆ)ˆ( T  in Eq. (16) as a 
different independent unknown so that the value 
determined for the jth signal need not be related in any 
particular way to the values determined for the other L-1 
signals. 

The minimum costs of these L linear least-squares 
optimizations are combined with a cost that introduces a 
priori Δt0 knowledge to yield a Δt0 estimation cost 
function of the form:  

Jphs(Δt0)  
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The cost function Jphs(Δt0) in Eq. (90) is a negative log-
likelihood cost function, and its σΔt0ap parameter is the 
standard deviation of the a priori uncertainty about how 
much Δt0 might differ from 0.  The Nj-by-1 vector jf  
contains the high-pass-filtered carrier phase time history 
for the jth GNSS signal normalized by its measurement 
error standard deviation.  The Nj-by-1 vector )(ˆ

0Δtjd  is a 
unit-normalized version of the high-pass-filtered time 
history ρa(t - Δt0) sampled at the midpoints of the 
accumulation intervals of the jth signal.  The Nj-by-Nj 
matrix jP  is a projection matrix that performs the high-
pass filtering for the jth signal, as is evident by its 
definition in terms of the Nj-by-3 matrix jD .  jP  
projects signal time histories orthogonal to the constant, 
linear, and quadratic time histories in the columns of jD . 

The cost function in Eq. (90) can be optimized to 
determine Δt0opt by using standard numerical techniques, 
such as Newton's method 31.  Given that this involves 
unconstrained optimization of a scalar, the 
implementation is straightforward. 

A useful auxiliary quantity is the Cramer-Rao lower 
bound 35 on the uncertainty in Δt0opt.  It takes the form: 
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B. Spoofing Detection Statistic with Timing 
Uncertainty 

Given the estimate Δt0opt that minimizes the cost function 
in Eq. (90), any of the three spoofing detection tests of 
Sections IV-VI can be implemented by replacing ρa(t) in 
Eqs. (16) and (17) by ρa(t - Δt0).  All of the subsequent 
spoofing detection calculations can then be carried out by 
using the resulting values of jR44  and jz4  for j = 1, ..., L.  
The ensuing calculations will yield a spoofing detection 
statistic γ that can be used to develop a powerful detection 
test. 

C. Design of Spoofing Detection Threshold and 
Analysis of False-Alarm Probability 

One might try to use the corresponding pair of p(γ|H0) and 
p(γ|H1) probability density functions from Sections IV-VI 
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directly in the design of the spoofing detection threshold 
and the analysis of the probability of missed detection for 
an uncertain Δt0 case.  One could substitute ρa(t - Δt0) for 
ρa(t) in any given analysis.  This approach, however, is 
not exactly right when working with an uncertain Δt0 and 
its estimate Δt0opt.  Complications occur because an 
additional source of γ variability arises from the impact of 
measurement noise on the Δt0opt estimate. 

One could do an exact or approximate analysis of the 
impact of this Δt0opt variability on p(γ|H0) and p(γ|H1).  
Perhaps a reasonable analysis would use a linear 
approximation of the effect of the noise vector ν on the 
errors in Δt0opt.  Such an analysis might be rather 
complicated. 

This case of uncertain Δt0 is not considered to be a very 
important one because it is not a preferred mode of 
operation.  This case is considered here mostly because it 
is helpful to the processing of experimental data from the 
initial prototype spoofing detection system, where timing 
uncertainty was present because the prototype articulation 
system lacked a ρa(t) sensor. 

In an operational system, the need to estimate Δt0opt opens 
up the possibility of a new type of spoofing attack, one 
that also simulates the expected non-spoofed carrier-phase 
effects of ρa(t).  The spoofer might have an idea about the 
types of ρa(t) time histories, but knowledge of the exact 
timing could be made virtually inaccessible to a spoofer.  
Armed with the right ρa(t) but the wrong Δt0, however, a 
spoofer might avoid detection by fooling the detection 
system into choosing a value of Δt0opt that aligned with the 
spoofed version of ρa(t).  Therefore, a system that needs 
to estimate Δt0 is undesirable and should be avoided. 

Because this case is considered mostly in support of 
initial prototype experiments, it has not been deemed 
worthwhile to do a full analysis of the impacts of Δt0opt 
uncertainty.  Instead, the threshold calculations of the 
relevant previous section have been carried out three 
different times using the following three different 
candidate antenna articulation time histories: ρa(t - Δt0opt), 
ρa(t - Δt0opt - 2σΔt0opt), and ρa(t - Δt0opt + 2σΔt0opt).  Let the 
corresponding three spoofing detection thresholds be 
called γtha, γthb, and γthc.  The final detection threshold was 
then chosen to be γth = min(γtha,γthb,γthc), which is 
consistent with the philosophy of taking a worst-case 
approach.  

The worst-case probability of missed detection was 
calculated in a similar ad hoc manner.  Suppose that the 
corresponding spoofed means and standard deviations for 
the above three time offsets have been calculated using 
the relevant equations from Section IV, V, or VI and 
suppose that the resulting values are, respectively, spaγ , 

spbγ , spcγ , spaγσ , spbγσ , and spcγσ .  Then the worst-
case probability of false alarm is approximated as: 
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where 
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VIII. SPOOFING DETECTION WITH 2- AND 3-
DIMENSIONAL ANTENNA ARTICULATIONS 

The present section develops a spoofing hypothesis test in 
the case of general 2-D or 3-D articulation motion of the 
antenna.  This differs from the tests in Sections IV-VI, 
which deal with the case of uni-axial motion defined in 
Eq. (2).  The general case is more complicated, both in 
terms of hardware implementation of the articulations and 
in terms of the spoofing detection calculations and 
analyses.  The general case offers benefits as well.  One 
benefit is an improved ability to discern when only a 
subset of signals are being spoofed.  Another benefit is an 
improved spoofing detection power with fewer signals.  
As useful by-product is a coarse 3-axis attitude solution.  
For these reasons, a designer might want to implement a 
2-D or 3-D articulation system. 

The present section develops the rudiments of a spoofing 
detection test for this situation in the case of an unknown 
attitude but a known articulation amplitude.  Analysis 
strategies for statistical design of the detection threshold 
and computation of the missed-detection probability are 
suggested but not fully developed.  Generalizations to 
other interesting cases are omitted, e.g., known attitude or 
unknown attitude plus unknown amplitude scaling. 

A. High-Pass Filtering via Linear Least-Squares 
Estimation 

A modified form of carrier-phase measurement high-pass 
filtering is needed to remove the low-frequency effects of 
unknown UE motion and clock drift.  The high-pass filter 
calculations solve a modified version of the least-squares 
problem in Eq. (16).  Instead of including the unknown 
vector dot product a

x rr ˆ)ˆ( T , the modified problem 
includes the unknown vector xb̂  = xAr̂ , where the unit 
direction vector xr̂  is jr̂  in the unspoofed case and spr̂  
in the spoofed case.  Thus, xb̂  is the unit direction vector 
from the signal source to the receiver as measured in the 
same coordinate system that is used to define the antenna 
articulation time history ba(t). 

Using the newly defined xb̂  direction vector in either Eq. 
(9) or Eq. (13), the carrier-phase time history model for 
the jth GNSS satellite becomes: 
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One such system of equations applies for each satellite j = 
1, ..., L. 

As for the uni-axial case, high-pass filtering in this case 
starts with a QR factorization 31 of a re-scaled version of 
the coefficient matrix on the right-hand side of Eq. (96): 
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where the Nj-by-6 matrix on the right-hand side of this 
equation is the input to the QR factorization.  The Nj-by-
Nj orthonormal matrix jQ  along with the jR11 , jR12 , jR13 , 
…, jR66  elements of the corresponding upper-triangular 
matrix are the factorization's outputs.  The corresponding 
operations on the carrier-phase time history and the phase 
noise time history are still defined by Eq. (18), even 
though the actual jQ  as computed in Eq. (97) will differ 
from what would have been computed had Eq. (17) been 
used for a uni-axial antenna articulation case.  The actual 
values of some of the j

mnR  coefficients will also differ, 
especially for n ≥  4. 

It is helpful to collect the j
mnR  and j

mz  terms for all m 
and n in the range 4 to 6 into a single matrix vector pair: 
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These terms define the 4th-6th rows of the transformed 
version of Eq. (96), the version that results from 
multiplication of the equation on both sides by 

jjQ σ/)( T .  These 3 transformed equations are the only 
ones that are relevant to spoofing detection with general 
3-D antenna articulation motion.  The 1st-3rd transformed 
equations serve only to determine the estimates of the 
auxiliary low-pass-filter parameters j

0β , j
1β , and j

2β .  
They produce no effects on any sensible spoofing 
detection statistic, regardless of whether these three 
parameters are removed from the problem via 
optimization or via integration over all possibilities.  All 
equations beyond the 6th produce only residual errors that 
are the same for the unspoofed and spoofed cases.  
Therefore, they do not affect any sensible spoofing 
detection test either. 

