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Abstract
A batch filter has been designed to autonomously

estimate the orbit of a LEO spacecraft using data only
from a magnetometer and a sun sensor.  The goal of
this study has been to prove the feasibility of a
proposed low-cost, moderate-accuracy autonomous
orbit determination system.  The system uses a batch
filter to estimate the Keplerian orbital parameters, a
drag parameter, magnetometer biases, and corrections
to the Earth's magnetic field.  It does this by
minimizing the square errors between measured and
estimated values of two quantities, the Earth's magnetic
field magnitude and the cosine of the angle between the
sun vector and the Earth's magnetic field vector, both
measured at the spacecraft.  The proposed system is
observable, and reasonable accuracy is obtainable.
Given a magnetometer with a 10 nT 1-σ accuracy and a
sun sensor with a 0.005o 1-σ accuracy, the system can
achieve 1-σ position accuracies on the order of 500 m
for inclined LEO orbits.

Introduction
Knowledge of orbit and position is a requirement of

virtually all spacecraft missions.  There exist many
orbit determination systems.  Traditional systems rely
on ground-based range and range-rate data to observe
the orbit and position, as in Ref. 1.  Autonomous orbit
determination systems use only measurements that are
available on board a spacecraft.  References 2-9
discuss various autonomous orbit determination
schemes.  The GPS system provides the possibility of a
semi-autonomous system.  A spacecraft can determine
its orbit solely from the positions and velocities that it
gets from its GPS receiver.  This is not truly
autonomous because the spacecraft relies on signals
from the GPS system.

Different systems have widely different accuracy
levels.  Current ground-based systems can achieve
position accuracies on the order of several
centimeters1.  GPS-based systems can have position
accuracies ranging from about 100 m down to 0.1
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meter, depending on whether or not differential GPS is
being employed or the GPS signal has been
intentionally degraded for non-U.S.-military users2,10.
The truly autonomous systems advertise various levels
of accuracy, ranging from 50 km down to 1 km or
better.  Many such systems have been studied only via
simulation.  Their true accuracies are not yet known.

The aims of the present work are to prove the
observability of a new autonomous spacecraft orbit
determination system and to estimate its likely
accuracy.  The new system can operate in Low Earth
Orbit (LEO).  It uses only a 3-axis magnetometer and a
sun sensor, both on-board the spacecraft.  In addition to
estimating the spacecraft's orbit, the system also
estimates the magnetometer's biases and corrections to
a model of the Earth's magnetic field.

The proposed system is the latest in a sequence of
systems that base their orbit determination capability
on measurements of the Earth's magnetic field4,6-9.  The
original idea, as introduced by Psiaki et al.4,6, was to
compare on-board measurements of the Earth's
magnetic field magnitude with a spherical harmonic
model of that field.  Any deviations were used to
correct the orbit parameters.  Using various filter
designs, this basic system has been tested on flight data
by Psiaki et al.6, Shorshi and Bar-Itzhack8, and
Wiegand9.  Achieved steady-state accuracies in these
studies ranged from 8 km to 125 km.  Accuracy was
strongly influenced by the Earth field model's
accuracy6 and by field measurement accuracy6,8,9.
Shorshi and Bar-Itzhack also tested a system that uses
attitude data.  It achieved accuracies on the order of 10-
35 km when tested with real flight data8.

Psiaki attacked the problem of inaccuracy in the
Earth field model by developing a system that estimates
corrections to this model while estimating the
spacecraft orbit7.  In order to make the orbit and field
model coefficients simultaneously observable, this
system included a 3-axis star sensor in addition to a 3-
axis magnetometer.  Simulation results predicted a
system accuracy on the order of 300 m or better when
using an accurate magnetometer and star sensor.

The present work is an extension of the work of
Ref. 7.  The new idea is to replace the 3-axis star
sensor with a sun sensor.  This would make the system
much more economical.  In fact, many missions already
include a sun sensor and a magnetometer for attitude
determination and control purposes.  If the presently-
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proposed system proved feasible, then it could be
included on many missions at the cost of nothing more
than some flops and memory in the flight computer.

There are 3 important questions in the present
study.  One is whether the spacecraft orbit and the
magnetic field model coefficients remain
simultaneously observable in a practical sense when
only 2 axes worth of inertial attitude data are available;
a sun sensor provides only 2-axes worth of data.  If
observability holds, then the other important questions
are:  What orbit/position accuracy might be achievable
by such a system, and how does the achievable accuracy
depend on orbit and system characteristics?

An added benefit of the proposed system may
accrue to the attitude determination system.  The
Earth's magnetic field is typically not as accurate an
attitude reference as the sun or the Earth limb.  This is
due to field model uncertainty.  If the presently
proposed system proves successful, then its magnetic
field model corrections could be used to improve the
magnetic attitude reference.

The present paper draws heavily on the
methodology, models, and mathematics of Ref. 7.  In
order to conserve space, equations and models used in
the present work normally will not be presented here if
they can be found in that reference.  Instead, the
relevant equation number or section of that reference
will be cited.