B. Calculation of a Spoofing Detection Statistic based 
on Attitude Estimation 

If one assumes that the attitude A is unknown, then a 
sensible spoofing detection test estimates the 3-by-3 
orthonormal A matrix for the non-spoofed case, and it 
estimates spb̂  = spAr̂  for the spoofed case.  The non-
spoofed optimal attitude estimation problem takes the 
form: 

find: A (99a) 

to minimize: ∑ −=
=

L

j

j
D

jj
DDnonsp ARAJ

1

T
332

1
3 ]ˆ[)( zr  

  ]ˆ[ 33
j
D

jj
D AR zr −•  (99b) 

subject to: IAA =T  (99c) 

The problem in Eqs. (99a)-(99c) constitutes a batch 
maximum likelihood attitude estimation problem because 

)(3 AJ Dnonsp  is the negative natural logarithm of the 
probability density p( 1

3Dz ,..., L
D3z |A,H0)/w, where w is its 

normalization constant.  The constraint in Eq. (99c) is a 
symmetric 3-by-3 matrix constraint.  Thus, it has only 6 
independent elements.  The remaining unconstrained 
elements of A are its 3 independent attitude parameters, 
e.g., roll, pitch, and yaw.   

A helpful tool for solving the problem in Eq. (99a)-(99c) 
is the attitude quaternion q.  It is a unit-normalized 4-
element vector that can parameterize the attitude.  It can 
be used to compute the direction cosines matrix A = A(q) 
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36.  Using this parameterization, the attitude estimation 
problem becomes 

find: q (100a) 

to minimize: ∑ −=
=

L

j

j
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T
332

1'
3 ]ˆ)([)( zrqq  
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j
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jj
D AR zr −• q  (100b) 

subject to: 1T =qq  (100c) 

This transformation reduces the problem to one of 
nonlinear constrained optimization involving 4 unknowns 
and a single scalar equality constraint. 

A constrained implementation of Newton's method could 
be used to solve the problem in Eqs. (100a)-(100c) 31.  It 
would be helpful to start the Newton procedure with a 
good first guess.  A reasonable first guess could be 
determined by solving a related problem 

find: q (101a) 
to minimize: =)("

3 qDnonspJ  

  ∑ −
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subject to: 1T =qq  (101c) 

where each 3-by-1 unit-direction vector j
optb̂  for j = 1, ..., 

L is the solution to the following estimation problem: 

find: jb̂  (102a) 
to minimize: T
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D
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D
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jj
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subject to: 1ˆ)ˆ( T =jj bb  (102c) 

Thus, the suggested first-guess procedure involves 
solving L problems of the type defined in Eqs. (102a)-
(102c) followed by solution of the problem in Eqs. 
(101a)-(101c). 

This multi-step approach to generating a first guess for 
the problem in Eqs. (100a)-(100c) may seem complicated, 
but the extra effort can be worthwhile.  The L j

optb̂  
solutions each can be computed in closed form by using a 
singular value decomposition of the 3-by-3 j

DR3  matrix 
followed by solution of a 6th-order polynomial for the 
Lagrange multiplier associated with the constraint in Eq. 
(102c).  This is essentially the same set of operations that 
are implemented in Eqs. (41)-(47) in order to solve the ar̂  
estimation problem in Eqs. (40a)-(40c).  Of course, each 
of these problems must have a unique solution in order to 
be useful for setting up the problem in Eqs. (101a)-(101c). 

The problem in Eqs. (101a)-(101c) also can be solved in 
closed form by computing the eigenvalues and associated 
eigenvectors of a 4-by-4 symmetric matrix.  The problem 
in Eqs. (101a)-(101c) is the classic Wahba problem of 
attitude determination 37.  The eigenvalue-based solution 
method is known as the q-method 36.  The positive 
weights jw  for j = 1, ..., L in Eq. (101b) should be 
chosen to be roughly proportional to the inverse variance 
of the directional accuracy of the corresponding j

optb̂  
estimate from Eqs. (102a)-(102c).  This can be computed 
from the inverse of the Hessian of the Lagrangian 
function associated with the optimal solution to Eqs. 
(102a)-(102c) after projection of that Hessian into the 2-
dimensional tangent space of the normalization constraint. 

Consider now the spoofed case with general ba(t) antenna 
articulation motion.  In this situation, the full attitude is 
not observable because the signals all come from a single 
unknown direction.  Therefore, the relevant free 
parameter in the model is spb̂ .  A useful detection 
statistic can be developed if one estimates this quantity by 
solving the following problem 

find: spb̂  (103a) 

to minimize: ∑ −=
=

L
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subject to: 1ˆ)ˆ( T =spsp bb  (103c) 

This problem can be solved in closed form using the 
following singular decomposition  
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and using the following transformation of non-
homogeneous terms. 
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One performs analogous operations to those in Eqs. (43)-
(47) that solve the similar problem in Eqs. (40a)-(40c).  
Suppose that the resulting solution is called sp

optb̂ . 
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Note: the case of planar articulation presents special 
challenges to these optimization problems.  It is the case 
of purely 2-dimensional ba(t) motion.  Its challenges are 
the possibility of there being two globally optimum 
solutions for the attitude A in Eqs. (99a)-(99c) and the 
certainty of there being two globally optimal solutions for 
the spoofing direction spb̂  in Eqs. (103a)-(103c).  The 
solution pairs will map to each other via reflections 
through the plane of the ba(t) motion.  This happens 
because all of the 3-by-3 matrices j

DR3  are rank 2.  This 
condition causes each of the jb̂  optimization problems in 
Eqs. (102a)-(102c) to have 2 globally optimal solutions, 
and it causes σ3Dc in Eq. (104) to be 0, giving rise to the 
two spb̂  solutions.  If there are L = 3 or more signals and 
if their jr̂  vectors are not all coplanar, which is the case 
for non-infinite Geometric Dilution of Precision (GDOP), 
then the ambiguities of the j

optb̂  vectors should be 
resolvable by the following technique:  One chooses the 

j
optb̂  vectors that approximately match the dot products of 

all pairs of j
optb̂  vectors with the corresponding jr̂  dot 

products and that approximately match the scalar triple 
products of all trios of j

optb̂  vectors with corresponding 
jr̂  scalar triple products.  These disambiguated j

optb̂  
vectors can be used in the approximate q optimization 
problem in Eqs. (101a)-(101c) in order to generate a first 
guess for the exact problem in Eqs. (100a)-(100c).  The 
solution to this latter problem should be unique in this 
case.  Unfortunately, there is no similar method to resolve 
the spb̂  ambiguity.  Fortunately, the ambiguity likely 
does not need resolution because the global minimum 
Eq.-(103b) costs of the true and false spb̂  values will be 
the same and will yield identical values for the spoofing 
detection statistic γ. 

There is another possible way to resolve the ambiguities 
caused by 2-dimensional ba(t) articulations.  It relies on a 
consideration of the gain pattern of the receiver's GPS 
antenna.  Typical gain patterns are hemispherical or 
narrower.  Normally, only one of the two global solutions 
for any given j

optb̂  or for spb̂  will correspond to a signal 
reception direction that lies in a reasonable region of the 
antenna's gain pattern.  Note, however, that this may not 
be the case for a poor combination of ba(t) motion and 
gain pattern.  Therefore, it may behoove the system 
designer to consider this issue when designing the 
articulation system. 

Given the optimal solution Aopt to the attitude 
determination problem in Eqs. (99a)-(99c), or 
equivalently, the qopt solution of Eqs. (100a)-(100c), and 
given the solution sp

optb̂  to the spoofer direction 

determination problem in Eqs. (103a)-(103c), a sensible 
spoofing detection statistic is: 

γ  =  )()ˆ( 33 optDnonsp
sp
optDsp AJJ −b  

 =  )()ˆ( '
33 optDnonsp

sp
optDsp JJ q−b  (106) 

A sensible spoofing detection test selects a threshold 
value γth and determines that no spoofing has occurred if γ 
≥  γth.  A spoofing attack is declared, however, if γ < γth.  
As in all other tests defined in this paper, this test makes 
sense because )ˆ(3

sp
optDspJ b  will tend to be large in the 

non-spoofed case due to the poor fit of its underlying 
spoofed signal model to the non-spoofed data.  The cost 

)(3 optDnonsp AJ , or the equivalent quantity 
)('

3 optDnonspJ q , will tend to be small due to the 
reasonableness of its model.  Therefore, γ will tend to be a 
large positive number in the absence of spoofing.  Under 
a spoofing attack, however, )ˆ(3

sp
optDspJ b  will be small 

due to a good fit between its model and the carrier-phase 
data, while )(3 optDnonsp AJ  and the equivalent 

)('
3 optDnonspJ q  will tend to be large, and γ will tend to be 

a negative number of large magnitude.  A value of γth in 
the vicinity of 0 should suffice to detect spoofing attacks 
with a low probability of false alarm and a low probability 
of missed detection.  This test will not be an optimal 
Neyman-Pearson test due to its use of the optimized 
values optA  and sp

optb̂  instead of integration over all 
possible values.  This test is likely to be nearly as 
powerful as the optimal test, however, due to the efficacy 
of optimization as a proxy for integration. 