The remainder of this paper consists of 5 sections
plus conclusions.  Section 2 describes the batch filter
that is used to estimate the orbit and the field model
coefficients.  This section describes the estimation
vector, the orbital dynamics model, the measurement
model, the least-squares technique used to solve the
problem, and a statistical model of the filter's inputs
and outputs. Section 3 describes covariance analysis
and how it has been used to evaluate the proposed
system.  Section 4 describes a truth model and how it
has been used to test the filter.  Section 5 discusses the
results of the analyses that are defined in Sections 3
and 4.  Section 6 discusses computational practicalities
such as execution speed and convergence robustness.
Section 7 presents the conclusions.

II. Batch Filter Design
The Estimation Vector

The batch filter estimates a vector of quantities that
define the spacecraft orbit and corrections to the
Earth's magnetic field model.  Exactly as in Ref. 7, that
vector is defined to be

p  =   [M0 , M1 , M2 , e, ω0 , λ0 , i, bx , by , bz ,

q1
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N )]T (1)
These estimated quantities can be broken down into 3
main categories: the components that define the orbit,
elements 1-7, the magnetometer biases, elements 8-10,
and the corrections to the Earth's magnetic field,
elements 11 and up.

The orbital and magnetometer bias estimation
parameters are defined as follows: M0,  M1, e, ω0, λ0,
and i are standard Kepler elements.  They are,
respectively, the mean anomaly at epoch, the mean
motion at epoch, the eccentricity, the argument of
perigee at epoch, the longitude of the ascending node at
epoch, and the inclination.  M2 (= &M1 /2) is not a
standard Kepler element; it constitutes an approximate
way to model one of the main effects of drag.  The
magnetometer biases are bx, by, and bz, all measured in
spacecraft-fixed coordinates.

The field correction elements in p are a)
coefficients in a spherical harmonic expansion, b) time
rates of change of coefficients, or c) perturbations of

coefficients.  The coefficients q1
0 , q1

1 , and s1
1  are

from a first-order external ring current model at epoch,

and the corresponding rate terms, &q1
0 , &q1

1 , and &s1
1 ,

allow a constant time rate of change of the ring current,
consistent with post-magnetic-storm field activity.  The

rate terms &g1
0 , &g1

1 , and &h1
1  allow for an induced

variation of the first-degree coefficients of the internal
field, which is consistent with the normal effects of an
external ring current.  The rest of the p vector's
elements, ∆g1

0 , ..., ∆h N
N , are coefficient perturbations.

They account for uncertainty in the main internal
spherical harmonic field model at epoch as given by
some standard field model such as the International
Geomagnetic Reference Field (IGRF) for a particular
half decade11.  These perturbations go up to Nth-degree
and Nth-order.

The length of the estimated p vector is (19 + N2 +
2N).  If N = 10 is used for the magnetic field model
perturbations, then p has 139 elements.  Many of the
cases considered in Section 5 correspond to this size p
vector.
Model of Orbital Motion

The batch filter uses a physics-based model of the
orbital dynamics.  It gives the geocentric position time
history as a function of the Kepler elements at epoch
and a drag parameter.  The model takes the form:

θ  =  θ(∆t; M0, M1, M2, e, ω0, λ0, i) (2a)
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φ  =  φ(∆t; M0, M1, M2, e, ω0, λ0, i) (2b)
r  =  r(∆t; M0, M1, M2, e, ω0, λ0, i) (2c)

where ∆t = time since epoch, θ = colatitude, φ =
longitude, and r = geocentric radius.  This is the same
model form as used in Ref. 7.

Models of varying degrees of fidelity can be
formally represented by the form of eqs. (2a)-(2c).  A
high fidelity model would use a number of terms in the
spherical harmonic expansion of Earth's gravity field,
an accurate atmospheric model, and solar and lunar
gravity perturbations, to mention a few of the effects.
These added complexities can be important when
filtering actual flight data, but they are not important to
the question of whether the system at hand is
observable in a practical sense.  Therefore, a relatively
simple orbital model has been used.  It only includes
gravity terms out to the J2 term, and even then only the
secular J2 effects are included.  The drag model only
includes the effects on altitude and mean motion.  This
simplified model is given in the Appendix of Ref. 7.
Model of Sensor Measurements

The sensors available to the system are a 3-axis
magnetometer and a 2-axis sun sensor.  In the
discussion that follows, suppose that the measured
magnetic field vector at sample time ∆tk is Bmes(k) and
that the measured sun direction unit vector at the same
sample instant is $smes(k) , with both expressed in

spacecraft coordinates.
Two Pseudo Measurements and Their Statistics.

The measurements have been manipulated to yield
pseudo "measurements" that retain all of the
position/orbit information of the original
measurements but that are independent of spacecraft
attitude.  This independence allows decoupling of the
attitude and orbit determination problems.  The two
useful pseudo measurements are the measured
magnitude of the Earth's magnetic field and the
measured cosine of the angle between the Earth's
magnetic field vector and the sun direction vector.
Their formulas in terms of the actual measurements are

y1mes(k)(p)  =  ( ) ( )( ) ( )B b B bmes k
T

mes k− −  (3a)

y2mes(k)(p)  =  
$ ( )

( )
( ) ( )

( )

s B b

p
mes k
T

mes k

mes k

−

y1
 (3b)

where b =  [bx,by,bz]T  is the estimated magnetometer
bias vector in spacecraft coordinates.  Its inclusion in
these formulas is why the pseudo measurements
depend on p.

At times the sun vector measurement $smes(k)  may

be unavailable, either due to eclipse or due to a
spacecraft attitude that takes the sun outside the sun

sensor field of view.  In either case pseudo
measurement y2mes(k) will be unavailable.

Noise models for the pseudo measurements can be
derived from the noise models for the actual
measurements.  Suppose that the noise models of the
actual measurements are

Bmes(k)  =  Bact(k) + b + nB(k)  (4a)
$smes(k)  =  $sact(k) + ns(k)  (4b)

where Bact(k)  is the actual magnetic field vector in
spacecraft coordinates, $sact(k)  is the actual sun

direction unit vector in spacecraft coordinates, and
nB(k) and ns(k) are random, Gaussian, uncorrelated,
discrete-time white noise measurement error vectors.
All of these vectors correspond to sample time ∆tk.
The statistics of the noise vectors are:

E{nB(k)} = 0, E{nB(j)nB(k)
T} = I σB

2 δjk  (5a)

E{ns(k)} = 0, E{ns(j)ns(k)
T} = (I − $ $s sact(k) act(k)

T ) σs
2 δjk

(5b)
E{nB(j)ns(k)

T} = 0 (5c)
The noise model for the pseudo measurements is

derived using eqs. (3a)-(4b).  First, one substitutes eqs.
(4a) and (4b) into eqs. (3a) and (3b) and forms Taylor
series expansions in terms of the noise vectors, nB(k)

and ns(k).  The resulting equations are:
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2)  (6b)
If one neglects the higher-order terms in nB(k) and ns(k),
then these equations can be re-written in the form:

y1mes(k)  =  y1act(k)  +  ny1(k)  (7a)
y2mes(k)  =  y2act(k)  +  ny2(k)  (7b)

where y1act(k) is defined as the first term on the right-
hand side of eq. (6a), ny1(k) is defined as the second
term on the right-hand side of eq. (6a), y2act(k) is
defined as the first term on the right-hand side of eq.
(6b), and ny2(k) is defined as the sum of the second and
third terms on the right-hand side of eq. (6b).  These
definitions of the error terms, coupled with the
statistical models of nB(k) and ns(k) in eqs. (5a)-(5c), can
be used to deduce the following statistical models for
ny1(k) and ny2(k):

E{ny1(k)} = 0, E{ny1(j)ny1(k)} = σB
2 δjk (8a)
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E{ny2(k)} = 0,

E{ny2(j)ny2(k)} = 1
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E{ny1(j)ny2(k)
T}  =  0 (8c)

Thus, the two pseudo measurements have errors that are
statistically uncorrelated.  Strictly speaking, these
results are valid only in the limit of small measurement
noise because linearizations were used to derive them.

It is helpful to redefine the variance for ny2(k) as
{σy2(k) }2  =
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This differs slightly from eq. (8b), but the difference is
not significant if the measurement errors and biases are
relatively small.  The variance definition in eq. (9) is
preferable to the original one given in terms of Bact(k)

and $sact(k)  because the latter quantities are never

known exactly.
Models of the Pseudo Measurements.  The filter

needs a model of what the measurements should be for
a given value of its estimated p vector.

The measurement model makes use of a spherical
harmonic expansion of the Earth's magnetic field.  The
functional form of this spherical harmonic model is:

Bsez(θ,φ,r;p,∆t)  =  
B r t
B r t
B r tr
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θ φ
θ φ
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( , , ; , )
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∆
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(10)

where Bsez(θ,φ,r;p,∆t) is expressed in local south-east-
zenith coordinates.  The exact form of this model is
given in eqs. (3a)-(3c) of Ref. 7.  As denoted in eq.
(10), the field depends on the geocentric position,
(θ,φ,r), and on the field model coefficients and
coefficient perturbations in the p estimation vector.
Bsez depends directly on time because of the field

model coefficient rate terms, &q1
0 , &q1

1 , &s1
1 , &g1

0 , &g1
1 , and

&h1
1 .

The function Bsez(θ,φ,r;p,∆t) can be used to compute
the modeled value of the first pseudo measurement as a
function of the estimation vector and the sample time:

y1mod(∆tk;p) =

{ B p p p psez
T

k k k kt t r t t[ ( , ), ( , ), ( , ); , ]θ φ∆ ∆ ∆ ∆ •

B p p p psez k k k kt t r t t[ ( , ), ( , ), ( , ); , ]θ φ∆ ∆ ∆ ∆ }1/2

(11)

The dependence of θ, φ, and r on ∆tk and p have been
explicitly presented in this formula in order to
completely express the dependence of y1mod on these
two quantities.

The model for y2's dependence on ∆tk and p can be
derived in the inertial celestial coordinate system, the
system with +x in the equatorial plane and pointing
towards the first point of Aries and with +z pointing
along the north pole.  The transformation from local
south-east-zenith coordinates to celestial coordinates
is Acc/sez(γ0,θ,φ,∆t), where γ0 is the Greenwich hour
angle at epoch.  Given Acc/sez and the sun unit vector in
celestial coordinates at sample k, $scc(k) , the model for

the second pseudo measurement becomes:
y2mod(∆tk;p) = 

{ $ [ , ( , ), ( , )]/s A p pcc(k)
T

cc sez k kt tγ θ φ0 ∆ ∆ •

B p p p psez k k k kt t r t t[ ( , ), ( , ), ( , ); , ]θ φ∆ ∆ ∆ ∆ }•

{1 1/ mod ( , )y tk∆ p }
(12)

Error Equations, Nonlinear Least Squares
Estimator, and Statistical Interpretation

The goal of the batch filter is to choose the p
estimation vector that best matches the pseudo
measurements to their modeled values.
Mathematically this leads to the following system of
error equations:

e1(k) = 1
σ B

{y1mod(∆tk;p) - y1mes(k)(p)}

for k = 1, ..., N (13a)

e2(k) = 
1

2σ y k( )
{y2mod(∆tk;p) - y2mes(k)(p)}

for all k = 1, ..., N s.t. $smes(k)  is available (13b)

where N is the number of samples in the batch.  These
equations have been scaled by the associated standard
deviation in order to normalize the standard deviation
of the errors e1(k) and e2(k).