Although the specifics of the detection statistic 
calculation change for 2D and 3D antenna motion, the 
basic spoofing detection principle remains the same.  
During a spoofing attack, there is no geometric diversity 
of the direction of arrival of the L signals.  Therefore, to 
within measurement error, all of the carrier phase 
variations caused by the ba(t) motion will be identical for 
all L satellites.  When there is no spoofing, however, the L 
different satellites will, in general, exhibit L distinct 
carrier-phase responses to the ba(t) motion.  Successful 
spoofing detection is a matter of distinguishing between 
these two situations.  The difference of carrier-phase-
model fits between the spoofed and non-spoofed 
assumptions, as embodied in Eq. (106) and in similar 
equations throughout this paper, represents a good 
mechanization for comparing the relative sameness vs. 
diversity of the carrier phase responses to ba(t). 

C. Design of Spoofing Detection Threshold and 
Analysis of Probabilities, Unknown Attitude and 
General 3D Articulation 

The spoofing detection test for the case of general 3D 
antenna articulations requires some design and analysis.  
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The spoofing detection threshold γth must be chosen to 
give a particular false-alarm probability, and the resulting 
probability of missed detection must be analyzed.   For 
the sake of brevity, the required analyses are not carried 
out here.  Instead, general approaches are defined that 
could be used to carry out the analyses. 

The first step in the design and analysis is to characterize 
the non-spoofed and spoofed probability density functions 
for the detection statistic γ, p(γ|A,H0) and p(γ| spb̂ ,H1).  A 
good first step in deriving these functions is to express γ 
as a function of the (3L)-by-1 dimensional noise vector 
ν3D = [ 1

4n ; 1
5n ; 1

6n ; 2
4n ; 2

5n ; 2
6n ; 3

4n ; 3
5n ; 3

6n ; ... ; Ln4 ; 
Ln5 ; Ln6 ].  The noise terms jn4 , jn5 , and jn6  are the ones 

calculated in the alternate version of Eq. (18) that is 
associated with the high-pass-filter QR factorization for 
the 3D problem given in Eq. (97).  This first step will 
probably require approximation to yield a result that is 
valid only to second order in ν3D.  The resulting equations 
will be 3D analogs of Eqs. (49) and (53) that look 
somewhat similar.  The main differences will lie in the 
terms that are quadratic forms in ν3D.  In Eqs. (49) and 
(53), the quadratic form in ν involves a symmetric 
weighting matrix that is the difference between a 
projection matrix onto a 2D subspace, or nearly so, and a 
projection matrix onto a 1D subspace.  In the new 
equations, the matrix difference will be between a 
projection matrix onto a 3D subspace, or nearly so, and a 
projection matrix onto a 2D subspace, or nearly so. 

The most important feature of the resulting γ formulas in 
terms of ν3D  is that they will still be dominated by 
Gaussian terms.  Therefore, Gaussian approximations can 
be developed for p(γ|A,H0) and p(γ| spb̂ ,H1). 

Given p(γ|A,H0), the design of γth will proceed similarly to 
the design used in Subsection V.C.  Given a worst-case 
probability of false alarm αwc, a corresponding worst-case 
attitude Awc will be estimated, and the corresponding 
threshold γth will be determined using αwc and p(γ|Awc,H0) 
in a standard calculation.  Note that the optimization 
problem used to determine Awc will be somewhat more 
complicated than the corresponding problems for the case 
of 1D antenna articulation motion.  It may be advisable to 
solve for an equivalent worst-case true attitude quaternion 
qwc and then use that to compute Awc = A(qwc).  Such an 
approach will reduce the dimensionality of the worst-case 
optimization problem from 9 to 4 while reducing the 
number of nonlinear equality constraints from 6 to 1. 

Given γth and p(γ| spb̂ ,H1), a worst-case false-alarm 
probability will be computable, similar to what has been 
done in Subsection V.C for the unknown attitude case 
with 1D articulation motion.  This will involve an 
optimization problem to determine the worst-case 

spoofing direction vector sp
wcb̂ .  It will be an equality-

constrained optimization that enforces sp
wc

sp
wc bb ˆ)ˆ( T  = 1. 

IX. SPOOFING DETECTION RESULTS USING 
DATA FROM TRUTH-MODEL SIMULATIONS 
AND FROM LIVE-SIGNAL TESTS 

The spoofing detection techniques of Sections IV-VI have 
been tested using truth-model simulation data.  The 
technique of Section VI, coupled with the time phasing 
estimation of Section VII, has also been tested using live-
signal data.  All of these tests involve simple 1-
dimensional ba(t) articulation motion.  No tests have yet 
been implement for general 3D antenna articulation.  All 
of the tests have worked with the GPS L1 C/A-code 
signal, which has a nominal carrier frequency of fL1 = 
1575.42x106 Hz and a nominal wavelength of λL1 = c/fL1 = 
0.190294 m.  All of these tests exhibit very good 
detection power and small probabilities of false alarm 
when using peak-to-peak antenna deflections in the range 
4-6 cm and detection intervals in the range 0.125 to 0.5 
sec.  Representative test results are described in this 
section. 

A. Design of Monte-Carlo Truth-Model Simulation 
Tests 

Two truth-model simulations have been developed, one to 
simulate the non-spoofed beat carrier phase time histories, 
as modeled by Eq. (10), and another to simulate the 
spoofed beat carrier phase histories, as per Eq. (15).  Each 
simulation has used truth values of the quadratic 
polynomial low-pass filter nuisance parameters j

0β , j
1β , 

and j
2β  for GPS satellites j = 1, ..., L.  It also has used a 

truth articulation direction ar̂  and a truth articulation 
amplitude time history )(tρa .  The non-spoofed 
simulations have used truth directions from the satellites 
to the defended receiver jr̂  for j = 1, ..., L, but the 
spoofed simulations have used only a truth value for the 
spoofer-to-receiver unit direction vector spr̂ .  Each 
simulation has generated simulated carrier phase 
measurements j

kφ  at the truth sample times j
midkτ  for k = 

1, ..., Nj and j = 1, ..., L.  Each such measurement has been 
corrupted by zero-mean Gaussian discrete-time white 
noise j

knφ  sampled using a random number generator.  
The standard deviation jσ  of the jth satellite signal's 
noise sequence has been dictated by its carrier-to-noise 
ratio C/N0, as modeled in Eq. (11). 

For each spoofing detection test, the test calculations have 
been supplied with the following data from the truth-
model simulation: j

kφ  and j
midkτ  for k = 1, ..., Nj and j = 

1, ..., L, )(tρanom , jr̂  for j = 1, ..., L, and jσ  for j = 1, 
..., L.  In all non-spoofed cases, the supplied jr̂  direction 
vectors have equaled the truth vectors that have been used 
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in the corresponding truth-model simulation.  In all 
spoofed cases, the supplied jr̂  direction vectors are a 
reasonable fictitious set that the spoofer has led the victim 
receiver to believe as being the directions from actual 
satellites. 

Additional data supplied to the spoofing detection test 
have varied with the test.  In the case of the known-
attitude/known-amplitude tests of Section IV, the 
articulation direction vector ar̂  also has been supplied to 
the detection test calculations, the same one as has been 
used in the truth-model simulation.  For both the known-
attitude/known-amplitude test of Section IV and the 
unknown-attitude/known-amplitude test of Section V, the 
supplied nominal articulation amplitude time history 

)(tρanom  has equaled the truth )(tρa  that has been used 
in the simulation.  For the unknown-attitude/unknown-
amplitude test of Section VI, however, the supplied value 
of )(tρanom  has equaled )(tρa /a, where )(tρa  is the 
truth time history and the value a ≥  1 is the truth 
amplitude rescaling factor.  In no spoofed case has the 
spoofer direction spr̂  been supplied to the spoofing 
detection calculations. 

In each test scenario, the truth-model simulation has been 
run in a Monte-Carlo mode:  Thousands of trials have 
been run with the same input parameters but with 
different random number seeds to generate different 
white-noise sequences j

knφ  for k = 1, ..., Nj and j = 1, ..., 
L.  A spoofing detection statistic has been computed for 
each set of simulated data, and histograms of the statistic 
have been plotted.  Also plotted have been the spoofing 
detection threshold and the predicted theoretical 
probability density functions of the spoofing detection 
statistic for the non-spoofed and spoofed conditions.  
These plots characterize the power of the test and the 
accuracy of the Gaussian approximations used to design 
and analyze the various detection scenarios. 

The tests that have been run have concentrated on cases 
that use L = 6 GPS satellite signals with a distribution of 

jr̂  direction vectors that yields a GDOP of 3.5.  The 
modeled carrier-to-noise ratios range from 38.2 dB-Hz to 
44.0 dB-Hz.  These are somewhat conservative 
assumptions about the number of available satellites, their 
geometric dilution of precision, and their signal strengths.  
This conservatism translates into less detection power for 
a given false-alarm probability than would be available in 
spoofing detection tests that had more satellites, a better 
GDOP, or stronger signals. 

Additional common features of the simulation cases have 
been the form of the )(tρa  articulation time history, the 

duration of the detection data batch, and the sample rate.  
)(tρa  is always an 8 Hz sine wave, and the detection 

covers one full period of its oscillation.  Thus, the total 
detection interval is 0.125 sec.  The accumulation period 

j
cavgΔτ  = 0.001 sec has been used so that each satellite 

contributes Nj = 125 carrier-phase measurements to each 
detection test. 