The batch filter estimates p by computing the value
that minimizes the sum of the square errors from eqs.
(13a) and (13b).  The estimate of p minimizes

J(p)  =
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The filter solves this nonlinear least-squares

problem using the iterative Gauss-Newton numerical



5

method. Reference 12 gives the details of this
algorithm.

The partial derivatives of y1mes(∆tk;p), y2mes(∆tk;p),
y1mod(∆tk;p), and y2mod(∆tk;p) with respect to p are
needed.  They are needed for observability analysis, to
solve for search directions in the Gauss-Newton
method, and to infer the error statistics of the p
estimate.  The needed partial derivatives are:
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Linearized versions of eqs. (13a) and (13b) can be
used to infer the statistics of the error in the estimate
of p.  The linearized equations take the form

e

e
e

e

N

N

1 1

1

2 1

2

( )

( )

( )

( )

M

M



























  =  A ∆p (16a)

with

A  =  

1

1

1

1

1 1 1 1

1 1

2 1

2 1 2 1

2

2 2

σ

∂

∂

∂

∂

σ

∂

∂

∂

∂

σ

∂

∂

∂

∂

σ

∂

∂

∂

∂

B

mes

B

N mes N

y

mes

y N

N mes N

y y

y y

y y

y y

mod( ) ( )

mod( ) ( )

( )

mod( ) ( )

( )

mod( ) ( )

p p

p p

p p

p p

−








−








−








−












































M

M

(16b)

where A is the Jacobian matrix of eqs. (13a) and (13b)
and where the y2 rows are omitted for sample times that
lack sun sensor data.  If pact is the true value of p and if
$p  is the estimated value from the filter's nonlinear

least-squares solver, then the linearized estimate of the
error covariance is:

Pp  =  E{(pact - $p )( pact - $p )T}  =  (ATA)-1 (17)

III. Covariance Analysis and Practical
Observability

The system is theoretically observable in the
linearized sense if the Jacobian matrix A has full
column rank.  This is true because the observability
Gramian of the linearized system is ATA.

Practical observability depends on the distance of
ATA away from singularity.  Distance is a relative
notion that changes with problem scaling.  Therefore, a
better measure of observability is the covariance of the
estimated vector, Pp = (ATA)-1.  If all of the standard
deviations, the square roots of the diagonals of Pp, are
small in a problem-dependent sense, then the system is
practically observable because these quantities'
smallness implies that ATA is nonsingular, which
implies that the system is observable.

The standard deviations of the magnetometer biases
and of the magnetic field model corrections will be
used as practical measures of these quantities'
observability.

Actual spacecraft position standard deviations are
better measures of practical observability than are the
standard deviations of the Kepler elements and the drag
term.  The spacecraft's instantaneous position variance
can be inferred from Pp, in a linearized sense, via
application of the chain rule and of the definition of
covariance.  Equations (11) and (12) of Ref. 7 give a
method for inferring the along-track/cross-
track/altitude covariance matrix at a particular time as a
function of Pp and $p .  Three good measures of
practical orbit observability are the maxima, taken over
the batch time interval, of the standard deviations of the
three position error components.
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IV. Testing Against a Simulated Truth Model
Comparison of Filter Outputs with Truth Model
Values.

The proposed system has been studied using
simulated data from a truth model.  The truth model
contains dynamics, measurements, and noise.  It
produces simulated magnetometer and sun sensor data.
The simulated output data is fed into the filter, which
produces an estimate of the truth model's orbit and
field.

Filter performance can be evaluated by comparing
the truth model's orbit and field to the filter's estimate
of these quantities. Comparison of individual cases
reveals the amount of error that is caused by systematic
(i.e., non-statistical) effects.

Several types of comparisons are made between
truth model values and the filter output.  The estimated
orbit is compared with the truth model orbit in terms of
along-track, cross-track, and altitude error.  The
magnetometer biases and the field model coefficient
perturbations are compared.  The inertial direction of
the estimated magnetic field at the estimated spacecraft
location is compared with the inertial direction of the
truth-model magnetic field at the truth-model
spacecraft location.
Truth Models of Orbit and Attitude Dynamics

The truth model of the orbital dynamics uses the
same model as is used in the filter because the effect
of filter dynamic model fidelity is not considered to be
the critical issue.  The truth model uses the truth values
of the Kepler elements M0, M1, e, ω0, γ0, and i and the
truth value of the drag parameter M2.  These are
elements of the ptruth vector.  These values are input to
eqs. (2a)-(2c) to generate the truth-model spacecraft
position time history.

The spacecraft's attitude dynamics might affect the
observability of the system or the accuracy of the
filter.  This comes about because the estimated
magnetometer biases are defined along spacecraft body
axes and because the attitude time history might take
the sun outside of the sun sensor's limited field of
view.

Two different types of attitude time history have
been used in the truth model.  One is for a nadir-
pointing spacecraft.  The other is for a spin-stabilized
spacecraft.  Both attitude dynamics models produce a
transformation from celestial coordinates to spacecraft
coordinates, Asc/cc(∆t), that is a function of time.
Truth Models of Measurements

Each truth-model magnetometer measurement is
constructed by a multi-step process.  First, the truth
model spacecraft position coordinates, θk, φk, and rk,

are computed for sample time ∆tk using ptruth and eqs.
(2a)-(2c).  Next, these position components, ∆tk, and
ptruth are used in eq. (10) to determine the truth value of
the field in south-east-zenith coordinates, Bsez(k).
Third, θk, φk, the Greenwich hour angle at epoch, γ0, and
∆tk, are used to compute the truth-value transformation
from local south-east-zenith coordinates to celestial
coordinates, Acc/sez(k).  Next, Acc/sez(k) is used with the
truth-model attitude transformation, Asc/cc(k), to
transform Bsez(k) into spacecraft coordinates: Bsc(k) =
Asc/cc(k)Acc/sez(k)Bsez(k).  Finally, the truth value of the
magnetometer bias vector and a random noise vector
are added in to yield the truth-model magnetometer
measurement vector: Bmes(k) =  Bsc(k) + btruth + nB(k).

There are two types of errors between the truth
model magnetic field and the filter's initial guess of the
Earth's magnetic field.  First, Bsez is affected by the
truth values of the field model coefficient
perturbations contained in ptruth.  In addition, the truth
magnetic field model may contain terms beyond those
of the filter.  For many cases considered in the present
study, the filter used a 10th-degree, 10th-order field
model, but the truth model used a 13th-degree, 13th-
order model.  This addition of higher-order terms to
the spherical harmonic model of the field constitutes a
systematic error between the truth model and the filter.

The truth model of the sun sensor measurements
includes noise and considers eclipse by the Earth and
the finite width of the sun sensor field of view.  The
visibility of the sun is determined from the spacecraft
position and the sun unit vector.  If not in eclipse, then
the sun measurement vector is computed by using the
truth model spacecraft attitude to calculate $ssc(k)  =

Asc/cc(k) $scc(k)  and a random noise vector to determine
$smes(k)  = ( $ssc(k) + ns(k))/|| $ssc(k) + ns(k)||.  The statistics

of ns(k) are defined by eq. (5b).  Given $smes(k) , the truth

model verifies that it falls within the field of view of
the sun sensor, which is defined in spacecraft
coordinates, before recording it as a measurement.

V. Results
Covariance-Based Practical Observability of
Various Cases

The system has proved observable in many
important cases.  It is theoretically observable in all
situations except that of an orbit with zero inclination
and zero eccentricity.  That is, its ATA Gramian matrix
is nonsingular in those cases.  It is practically
observable in most situations that are sufficiently far
away from having zero inclination and zero
eccentricity.
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The dependence of estimation standard deviations
on orbit parameters has been extensively investigated.
A sequence of cases have been considered that all
respect the following set of assumptions:  The filter
estimates coefficient corrections for a 10th-degree,
10th-order field model.  The spacecraft is spinning with
a spin period of 50.235 sec., and its spin axis is sun-
pointed.  The magnetometer accuracy is 10 nT 1-σ for
the random white noise component -- the biases can be
much larger because they get estimated.  The sun
sensor accuracy is 0.005 deg. 1-σ, and this error
source is primarily random white noise.  The inter-
sample interval is ∆tk - ∆tk-1 = 60 sec., and the total
number of samples is N = 1441; this means that each
batch contains one full day's worth of data.  The
relationship between the sun direction and the orbit is
such that eclipse occurs for as much as 37% of the
orbit for some inclinations and orbital altitudes.

Estimation standard deviations for these cases are
given as functions of orbital parameters in Table 1.  The
2nd through 4th columns of the table give the orbital
characteristics for the case: inclination, apogee height,
and perigee height.  The next 3 columns give the
maximum position standard deviations during the batch
interval, where "A-T" stands for along-track and "C-T"
stands for cross-track.  The 8th column gives the
maximum standard deviation for the three 1st-degree

field coefficient corrections, ∆g1
0 , ∆g1

1 , and ∆h1
1 .

The last column gives the maximum standard deviation
of the 3 magnetometer biases, bx, by, and bz.

Table 1 demonstrates the effect of inclination,
eccentricity, and altitude on observability.  Practical
observability decreases with inclination as evidenced in
Cases 1-5.  All 5 of the tabulated standard deviations
increase as inclination decreases. Observability
decreases with increased altitude, as evidenced by
Cases 2 and 7.  Eccentricity helps observability.
Otherwise, the standard deviations of case 8, which has
a very low inclination but significant eccentricity,
would have been much higher.

These results are similar to what was found in Ref.
7, where data from a 3-axis star sensor was made
available to the filter.  One would expect the results in
Ref. 7 to be at least as good as the present results.  This
is generally the case, but Ref. 7's results are better only
by a factor of about 2 or less.  The present results are
remarkable because they derive from one axis less of
attitude data and from attitude data that is less accurate
by a factor of 9.