The decision to use one full period of a sine wave, starting 
at zero phase and ending at a phase of 2π, guarantees a 
significant residual signal component after the high-pass 
filtering associated with the QR factorization in Eq. (17).  
This is true because a full period of a sine wave cannot be 
fit well by the quadratic polynomial that is parameterized 
by its j

0β , j
1β , and j

2β  coefficients.  The presence of 
significant residual articulation signal after high-pass 
filtering is important to achieving a good detection power. 

The peak-to-peak )(tρa  deflections have been varied 
from 4.76 cm to 5.85 cm.  The lower number is exactly a 
quarter of a carrier wavelength.  The higher number is 
about 31% of a wavelength.  As per Eq. (11), C/N0 = 38.2 
dB-Hz at a 1000 Hz accumulation frequency translates 
into a carrier phase measurement error standard deviation 
of jσ  = 0.275 rad (0.0438 cycles).  This standard 
deviation is no greater than 17.5% of the phase effect of 
the peak-to-peak antenna motion.  Therefore, the 
articulation motion should be clearly discernable in the 
data. 

Several truth values have been used for the articulation 
direction vector ar̂  and for the spoofer direction vector 

spr̂ .  In some cases, random values have been chosen for 
these directions.  In other cases, worst-case values have 
been chosen as the truth values.  That is, the truth ar̂  
sometimes has been chosen to equal the solution to the 
worst-case direction problem in Eqs. (59a)-(59c) for the 
situation of known amplitude and unknown attitude.  
Similarly, spr̂  sometimes has been chosen so that η = 

a
sp rr ˆ)ˆ( T  equals the solution to the worst-case dot 

product problem in Eqs. (61a)-(61c). 

B. Monte-Carlo Simulation Test Results 

The Monte-Carlo simulation results for a typical spoofing 
detection test are shown in Fig. 5.  It shows γ detection 
statistic histograms for 10000 Monte-Carlo simulations of 
a non-spoofed case and 10000 other Monte-Carlo 
simulations of the corresponding spoofed case for an 
unknown-attitude/known-amplitude spoofing detection 
test.  This is the test developed in Section V.  Also shown 
are the spoofing detection threshold for a worst-case false 
alarm probability of αwc = 10-5 along with the theoretical 
non-spoofed and spoofed probability density functions for 
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Fig. 5. Monte-Carlo-based and theoretical probability densities of unknown-
attitude/known-amplitude 1D-articulation spoofing detection tests and 
comparison to worst-case detection threshold. 

Fig. 6. Unknown-attitude/Unknown-amplitude 1D-articulation spoofing detection 
test results from Monte-Carlo simulation and theoretical analyses. 
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γ.  Note that the non-spoofed and 
spoofed cases both use the same 

)(tρa  articulation time history and 
the same values of jr̂  for j = 1, ..., L 
for all of their tests.  The peak-to-
peak antenna deflections in )(tρa  
are 4.76 cm, i.e., exactly a quarter of 
the nominal L1 wavelength.  All 
10000 non-spoofed cases use the 
same truth value of ar̂ , and all 10000 
spoofed cases use the same truth 
value of η = a

sp rr ˆ)ˆ( T . 

It is clear from Fig. 5 that the 
spoofing detection test correctly 
classified all 10000 non-spoofed 
cases and all 10000 spoofed cases.  It 
is also clear that the theoretical and 
Monte-Carlo probability density functions are in good 
agreement.  This agreement confirms the reasonableness 
of the Gaussian approximations of ),ˆ|( 0Hp arγ  and 

),|( 1Hp ηγ . 

The truth values of ar̂  and η that have been used to 
generate the data in Fig. 5 are not the worst-case values 
for the given situation.  This is evidenced by two facts:  
The actual probability of false alarm is α = 1.7x10-9 < αwc 
= 10-5, and the actual probability of missed detection is 
PMD = 1.1x10-6 < PMDwc = 1.2x10-5.  Even if ar̂  and η had 
taken on their worst-case values, the resulting detection 
test still would have been very powerful. 

Another typical case is shown in Fig. 6.  This case is 
similar in many respects to that of Fig. 5, except for three 

points:  First, it is for the unknown-attitude/unknown-
amplitude case.  Second, its truth values of ar  = a ar̂ and 
of η = a a

sp rr ˆ)ˆ( T  are the worst-case values for the given 
parameters of this problem.  Third, the )(tρa  articulation 
time history has a slightly larger peak-to-peak deflection, 
5.77 cm, which is 30.3% of the nominal L1 carrier 
wavelength.  Note that the worst-case value of a is 1, i.e., 
the smallest possible value, so that ar  = ar̂ . 

The results for the unknown-attitude/unknown-amplitude 
test in Fig. 6 are very good, and they are comparable to 
those in Fig. 5.  The probability of false alarm is only α = 
αwc = 10-7, and the probability of missed detection is only 
PMD = PMDwc = 1.6x10-7.  Note that the improved worst-
case values for Fig. 6's results vs. those of Fig. 5 are likely 
due to the slightly larger amplitude of the antenna 

articulations. 

All of the other Monte-Carlo tests 
have produced similar good results.  
The largest values of αwc and PMDwc 
have been, respectively, 3.0x10-5 
and 2.8x10-5.  These both occurred 
on the smallest-amplitude case, a 
case with unknown-
attitude/unknown-amplitude and 
with a )(tρanom  peak-to-peak 
articulation of only 4.52 cm.  Even 
these largest probabilities are very 
small.  They are characteristic of 
reliable tests.  All of the tests used 
peak-to-peak antenna motion of 
less than 6 cm and a detection 
interval of 0.125 seconds.  These 
are very powerful tests for a 
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compact system, and they detect spoofing attacks quickly. 

C. Test Scenarios that use Live Data 

Three sets of test have been conducted using live data.  
All of these tests have been conducted using the prototype 
articulation system shown in Fig. 3.  Therefore, it has 
been necessary to use the unknown-attitude/unknown-
amplitude spoofing detection test of Section VI along 
with the Δt0 time phasing estimation pre-processing 
calculations that are described in Section VII. 

Two of the test sets included spoofing or spoofing-like 
signals.  A spoofing-like signal has been generated for 
one set of tests by receiving GPS signals using an outdoor 
antenna, amplifying them, and re-radiating them indoors 
in an anechoic chamber.  Although not true spoofing, this 
configuration has the same signal-in-space geometry that 
is exploited by the present spoofing detection techniques:  
All of the signals come from the common direction spr̂ .  
In this case, the direction points from the re-radiating 
antenna to the defended receiver's articulating antenna, 
which is also inside the anechoic chamber.  The particular 
anechoic chamber that has been used is a NASA facility 
in Wallops Island, Virginia.  This facility has permission 
to re-radiate GPS signals inside the chamber because it 
provides sufficient shielding to prevent RF energy from 
radiating outside of the chamber.  The tests in this facility 
were conducted on April 26, 2012. 

A true spoofing signal has been generated using an 
advanced version of the spoofer described in Refs. 3 and 
4.  It was authorized to broadcast live spoofing signals on 
the night of June 19-20, 2012 at White Sands Missile 
Range, NM (WSMR).  These broadcasts were conducted 
as part of a special series of GPS integrity tests that had 
been arranged by the Department of Homeland Security.  
The prototype spoofing detection system was brought to 
WSMR and tested against some of the spoofing attacks 
that were initiated that night.  It was located in the region 
where the spoofer was targeting victims so that the 
spoofed signals would look realistic.  The prototype 
system was also tested that same night during quite times 
when the spoofer was turned off. 

The third set of tests were for a typical non-spoofed case 
in Ithaca, NY.  This test was conducted on top of a tall 
building on the campus of Cornell University on May 3, 
2012.  Thus, there were two independent sets of data 
under spoofing or spoofing-like conditions and two other 
independent sets of data under non-spoofed conditions. 

Purely for the sake of ease of implementation, the 
prototype system did all of its GPS signal processing and 
spoofing detection calculations in a post-processing 
mode.  The antenna motion was activated by using an 
attached string to cause an initial deflection of the 

cantilevered-beam antenna mount.  Prior to initiating 
motion, a GPS digital storage receiver started operation to 
record the entire L1 signal bandwidth.  The stored RF 
data were later processed on a work station using a C-
language software GPS receiver in order to produce the 
raw beat carrier phase observables j

kφ  for k = 1, …, Nj 
and j = 1, …, L.  The software receiver also produced raw 
signal accumulations, which were used in order to deduce 
each carrier-to-noise ratio (C/N0)j for purposes of 
computing carrier-phase measurement standard deviation 
σ j, as in Eq. (11).  All of the beat carrier phase 
measurements used a nominal accumulation interval of 

j
cavgΔτ  = 0.01 sec.  That is, carrier phase was sampled at 

100 Hz. 

After generation by the software receiver, the raw j
kφ  

measurements were input to the spoofing detection signal 
processing calculations.  These calculations included the 
cycle-slip repair described in Subsection III.A, the high-
pass filtering calculations in Eqs. (17) and (18) of Section 
IV.B, the Δt0 estimation calculations of Subsection VII.A, 
and the spoofing detection calculations of Section VI. 

An additional auxiliary estimation problem had to be 
solved prior to performing the spoofing detection 
calculations:  The shape of the )(tρanom  articulation 
profile had to be estimated.  It was known a priori from 
the vibration theory of linear structures that a good 
approximation of this profile would be a decaying 
sinusoid of the form 

)( 0Δttρanom −   = 

 ]1)sin[( 2
0

)(
0 0 ζωρ ζω −−−−

n
Δtt

a Δtte n  (107) 

where 0aρ  is the initial amplitude, ζ is the damping ratio, 
ωn is the undamped natural frequency, and Δt0 is the time 
phasing variable defined in Section VII.  Unfortunately, 
these quantities were not known ahead of time.  In order 
to do spoofing detection, it was necessary to have good 
estimates of ζ and ωn along with a coarse estimate of Δt0 
and a lower bound for 0aρ . 

Therefore, a pre-processing estimation problem has been 
solved to determine ζ, ωn, and Δt0.  It minimizes the 
following modified version of the Δt0 estimation cost 
function from Eq. (90): 

Jshape(ζ,ωn,Δt0)  =  
2
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Fig. 7. Detrended carrier-phase data for multiple satellites for a typical non-spoofed 
case using the prototype 1-dimensional antenna articulation system. 
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where ),;(ˆ
0 n

j Δt ωζd  is the same function that is defined 
by Eqs. (91b) & (92b), but with )( 0Δttρa −  in Eq. (92b) 
replaced by )( 0Δttρanom −  from Eq. (107).  Note that this 
cost function does not depend on the unknown 
articulation amplitude 0aρ  because the ),;(ˆ

0 n
j Δt ωζd  

normalization calculations in Eq. (91b) remove the 
dependence on 0aρ .  The corresponding ),;(ˆ

0 n
j Δt ωζd  

T
0 )],;(ˆ[ n

j Δt ωζd term in Eq. (108) effectively estimates 
the phase time history scaling quantities 

0
T2 ˆ)ˆ( aa

j ρλ
π rr−  for j = 1, …, L as independent 

unknowns and removes them from the problem.  The 
minimization of Jshape(ζ,ωn,Δt0) starts with reasonable first 
guesses of ζ, ωn, and Δt0 as determined by operator 
inspection of the corresponding j

kφ  vs. j
midkτ  time 

histories, and it iterates to compute improved estimates 
using Newton’s method. 

Typical detrended carrier-phase data used in the 
estimation of ζ, ωn, and Δt0 appear in Fig. 7.  These data 
come from one of the non-spoofed detection tests 
conducted at WSMR.  The initial string pull starts at t = 
0.3 sec.  The release of the string and the start of the 
damped oscillations occur as t = 2.2 sec.  It is obvious that 
the subsequent carrier phase oscillations during the 
interval from t = 2.2 sec to t = 4 sec are modeled 
reasonably well by the decaying sinusoid in Eq. (107).  In 
one curve fitting scenario, all of the data from t = 2.35 sec 
to t = 3.63 sec were used, which constitutes 3 full cycles 
of the decaying oscillations.  The resulting estimates of 
the damping ratio and the undamped natural frequency are 
ζ = 0.0581 and ωn = 14.8405 rad/sec.  This gives a 
damped period of 0.4241 sec.  The damping ratios and 
undamped natural frequencies estimated for all the 
various data sets of the prototype system span the ranges 

ζ = 0.0137 to 0.1164 and ωn = 10.9982 to 15.2119 
rad/sec.  The lower frequency cases in the range ωn = 
10.9982 to 11.9545 rad/sec occurred in the April and May 
tests in Wallops Island and Ithaca.  The higher frequency 
cases in the range ωn = 14.7732 to 15.2119 rad/sec all 
occurred at WSMR.  This frequency jump was the result 
of a change in the cantilever beam conditions that caused 
a slight stiffening of its effective spring constant.  The 
highest damping ratios, in the range ζ = 0.0751 to 0.1164, 
correspond to WSMR cases that use only the last one or 
two oscillation periods before the oscillations stop 
altogether, e.g., between t = 3 and t = 3.85 sec in Fig. 7.  
The larger effective damping ratios for lower amplitude 
oscillations presumably are due to the presence of 
nonlinear static friction in the system.  This indicates that 
spoofing detection tests conducted using the later 
oscillations of the prototype system might not perform 
exactly as modeled because the nonlinear friction effects 
become more important, and they are not modeled as well 
by the decaying sinusoidal time history in Eq. (107). 

The carrier phase time histories in Fig. 7 serve to illustrate 
this paper’s means of spoofing detection.  It is obvious 
from this figure that all of the L = 8 satellite signals 
exhibit similar decaying sinusoid time histories with the 
same phase, except for a possible sign change.  This is 
exactly what is predicted by the 1-dimensional non-
spoofed carrier phase model in Eq. (10).  Presumably the 
differing signs and amplitudes of the signals are 
explainable in terms of the differing values of a

j rr ˆ)ˆ( T  
for some reasonable estimate of ar̂ .  In all of the spoofed 
cases, however, the detrended decaying sinusoids for the 
different signals all have the same amplitude and sign 
because the a

sp rr ˆ)ˆ( T  term in Eq. (15) is the same for all 
signals.  This situation is shown in Fig. 8 for a spoofed 

case recorded at WSMR. 

The task of the spoofing detection 
calculation is to test whether 
sameness is the best model or 
whether a better model is one of 
differences.  The former 
explanation indicates spoofing, but 
the latter indicates no spoofing.  In 
the latter case, however, these 
differences must be explainable in 
terms of differing a

j rr ˆ)ˆ( T  values 
for differing signal indices j and for 
some reasonable ar̂ estimate.  The 
other carrier-phase-based spoofing 
detection tests that have been 
proposed, e.g., those of Refs. 21 
and 22, give no indication that one 
can detect GNSS spoofing by 
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Fig. 8. Multiple satellites’ detrended carrier-phase data for a typical spoofed case 
using the prototype 1-dimensional antenna articulation system. 
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exploiting the obvious difference between the diversity of 
carrier phase time histories in Fig. 7 and the uniformity in 
Fig. 8, especially if the diversity in Fig. 7 correlates well 
with the known antenna motions. 

D. Results of Live-Data Tests 

The live-data spoofing detection tests have all proved 
successful.  A total of 4 non-spoofed cases and 4 spoofed 
cases have been analyzed, and the correct decision about 
the presence of spoofing has been reached in every case.  
All cases have used the worst-case probability of false 
alarm value αwc = 10-6, and the largest worst-case 
probability of missed detection has been PMDwc = 1.6x10-6. 

Peak-to-peak antenna deflections in the non-spoofed 
cases, where they could be directly estimated, have 
ranged from 4.01 cm (21% of λL1) to 13.55 cm (71% of 
λL1).  The spoofed-case amplitudes have been appraised 
as having been commensurate based on the known 
consistency of the initial impulses, and the corresponding 
η dot-product/amplitude estimates have been consistent 
with this range of peak-to-peak amplitudes.  The tests 
with the largest peak-to-peak articulation amplitudes used 
data from the start of an articulation time history, e.g., the 
first full oscillation periods in Figs. 7 and 8.  The tests 
with the smallest amplitudes used one of the last full 
oscillations, e.g., the oscillation starting at t = 3.43 sec in 
Fig. 7 and the one starting at t = 2.11 sec in Fig. 8.  A test 
using one of the later oscillations has been run for each of 
the 8 cases, and the non-spoofed later oscillation peak-to-
peak amplitude estimates range from 4.01 cm 5.9 cm.  
The corresponding minimum peak-to-peak deflections, as 
determined by the a ≥  1 amplitude constraint and the 

)(tρanom  time histories, ranged from 2.86 cm to 4.21 cm.  

Thus, the system can work 
effectively with small antenna 
deflections. 

Each test used approximately one 
period of the decaying sinusoidal 

)(tρanom , yielding detection 
intervals ranging from 0.39 sec to 
0.57 sec.  The simulation test 
results of Subsection IX.B imply 
that shorter intervals would have 
sufficed had the articulation system 
been designed to vibrate at a higher 
frequency. 

The number of satellites available 
for the tests ranged from L = 6 to 9, 
and the corresponding GDOP 
values ranged from 1.77 to 4.90.  

The carrier-to-noise ratios ranged from C/N0 = 30.6 to 
51.3 dB-Hz, with the mean values over all the satellites in 
a given test ranging from (C/N0)avg = 39.3 to 47.3 dB-Hz.  
The power of the test is expected to increase with 
increasing L, with increasing (C/N0)avg, and with 
increasing minimum peak-to-peak antenna deflection, and 
to decrease with increasing GDOP.  In fact, the weakest 
test, the one with PMDwc = 1.6x10-6, had the minimum 
number of satellites of any of the cases, L = 6 satellites, 
and it had the second highest GDOP, 4.35.  Its (C/N0)avg 
was 44.3 dB-Hz.  It also had almost the smallest 
minimum peak-to-peak deflection constraint as defined by 
its )(tρanom .  The other case with L = 6 satellites had 
almost the same (C/N0)avg, 44.2 dB-Hz, a larger minimum 
peak-to-peak deflection, 3.99 cm, and a lower GDOP, 
3.86.  The larger minimum deflection and the lower 
GDOP explain its lower PMDwc.  The other case with 
slightly higher GDOP, 4.90, had a larger number of 
satellites, L = 7, a larger (C/N0)avg, 47.3, and a larger 
minimum peak-to-peak deflection, 4.21 cm.  These 
differences explain its decreased PMDwc. 