As an illustration of the type of result that the
covariance analysis produces, Fig. 1 presents 3 position
error component standard deviations as functions of

time.  These correspond to Case 2 in Table 1.  Recall
that these standard deviations are inferred by
propagating the covariances of the Kepler elements
through various (linearized) geometric transformations.
The data in Table 1 are the maximum values of each of
these three curves over the interval.  One can see that
the along-track standard deviation has a secular
component.  This is the result of uncertainty in the
estimated orbital period and drag term.

Fig. 1 Position error component standard deviations
versus time for a representative case.

Figure 2 presents the standard deviations of the
field perturbation elements of a p estimation vector.
This particular set of data corresponds to Case 2 of
Table 1.  These perturbations are element numbers 11
through (2N + N2 + 19) of p.  The standard deviations
are plotted versus the element number.  The secular
rate perturbation coefficients have been multiplied by
the batch duration, (∆tN - ∆t1) before being plotted; this
gives their effects in nT at the end of the interval.  As
can be seen, this filter's ability to estimate field
perturbations degrades for higher spherical harmonic
degrees.  This is different from the results of Ref. 7.  In
that study, if inclination and eccentricity were not too
close to zero, then the field model coefficients could
be estimated accurately for all degrees and orders in
the model.

The effect of the availability of the sun has been
investigated.  A case has been run that is like Case 2 in
Table 1 except that the sun is never in eclipse behind
the Earth.  For this case the 3 maximum standard
deviations of the position error components are: 781m
along-track, 138m across-track, and 158m in altitude.
This is surprising.  Intuition suggests that the
availability of more data should increase accuracy, but
along-track and altitude accuracy actually decrease.
Presumably, this is an effect of the change in geometry
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between the orbit normal vector and the sun
observation vector.

Another variable that is related to sun availability is
the type of attitude dynamics that the spacecraft has.  A
nadir-pointing spacecraft with a limited sun sensor
field of view will collect less sun direction data than a
properly designed sun-pointing spin-stabilized
spacecraft.  This study considered a nadir-pointing
spacecraft model with a 128o-diameter sun sensor field
of view.  It consistently achieved poorer position error
standard deviations than the spin-stabilized, sun-
pointing spacecraft.  For the nadir-pointing spacecraft
in an orbit like that of Case 2 in Table 1, the filter's
maximum position standard deviations are: 908m
along-track, 319m across-track, and 352m in altitude,
which is obviously worse than the sun-pointing case
that is given in the table.  This comparison typifies
many other cases.

Fig. 2 Field model coefficient standard deviations for
a representative case.

The sensors' accuracies have a direct impact on the
filter's predicted standard deviations.  It is obvious that
more accurate sensors would yield lower predicted
errors, but the relative effects of the two sensors'
variances is less obvious.  A series of cases have been
run that are like Case 2 of Table 1 except that the sun
sensor accuracy, σs, has been varied.  The results are
given in Table 2.  This table shows that the nominal sun
sensor accuracy of σs = 0.005o is well matched with
these cases' magnetometer accuracy, σB = 10nT.  More
sun sensor accuracy yields very little position accuracy
improvement, but less sun sensor accuracy degrades
the filter's performance.

The length of the filtering interval affects the
position accuracy.  A case has been run that is like Case
1 of Table 1 except that the time between samples has
been lengthened from 60 sec to 120 sec.  This means

that 2 days' worth of data are used instead of 1 day's
worth.  The maximum position standard deviations for
this case are: 262m along-track, 204m across-track,
and 86m in altitude.  This represents a 31% reduction
in the peak along-track standard deviation.  The other
two standard deviations are reduced only modestly.
This along-track accuracy improvement can be traced
to increased accuracy of the estimates of the Kepler
elements M0 and M1 and drag-like parameter M2.

In order to illustrate the usefulness of the proposed
system, a typical spacecraft case has been run.  This
case was designed to correspond to the ALEXIS
spacecraft mission as much as possible13.  The nominal
ALEXIS orbit has an apogee of 830 km, a perigee of
740 km, and an inclination of 70o.  The ALEXIS fine
sun sensor has an advertised accuracy of 0.05o.  A
magnetometer accuracy of 10 nT was assumed for this
case to increase the likelihood of achieving good
results.  ALEXIS is a spin-stabilized spacecraft whose
spin axis points (roughly) towards the sun.  The batch
filter used one day's worth of data sampled at 60 sec.
intervals, as in most other cases considered here.  The
maximum position standard deviations predicted for
this case are: 899m along-track, 570m across-track,
and 224m in altitude.  These standard deviations place
the 3σ position accuracy well within the 5 km spec. that
was set for orbit knowledge on this mission.
Comparisons with Truth Model Outputs.

Various issues have been investigated by filtering
data from the truth model and comparing the filter's
estimated p vector with the truth value of p.  Although
true Monte Carlo analysis has not been done, truth
model comparisons have been used to verify, in an
approximate manner, the results of the covariance
analysis.  In all cases where only random errors were
present, the highest ratio of an actual error to a pre-
computed standard deviation was 2.48.  Thus, the 3-σ
rule, when applied using the predicted standard
deviations from the covariance analysis, proved
sufficient to bound the worst-case errors.