The detection results for a typical non-spoofed case are 
shown in Fig. 9.  The test was made at WSMR when the 
spoofer was not broadcasting.  This case corresponds to 
the weakest detection of all 8 cases, both spoofed and 
non-spoofed, the one that yielded PMDwc = 1.6x10-6.  The 
spoofing detection statistic γ is plotted along the 
horizontal axis.  The vertical black dashed line shows the 
actual computed value of γ from the GPS data.  The 
vertical dash-dotted magenta lines show the worst-case 
threshold values γth as computed for the following three 
different estimates of Δt0: t0opt, Δt0opt+2σΔt0opt, and Δt0opt-
2σΔt0opt, as per the analysis described in Subsection VII.C.  
The left-most of these three vertical lines constitutes the 
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Fig. 9. Spoofing detection statistic, threshold, and related probability density 
functions for a typical non-spoofed case with live data. 
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Fig. 10. Performance of a typical spoofed case with live data: spoofing detection 
statistic, threshold, and related probability density functions. 

-250 -200 -150 -100 -50 0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

gamma

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 
p(gamma|aetaopt,H1), estimated spoofed cases
p(gamma|raopt,H0), estimated non-spoofed cases
p(gamma|aetawc,H1), worst-case spoofed-cases
p(gamma|rawc,H0), worst-case non-spoofed cases
gammath threshold values, alphawc = 1.0e-06 & PMDwc = 7.0e-08
gamma detection statistic from 0.42165 sec of data

detection threshold.  Given that 
the three candidate thresholds lie 
virtually on top of each other, the 
choice of the lowest is somewhat 
immaterial.  The vertical dashed 
black line lies very far to the 
right of the three vertical dash-
dotted magenta lines.  Therefore, 
this detection is clearly 
successful in ruling out a 
spoofing attack. 

Figure 9 also plots various 
relevant probability density 
functions.  Consistent with the 
analysis of Subsection VII.C, 
these are plotted in triplets, one 
for each of the elements of the 
triplet of candidate Δt0 estimates: 
t0opt, Δt0opt+2σΔt0opt, and Δt0opt-
2σΔt0opt.  The three dotted cyan 
probability density functions 
represent the worst-case non-
spoofed situation, and the three 
dash-dotted red probability 
functions represent the 
corresponding worst-case 
spoofed situations.  Obviously, 
there is sufficient separation 
between these sets of probability 
density functions to yield a 
powerful detection test, as 
evidenced by the ability to draw 
the dash-dotted magenta 
detection thresholds in a way that 
clearly separates the red and 
cyan distributions.  Further 
confirmation of good detection 
power is provided by the low 
worst-case probabilities of false 
alarm and missed-detection. 

The three dashed green curves are the non-spoofed 
p(γ|ra,H0) probability density functions using the 
estimated value of ra in place of the worst-case value.  
The solid blue curves are the spoofed p(γ|η,H1) 
probability density functions using the estimated value of 
η in place of the worst-case value.  Of course, the ra 
estimate used to generate the dashed green curves has 
much more meaning than does the η estimate used to 
generate the solid blue curves because this is a non-
spoofed case.  The important point of these latter 
probability density plots is that the actual γ, the vertical 
dashed black line, is believable as a sample from all three 
of the dashed green probability density functions.  This 
fact indicates that the signal models used to generate the 
hypothesis test calculations are reasonable. 

Figure 10 plots detection results for a typical spoofed 
case.  All of the definitions and line/curve colors are the 
same in Fig. 10 as in Fig. 9.  The only major difference is 
that the vertical dashed black line plotted at the calculated 
detection value γ now lies far to the left of the 3 dash-
dotted magenta vertical lines, the three candidate γth 
detection threshold values.  The fact that γ < γth by a wide 
margin indicates a very reliable detection of the spoofing 
attack.  The worst-case spoofed and non-spoofed 
probability density functions are widely separated, 
allowing the selection of a γth threshold value that yields 
both a low worst-case probability of false alarm and a low 
worst-case probability of missed detection.  The overlap 
between the vertical dashed black detection statistic and 
the solid blue probability density functions indicates the 
reasonableness of the spoofed hypothesis that γ is a 
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sample from one of these 3 p(γ|ηopt,H1) distributions.  
Note that this case has L = 6 GPS signals, (C/N0)avg, = 
44.2 dB-Hz, GDOP = 3.86, and a minimum peak-to-peak 
antenna articulation of 3.99 cm. 

In summary, the live-data tests of this system indicate 
excellent performance.  The correct situation of spoofing 
or non-spoofing has been identified unambiguously in all 
cases considered.  Furthermore, small antenna motions, in 
the range 4-6 cm peak-to-peak, and short data batches, 
0.57 sec or less, yield very powerful spoofing detection 
tests. 

X. DISCUSSION OF SYSTEM PROPERTIES, 
POTENTIAL ENHANCEMENTS, AND MERITS 
RELATIVE TO IMU-BASED METHODS 

A. Non-Detectable Spoofing Cases 

There exist special cases in which some or all of this 
paper’s spoofing detection methods would not work.  The 
basic method relies on geometric diversity of the terms 

)()ˆ( TT2 j
midkak

j A τλ
π br−  in Eq. (8) for j = 1, …, L for the 

non-spoofed case as compared to lack of diversity in the 
term )()ˆ( TT2 j

midka
sp A τλ

π br−  in the spoofed case, Eq. 
(13).  In perverse situations, however, the vectors jr̂  may 
not have sufficient diversity.  Of course, if L = 1, if there 
is only one available signal, then there is no diversity, and 
this method fails.  Even if L = 2 GNSS satellites, 
however, the one-dimensional version of this system lacks 
sufficient diversity.  Recall that ba(t) = )(ˆ taaρb  when the 
articulations are 1-dimensional.  In this case, it is possible 
to find a vector ar̂  = aA b̂T  that solves the non-spoofed 
estimation problem in Eqs. (40a)-(40c) to yield a low cost 
even during a spoofing attack.  This solution will satisfy 

arr ˆ)ˆ( T1  = arr ˆ)ˆ( T2  by lying in the plane exactly between 
1r̂  and 2r̂ .  In fact, poor spoofing detection power will 

occur in any case where there exists the possibility of 
finding an ar̂  such that all values of a

j rr ˆ)ˆ( T  for j = 1, 
…, L are equal or nearly so.  It is easy to show, however, 
that any such case yields a very high GDOP, an infinite 
GDOP if a

j rr ˆ)ˆ( T  for j = 1, …, L can be exactly equal for 
some choice of ar̂ .  A very large GDOP, however, would 
preclude the spoofer from fooling the victim into 
confidently computing a false position/time solution.  
Therefore, it is unlikely that a near-infinite GDOP case 
would occur in practice.  Even if a spoofer were to mount 
such an attack, this paper’s spoofing detection algorithm 
would realize that it was incapable of discerning whether 
or not an attack was occurring:  It would not be able to 
achieve both a low false-alarm probability and a low 
probability of missed detection. 

B. Advantages of 2D and 3D Antenna Articulations 

There are a two important advantages to using a version 
of this spoofing detection method that employs 2D or full 
3D antenna articulations ba(t).  One advantage occurs in 
the case of a low number of signals.  As mentioned in the 
preceding subsection, spoofing detection will be 
impossible using this paper’s 1-dimensional techniques if 
L = 2 available GNSS signals or if GDOP is infinite or 
very large.  In the case of 2-dimensional or 3-dimensional 
antenna articulations, however, it becomes much easier to 
detect spoofing in these situations. 

The enhanced spoofing detection occurs because the 
detection calculations can estimate individual jb̂  unit 
direction vectors by solving the problem in Eqs. (102a)-
(102c).  Without spoofing, the relative directions between 
the estimated j

optb̂  vectors should be the same as the 
relative directions between the corresponding known jr̂  
vectors, to within the estimation accuracies of the j

optb̂  
vectors.  The sameness of the relative directions can be 
explored by comparing dot products between various 
pairs ( j

optb̂ , l
optb̂ ) the corresponding pairs ( jr̂ , lr̂ ) and by 

comparing scalar triple products between non-coplanar 
trios ( j

optb̂ , l
optb̂ , m

optb̂ ) and the corresponding trios 
( jr̂ , lr̂ , mr̂ ).  These dot products and scalar triple 
products are directly comparable because they are 
independent of the unknown coordinate frame rotation 
that distinguishes jb̂  from its corresponding jr̂ .  Any 
significant difference in dot products or scalar triple 
products indicates a spoofing attack.  Using this approach, 
an attack should be detectable even when L = 2 vectors if 

1r̂  and 2r̂  differ sufficiently in their directions. 