The effect of truncation of the field model has been
investigated by truth-model/filter comparison.  Four
different filters have been considered, all operating on
data from a simulated orbit like that of Case 2 in Table
1.  Each uses a 10th-degree, 10th-order model of the
Earth's magnetic field, but each estimates corrections
for a different number of the coefficients in its field
model.  One estimates corrections only up to the 7th
degree and 7th order, another up to 8th degree and
order, a third up 9th degree and order, and the fourth
estimates corrections for all of the coefficients up to
10th degree and 10th order.  The truth model's field
was a 13th-degree/13th-order spherical harmonic
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model.  Thus, it differed from each of the filters'
models for the 11th through 13th degree and order
terms.  For the lower-order terms, the truth model had
random errors between its coefficients and the filters'
a priori coefficients.  These random errors had a
normal distribution and a standard deviation of 1% of
the nominal coefficient value.  The filters were not
given a model of these error sources.  Random
magnetometer and sun sensor errors were included, but
their standard deviations, σB = 0.1 nT and σs = 5x10-5

deg, were small enough to make their effects
negligible.

The number of missing correction terms in the field
model truncation did not affect the results very
significantly.  For example, the maximum along-track
errors between the filters' estimated orbits and the
truth-model orbits were 328m, 381m, 378m, and 319m
for the 4 respective filters, i.e., for the 7th, 8th, 9th,
and 10th degree and order filters.  The results are
similar for the other position error components' peak
values.  Thus, the filter's position error is not degraded
seriously if field model corrections are estimated only
up to 7th degree and 7th order.

This result is consistent with Fig. 2, which shows
that the filter does a poorer job of estimating higher-
degree and higher-order field model coefficient
corrections.  It stands to reason that, if the filter cannot
estimate a quantity very accurately, then it will do about
as well if it uses an a priori estimate for that quantity.
A reduction to 7th-degree and 7th-order corrections
greatly reduces the number of elements in the p
estimation vector, from 139 to 82.  This reduction
speeds computer execution times and reduces memory
requirements.

There is a possible side benefit to simultaneous
orbit and magnetic field model estimation.  This benefit
is an improvement of the modeled inertial direction of
the Earth's magnetic field.  Using currently available
models of the Earth's magnetic field, the field model's
local inertial direction may be wrong by as much as
0.4o or more, assuming a 300 nT field error and a
40,000 nT field strength.  In each of the comparisons
with the truth model, the estimated and truth-model
inertial directions of the Earth's magnetic field have
been compared.  The results are very encouraging.  For
simulations corresponding to the cases listed in Table 1
and with a 13th-degree/13-order truth field model, the
maximum inertial direction error of the estimated field
was 0.11o.  If Cases 5 and 8 had been eliminated
because of their poorer general observability due to
low inclination, then the maximum inertial direction
error of the field would have been just 0.08o.

This field direction accuracy opens up the
possibility of changing standard attitude determination
systems.  These improved field model accuracies are
comparable to those of standard Earth limb detectors13.
It might be possible to fly a spacecraft with only a
magnetometer and a sun sensor.  These 2 sensors could
be used to estimate both orbit and attitude.  The attitude
estimate could be accurate to better than 0.1o on all
three axes.
Comparisons with Simplified Filters.

Comparisons with simpler filters have been carried
out in order to determine how the current filter
achieves improvements.  In comparison to the filter in
Ref. 6, the current filter adds 2 features: the inclusion
of sun sensor data and the estimation of field model
coefficient corrections.  Reference 8 found that
inclusion of attitude data alone can improve the
estimated position accuracy.  Therefore, there is a
question about the current filter: how much of its
accuracy improvement comes from adding sun sensor
data and how much comes from estimating field model
coefficients?

This question has been answered by filtering truth-
model data using 2 simplified filters.  One filter was
the same as described above, except that it did not
estimate any field model coefficient perturbations.  In
this case the length of the p estimation vector was only
10.  In the second case, the filter was further simplified
by discarding the sun sensor measurements so that the
y2 pseudo measurement was not used.  This latter filter
was equivalent to the batch filter of Ref. 6.  In both of
these cases the truth model had a 13th-degree/13th-
order field, and the filter used a 10th-degree/10th-
order field.  Where applicable, the filter's field model
coefficients were set to be different than the
corresponding coefficients of the truth model.  These
differences were random and normally distributed and
had standard deviations equal to 1% of the nominal
coefficients' magnitudes.  To account for the increased
uncertainty in the Earth's field, the value of σB was
increased to 200 nT in both filters.  The cases that were
run corresponded to the orbital conditions of Case 1 in
Table 1.

Both simplified filters showed significantly poorer
performance than the filter that has been developed in
this paper.  The first filter, the one that used sun sensor
data without estimating field model corrections, had
the following peak position errors: 7,600 m along-
track, 2,300 m across-track, and 1,100 m in altitude.
The filter that used only magnetometer measurements
did even worse.  Its peak position errors were: 13,100
m along-track, 14,800 m across-track, and 800 m in
altitude.
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These results show that the addition of attitude data
reduces the total position error by a factor of about 2.
The attitude data produces its largest improvement in
the determination of the orbital plane, which yields
better cross-track accuracy.  This is roughly the same
as what was found in Ref. 8 for the GRO spacecraft.

These results show that it is important to add field
model coefficient corrections to the filter's estimation
vector.  To see this, compare the results for Case 1 of
Table 1 with the above results that use sun sensor
measurements but no estimation of field model
corrections.  Suppose that Table 1's predicted
maximum errors are 3 times the standard deviations
listed in the table; i.e., assume 3σ limits.  Then, for the
simulation case considered in this section, the
elimination of field coefficient corrections increased
the maximum position component errors by factors
ranging from 3.7 to 6.7, and the total position error was
increased by a factor of about 6.7.

VI. Computational Issues
The issues of computer memory requirements,

required computation time, and convergence
robustness are important to consider as gauges of the
proposed filter's practicality.  All experience reported
here is for runs on a 100 MHz Pentium using
FORTRAN.

The memory requirements depend on the size of the
p estimation vector.  The filter's executable program
and data storage occupied the following amounts of
memory:  544 kbytes for 10th-degree/10th-order field
model corrections, 475 kbytes for 9th-degree/9th-
order corrections, 419 kbytes for 8th-degree/8th-order
corrections, and 374 kbytes for 7th-degree/7th-order
corrections.

The solution speed depends on the dimension of the
p estimation vector and on the accuracy of the first
guess.  It makes the most sense to talk about the
execution time per major Gauss-Newton iteration.  The
problem would be solvable in just one such iteration if
it were linear.  Multiple iterations are required to
minimize the nonlinear least squares cost function.
The computation time per iteration was 56 sec. per
iteration for the filter with 10th-degree/10th-order
field model corrections, 37 sec. for the filter with 9th-
degree/9th-order corrections, 27 sec. for the 8th-
degree/8th-order filter, and 21 sec. for the 7th-
degree/7th-order filter.

The number of Gauss-Newton iterations required to
solve for the estimate from a given set of data
depended on the goodness of the initial guesses of the
orbit, the magnetometer biases, and the field model.
Typical runs had initial root mean square (rms) total

position errors in the range 160-310 km and converged
in 3 to 13 Gauss-Newton iterations.  The worst initial
position error for which successful convergence was
achieved was 1420 km rms.  This case took 9 Gauss-
Newton iterations to converge.  One case with an rms
initial position error of 560 km took 20 Gauss-Newton
iterations to converge.

Convergence robustness has been demonstrated by
the ability to converge from 1400 km rms initial
position error.  Computational experience indicates
that convergence from larger initial errors probably is
feasible if the orbit parameterization is changed from
Keplerian elements to something that does not have
singularities.

VII. Conclusions
A batch filter has been designed to estimate the

orbit of a LEO spacecraft, and its performance has been
analyzed.  The only sensor data that this filter needs are
the measurements from a 3-axis magnetometer and
from a sun sensor. The filter also estimates the
magnetometer's biases and corrections to a spherical
harmonic model of the Earth's magnetic field.

The position accuracy that the filter can achieve is
sufficient for many real spacecraft missions.  3-σ
accuracies on the order of 1,700 m or smaller are
achievable for LEO orbits with inclinations of 45o or
more.  These position accuracies depend on a number
of factors.  The sensor accuracies directly influence
the result; the above results assume a per-axis 1-σ
magnetometer accuracy of 10 nT excluding biases and a
1-σ sun sensor accuracy of 0.005o.  Geometric
observability effects degrade the estimated position
accuracy for inclinations below 45o and as altitude
increases.

A side benefit of the proposed system is increased
accuracy of magnetometer-based attitude
determination.  The estimated corrections of the
Earth's magnetic field model reduce the uncertainty in
the inertial magnetic field direction to 0.1o or less.

The proposed filter creates the possibility of a
relatively inexpensive and effective combined attitude
and orbit determination system.  The only sensors
would be a sun sensor and a magnetometer.  The
proposed system would be able to determine position
to within 1.7 km and attitude to within 0.1o.
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Table 1
Orbit, Field Coefficient, and Bias Standard Deviations as Functions of Orbital Parameters

==============================================================================
Case i Apogee Perigee Max. Component  σ's Max. σ of Max. σ of

Altitude Altitude A-T C-T Altitude 1st-deg. field magnet. bias
(deg) (km) (km)  (m) (m) (m) (nT) (nT)

______________________________________________________________________________________
1 88.1 585 515 379 206 90 1.9 0.7
2 75.0 585 515 415 250 98 2.0 0.7
3 45.0 585 515 560 381 116 6.3 1.2
4 30.0 585 515 761 579 149 38.4 1.7
5 15.0 585 515 1,326 1,160 216 1.29x103 2.1
6 75.0 3,200 500 607 616 178 2.9 0.7
7 75.0 3,200 3,100 1,531 1,214 405 6.6 0.9
8 1.0 3,200 500 4,410 3,724 531 1.43x104 1.0

==============================================================================
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Table 2
Orbit, Field Coefficient, and Bias Standard Deviations as Functions of Sun Sensor Accuracy

==============================================================================
Case σs Max. Component  σ's Max. σ of Max. σ of

A-T C-T Altitude 1st-deg. field magnet. bias
(deg)  (m) (m) (m) (nT) (nT)

______________________________________________________________________________________
1 0.0005 404 244 97 2.0 0.7
2 0.005 415 250 98 2.0 0.7
3 0.05 795 498 198 3.9 1.1
4 0.25 1,396 2,104 404 8.8 1.6

==============================================================================