The use of 2D and 3D ba(t) articulations also can help 
address the problem of partial spoofing, i.e., of spoofing 
only some signals.  In that case, the spoofer would almost 
certainly have to broadcast its signal from an spr̂  
direction which differed from one or more of the spoofed 

jr̂  directions that the spoofer had implied to the victim.  
The victim’s solution of Eqs. (102a)-(102c) would 
generate a corresponding j

optb̂  that would equal spAr̂  
instead of jAr̂ .  This difference of directions would be 
detected in dot-product or scalar-triple-product 
comparisons that involved j

optb̂  on one side of the 
calculations and jr̂  on the other side. 

C. Impact of Multipath Errors 

In theory, carrier-phase multipath has the potential to 
impact this paper’s spoofing detection in a negative 
manner.  It is a well known fact that carrier-phase 
multipath errors can be on the order of 0.5 cm or more 
and that they can negatively impact the closely related 
technology of GNSS-based attitude determination 38.  No 
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Fig. 11. Experimental evidence of carrier-phase multipath: correlation of 
accumulation amplitude variations with antenna articulation variations. 
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explicit analysis has been made 
of the potential impact of 
multipath on this system.  There 
is, however, strong experimental 
evidence that the impacts are 
manageable. 

In two of the three live-data tests 
of this system, significant 
carrier-phase multipath effects 
have been evident.  The two tests 
in question are the non-spoofed 
tests in Ithaca, NY and the 
spoofed and non-spoofed tests at 
WSMR.  The indications of 
strong carrier-phase multipath 
consisted of strong variations of 
the received signal power that 
were highly correlated with the 
decaying sinusoidal antenna 
articulation motions.  Such variations are depicted in Fig. 
11.  This figure plots the amplitude time histories of the 
GPS receiver’s [Ipk; Qpk] prompt accumulation vectors 
that correspond to the detrended carrier phase time 
histories in Fig. 7.  It is clear from the figure that PRNs 
04, 10, and 29, the dash-dotted red curve, the dotted black 
curve, and the dotted magenta curve, all show significant 
exponential decays that correlate closely with the 
exponentially decaying carrier phase time histories of Fig. 
7.  The largest zero-to-peak amplitude variations of the 
dotted magenta curve equal 30% of its nominal level. 

The most reasonable explanation for the amplitude 
variations in Fig. 11 is that of alternating constructive and 
destructive interference between the direct signal and a 
significant multipath signal.  One might postulate that 
variations in antenna gain pattern could have caused these 
fluctuations.  The actual rotations of the antenna gain 
pattern were small, however, and it is not believable that 
the resulting gain fluctuations along any fixed line-of-
sight could have been large enough to cause that 
oscillations observed in Fig. 11. 

The following fact further supports the multipath 
explanation for the oscillations in Fig. 11:  The anechoic 
chamber data taken at NASA Wallops displayed no such 
amplitude oscillations.  This is exactly what one would 
expect if the oscillations were caused by multipath 
because an anechoic chamber has very low multipath. 

One would expect that the corresponding multipath-
induced carrier-phase variations would be commensurate 
in a relative sense.  Thus, the peak carrier phase multipath 
errors for the dotted magenta curve, PRN 29, might be as 
large as 0.3 rad = 0.048 cycles at the start of the antenna 
oscillations.  Fortunately, this level of multipath error is 
significantly smaller than the beat carrier phase variations 
that were caused by the antenna motion.  As per Fig. 7, 

these were about 0.6 cycles peak-to-peak for PRN 29 at 
the outset of the antenna vibrations. 

None of the spoofing detection tests suffered any 
discernible ill effects from the apparent presence of 
significant multipath error.  All of them produced 
reasonable detection statistics, as evidenced in Figs. 9 and 
10 and in similar figures for other cases. 

The only apparent effect of multipath was an error in 
estimated antenna articulation direction aoptr̂  = 

aoptr / aoptr .  For a non-spoofed test in Ithaca, NY.  The 
prototype antenna articulation system of Fig. 3 had been 
set up to produce an ar̂  articulation direction that was 
horizontal.  The estimated aoptr̂ , however, was tilted 
about 8 deg away from horizontal.  This apparent tilt may 
have been the result of carrier-phase multipath.  
Fortunately, it did not adversely impact the detection 
technique’s ability to rule out the possibility of a spoofing 
attack. 

D. Possible Improvements to Detect Advanced 
Spoofing Attacks 

This paper's new spoofing detection technique and its 
associated hypothesis tests make specific assumptions 
about the spoofer.  These assumptions could be violated.  
Likely violations should be considered in order to develop 
enhancements to the basic system described here. 

Two possible violations to the assumptions of the 
preceding analysis seem obvious.  One is that the spoofer 
might not spoof all of the GNSS signals.  In that case, the 
spoofed signals would all have identical detrended 
carrier-phase time history responses to the antenna 
articulation ba(t), as in Fig. 8, but the non-spoofed signals 
would have different responses.  This situation has 
already been observed in one of the spoofed cases from 
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WSMR.  In that case, one signal could not be spoofed 
because the receiver/spoofer of Refs. 3 and 4 could not 
receive that particular low-elevation signal in order to 
know how to spoof it.  The fact that this signal was not 
being spoofed was obvious, partly because it was much 
weaker than the spoofed signals, but mostly because its 
detrended carrier phase time history diverged from that of 
all the other signals.  Its signal was not used in the 
spoofing detection calculation because of this difference. 

The obvious upgrade needed to the present spoofing 
detection system in response to a mixture of spoofed and 
non-spoofed signals is to allow for multiple spoofed 
hypotheses in which only certain subsets of the signals are 
spoofed.  Essentially, that upgrade has been implemented 
“by hand”, in the WSMR test noted above.  It should not 
be very difficult to implement some sort of combinatorial 
analysis of the different possibilities for sets of spoofed 
and non-spoofed signals and to apply that analysis as an 
outer loop wrapped around this paper’s basic spoofing 
detection calculations. 

Note, however, that spoofing of only a subset of the 
GNSS signals presents a problem to the spoofer as well.  
Unless the spoofer is very clever, subset spoofing will 
lead to pseudorange inconsistencies that are easily 
detectable by standard RAIM methods.  It is not clear 
how a clever spoofer could spoof only a small subset of 
the signals, avoid RAIM detection, and still cause the 
victim to compute an erroneous position or time.  If the 
spoofer were to spoof most of the signals, then the 
number of combinations of potentially spoofed signals 
that would need to be analyzed by this paper’s techniques 
would not be very large, and the detection would not be 
difficult.  Of course, this discussion presumes that the 
present system would be implemented in conjunction with 
a traditional RAIM detection method based on checking 
for pseudorange consistency. 

A second possible violation of this paper’s spoofing 
detection assumptions is the possibility of the spoofer 
generating high-frequency dynamic carrier phase 
variations on the spoofed signals, variations that differ for 
each GNSS signal and that have frequency content which 
can pass through the high-pass filter calculations 
implemented in Eqs. (17) and (18).  In effect, the spoofer 
would vary each if its spoofed j

kr  satellite-to-victim-
receiver vectors in Eq. (12) in a high-frequency manner 
that sought to confuse the spoofing detection calculations.  
The result would be a modified version of the spoofed 
carrier-phase model in Eq. (13): 

j
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where the new component )( j
midk

j
spΔ τφ  would be the 

high-frequency term.  The spoofer’s best strategy for 
avoiding detection would be to make this term equal the 
difference between the non-spoofed carrier phase in Eq. 
(9) and the simple spoofed phase in Eq. (13): 

)( j
midk

j
spΔ τφ   =  )(])ˆ()ˆ[(2 TTT j

midka
spj A τ

λ
π brr −−  

  (110) 
This strategy could be implemented perfectly only if the 
spoofer knew the antenna articulation motion in the 
reference coordinates, )(T j

midkaA τb .  If the spoofing 
detection system placed an optically opaque radome over 
the entire antenna and articulation system, then the 
spoofer would be prevented from obtaining this 
information. 

In the absence of knowledge of )(T j
midkaA τb , the spoofer 

would have to guess suitable )( j
midk

j
spΔ τφ  time histories 

that might serve to confuse the spoofing detection system.  
If it knew a priori the frequency, amplitude, and direction 
of a sinusoidal ba(t) articulation time history, then it might 
try to guess at the time history's phasing and thereby have 
a chance of accurately reproducing )(T j

midkaA τb .  A 
good choice of ba(t) for the spoofing detection system, 
one that randomized its motions at least to the extent of 
randomizing the phase of sinusoidal oscillations, would 
neutralize the effectiveness of any attempt to defeat its 
detection strategy by mimicking )(T j

midkaA τb . 

Nevertheless, an improved spoofing detection test might 
want to consider the possibility of high-frequency 

)( j
midk

j
spΔ τφ  signals being generated by a spoofer.  If the 

detection system is able to conceal the true ba(t) from the 
spoofer, through physical covering and through 
randomization of the motion, then the principle effect of 
any )( j

midk
j

spΔ τφ  will be to spread out the spoofed-case 
probability distribution for the spoofing detection statistic, 
p(γ|H1).  That is, the red/magenta probability distributions 
in Figs. 5 and 6 and the red and blue probability 
distributions in Figs. 9 and 10 will be wider.  This 
situation will lead to larger probabilities of missed 
detection.  A careful consideration of possible spoofer 
strategies for choosing )( j

midk
j

spΔ τφ , especially worst-
case strategies, could be used to generate spoofing 
detection tests that still had reasonably low probabilities 
of false alarm and missed detection.  It is likely that all 
such tests will still involve consideration of the non-
spoofed carrier-phase model in Eq. (10) or similar 
equations and the posing and solution of non-spoofed 
estimation problems, as in Eqs. (40a)-(40c) and (66a)-
(66c).  Although the spoofed carrier phase model will 
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have to be augmented, as in the change from Eq. (13) to 
Eq. (109), the spoofed-case model will still involve the 
unknown spoofer direction spr̂  and the unknown vector 
dot product a

sp A br ˆ)ˆ( TT  or some related quantity.  The 
spoofing detection statistic will probably still involve 
some sort of optimization in order to account for the 
parameterized effect on the spoofed carrier phases of the 
unknown spoofer direction. 

The main difference for the detector in the case of 
spoofer-generated )( j

midk
j

spΔ τφ  signals is that the carrier-
phase-sameness paradigm for the spoofed case, as 
illustrated in Fig. 8, will no longer apply.  There will still 
be a portion of the spoofed carrier-phase variations that is 
the same for all spoofed signals.  It will still be correlated 
to the antenna articulation motions ba(t), but there will be 
another component that varies between signals.  The 
spoofing detection will rely on the fact that these 
differences will not be correlated to the ba(t) variations, in 
distinction to the differences that exist in the non-spoofed 
case.  Straightforward enhancements to the present 
methods can be used to mechanize the posing and 
answering of the one important question:  Do the 
correlations between the measured beat carrier-phase 
variations and the known ba(t) variations indicate real 
GNSS signals or a spoofing attack? 

E. Merits in Comparison to Existing IMU-Aided 
Spoofing Detection Approaches 

The system developed in the present paper has some 
similarities to IMU-based methods, such as those 
described in Refs. 21 and 22, but it has several advantages 
over such methods.  First, it can be implemented in a 
fixed-base installation by adding a device to create the 
required ba(t) motions and to sense them, e.g., a solenoid 
and a linear encoder. 

A second improvement is a difference from IMU-based 
methods’ presumption that some sort of navigation filter, 
perhaps an extended Kalman filter, is estimating the 
vehicle position and attitude.  IMU-based spoofing 
detection methods rely on this navigation filter’s 
estimated direction cosines matrix A.  The present method 
forms its own independent estimate of A or of ar̂  = aA b̂T  
in a globally convergent manner.  There is no possibility 
that failure or inaccuracy of a full navigation filter could 
deteriorate its performance. 

A third advantage of the new detection approach lies in 
the design of its test statistic.  IMU-based approaches tend 
to rely on a general residuals test in the navigation filter.  
In the present context, this amounts to considering only 
whether a cost such as )ˆ( anonspJ r  in Eq. (40b) is small 

enough.  The present method also seeks to exploit the fact 
of sameness in the ba(t)-correlated parts of the carrier 
phase variations during a spoofing attack.  Minimization 
of the cost function in Eq. (21) represents an example of 
this approach.  By considering both )ˆ( aoptnonspJ r  from 
Eq. (40b) and )( optspJ η  from Eq. (21), the spoofing 
detection power of any given test can be increased 
relative to a test that considers only the residual errors 
relative to a non-spoofed signal model.  Also, there 
appears to be little or no literature for the IMU-based 
approaches that discusses how to design a spoofing 
detection threshold for a given probability of false alarm, 
how to compute the corresponding probability of missed 
detection, or how much motion and time are needed to 
achieve reasonably low probabilities of false alarm and 
missed detection. 

Another advantage of the present system is that it could 
be used on an UAV without the need for any inertial 
measurements.  Rather than using an IMU to infer 
antenna motions ba(t), a system based on the new 
approach could use high-frequency dithering of one or 
more UAV control inputs in order to create a suitable 
ba(t).  Given known control input dithering signals, ba(t) 
could be inferred from the transfer functions of a dynamic 
model of the UAV.  This could be especially effective if 
the GNSS antenna were mounted near a wing tip and if 
the aileron input were the dithered control.  Alternatively, 
the antenna could be mounted on the tail, and the elevator 
could be dithered.  It is likely that an unknown scaling 
factor a would have to multiply a known nominal banom(t) 
in order to model the true ba(t), but this type of re-scaling 
approach is already covered in Section VI. 

Yet another advantage over IMU-based methods concerns 
the particular carrier phase measurement that gets used.  
A tightly coupled GPS/IMU system feeds the GPS 
observables, including pseudorange and possibly beat 
carrier phase, into the Kalman filter.  This is the type of 
system envisioned in Refs. 21 and 22.  Unfortunately, the 
beat carrier phase used is usually that produced by the 
carrier NCO.  The special processing of Ipk and Qpk 
accumulations associated with Fig. 4 and Eq. (3) is not 
used.  Therefore, the finite bandwidth of the PLL can 
degrade the ability of this system to discern the high-
frequency carrier-phase variations, the ones whose 
differences between the non-spoofed and spoofed cases 
are central to spoofing detection.  In addition, the ability 
to detect and remove cycle slips, as outlined in Subsection 
III.A, can be important to the success of carrier-phase-
based spoofing detection when high-frequency antenna 
motions are used.  Thus, it is unclear that a tightly 
coupled GPS/IMU system could be relied on to produce 
the most useful beat carrier phase information for 
purposes of spoofing detection. 
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An ultra-tightly-coupled GPS/IMU system should have 
none of these difficulties due to its use of the raw Ipk and 
Qpk accumulations as its Kalman filter observables.  The 
processing suggested in Refs. 21 and 22 and similar 
proposals, however, does not envision using an ultra-
tightly-coupled GPS/IMU system for spoofing detection. 

One more advantage of the present method is its reduced 
susceptibility to a very sophisticated spoofing attack.  In 
theory, a sophisticated spoofer could aim a high-
bandwidth relative position sensor at a victim UAV's 
GNSS antenna.  It could sense the high-frequency 
component of the actual antenna motions and use that 
data to synthesize the equivalent of the )( j

midk
j

spΔ τφ  
spoofing signal given in Eq. (110).  It would only need to 
synthesize the correct )( j

midk
j

spΔ τφ  in the bandwidth that 
was above the effective drift bandwidth of the IMU.  
Below that bandwidth, it could spoof the signal at will.  
Such an attack would go completely undetected by any 
IMU-based single-antenna system.  If the present 
approach were used with concealed ba(t) motions, as 
under an optically opaque radome, then this new approach 
would not have the same vulnerability. 

Of course, if an IMU were present on a UAV, its outputs 
could be used to aid in the determination of the high-
frequency components of ba(t).  Such an approach would 
not need to run the IMU data through a full navigation 
filter in order to do GNSS spoofing detection.  The high-
pass pre-filtering calculations of Eqs. (17) and (18) and 
the attitude estimation calculations in, for example, Eqs. 
(40a)-(40c) or (99a)-(99c) would obviate the need for data 
from a full navigation solution. 

XI. SUMMARY AND CONCLUSIONS 

This paper has developed, analyzed, and investigated a 
new method to detect spoofing of GNSS signals.  It relies 
on measurements of the beat carrier phase of multiple 
GNSS signals and on the impact on these measurements 
that is caused by intentional high-frequency antenna 
motion.  Dithering motion of a victim receiver's antenna 
could be implemented by a solenoid, a cantilevered beam, 
or dithering of the controls of a UAV.  After detrending of 
the beat carrier phase variations using a high-pass filter, 
they can be matched to models of their expected 
dependence on the known antenna motion.  The model for 
the non-spoofed case shows differing effects of the 
antenna motion on the signals, but the spoofed case yields 
identical effects due to spoofing geometry in which all of 
the false signals originate from a single spoofer 
transmission antenna.  Spoofing detection hypothesis tests 
have been developed by comparing the two models' 
ability to fit the measured data.  Some of these tests 
involve auxiliary estimation of attitude or attitude-like 
parameters of the user system in lieu of a priori attitude 
information.  Precise detection tests have been developed 

with spoofing detection thresholds that respect upper 
limits on probabilities of false alarm or on worst-case 
probabilities of false alarm.  These tests also allow 
analysis to determine probabilities of missed detection or 
worst-case probabilities of missed detection. 

The new GNSS spoofing detection techniques have been 
tested both with Monte-Carlo simulations and with live 
data.  One set of live-data tests evaluated the new 
techniques against a new sophisticated type of 
receiver/spoofer, one that mimics all visible signals in a 
way which foils standard receiver autonomous integrity 
monitoring techniques.  These tests were part of a 
specially authorized event run at the White Sands Missile 
Range in New Mexico under the auspices of the 
Department of Homeland Security.  The new spoofing 
detection methods consistently yield false alarm 
probabilities and missed detection probabilities on the 
order of 10-5 or lower when working with typical numbers 
of GPS signals available at typical patch-antenna signal 
strengths.  The needed antenna articulation peak-to-peak 
deflections are modest, on the order of 4-6 cm.  The tests 
at White Sands Missile Range constitute the first known 
demonstration of practical detection of live-signal 
spoofing attacks mounted against a civilian GNSS 
receiver by a dangerous new generation of 
receiver/spoofers. 
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