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Abstract
A method of using magnetic torque rods to do 3-

axis spacecraft attitude control has been developed.
The goal of this system is to achieve a nadir pointing
accuracy on the order of 0.1 to 1.0 deg without the
need for thrusters or wheels.  The open-loop system is
under-actuated because magnetic torque rods cannot
torque about the local magnetic field direction.  This
direction moves in space as the spacecraft moves along
an inclined orbit, and the resulting system is roughly
periodic.  Periodic controllers are designed using an
asymptotic linear quadratic regulator technique.  The
control laws include integral action and saturation
logic.  This system's performance has been studied via
analysis and simulation.  The resulting closed-loop
systems are robust with respect to parametric
modeling uncertainty.  They converge from initial
attitude errors of 30 deg per axis, and they achieve
steady-state pointing errors on the order of 0.5 to 1.0
deg in the presence of drag torques and unmodeled
residual dipole moments.

Introduction
All spacecraft have an attitude stabilization system.

They range from passive spin-stabilized 1 or gravity-
gradient stabilized 2 systems to fully active three-axis
controlled systems 3.  Pointing accuracies for such
systems may range from 10 deg down to 10-4 deg or
better, depending on the spacecraft design and on the
types of sensors and actuators that it carries.  The most
accurate designs normally include momentum wheels
or reaction wheels.

This paper develops an active 3-axis attitude
stabilization system for a nadir-pointing spacecraft.  It
uses only magnetic torque rods as actuators.
Additional components of the system include
appropriate attitude sensors and a magnetometer.  The
goal of this system is to achieve pointing accuracy that
is better than a gravity gradient stabilization system, on
the order of 0.1 to 1 deg.  Such a system will weigh
less than either a gravity-gradient system or a wheel-
based system, and it will use less power than a wheel-
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based system.  Thus, it will be ideal for small satellite
applications, where weight and power budgets are
severely restricted.

There are two classic uses of magnetic torque rods
in attitude control.  One is for momentum management
of wheel-based systems 3.  The other is for angular-
momentum and nutation control of spinning 4,
momentum-biased 5, and dual-spin spacecraft 6.

The present study is one of a growing number that
consider active 3-axis magnetic attitude stabilization
of a nadir-pointing spacecraft 7-14.  Reference 5 also
should be classified with this group because it uses
similar techniques.  Reference 7, the earliest such
study, presents a 3-axis proportional-derivative control
law.  It computes a desired torque and projects it
perpendicular to the Earth's magnetic field in order to
determine the actual torque.  Projection is necessary
because the magnetic torque, nm, takes the form
nm  =  m × b (1)
where m is the magnetic dipole moment vector of the
torque rods and b is the Earth's magnetic field.

Equation (1) highlights the principal problem of
magnetic-torque-based 3-axis attitude control: the
system is under-actuated.  A rigid spacecraft has 3
rotational degrees of freedom, but the torque rods can
only torque about the 2 axes that are perpendicular to
the magnetic field vector.  The system is controllable
if the orbit is inclined because the Earth's magnetic
field vector rotates in space as the spacecraft moves
around its orbit.  It is a time-varying system that is
approximately periodic.  This system's under-actuation
and its periodicity combine to create a challenging
feedback controller design problem.

The present problem is different from the problem
of attitude control when thrusters or reaction wheels
provide torque only about 2 axes.  References 15 and
16 and others have addressed this alternate problem, in
which the un-actuated direction is defined in spacecraft
coordinates.  For magnetic torques, the un-actuated
direction does not rotate with the spacecraft.

Various control laws have been considered for
magnetic attitude control systems.  Some of the
controllers are similar to the original controller of
Martel et al. 10,14.  Time-varying Linear Quadratic
Regulator (LQR) formulations have been tried 5,8,11, as
has fuzzy control 9 and sliding-mode control 12.
References 9 and 13 patch together solutions of time-
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invariant LQR problems, solutions that change with
time because the "time-invariant" system changes with
time.

The present study makes four important
contributions to 3-axis magnetic attitude control.
First, it develops a time-varying, full-state-feedback
LQR control law that is based on a constant
approximate solution of the time-varying Riccati
equation.  Second, it includes integrators in its
controller, which counteract the steady-state effects of
disturbances.  Third, it develops a way to ensure
stability in the presence of actuator saturation – this is
a first for any time-varying control law.  Last, it
evaluates the controllers' robustness with respect to
parametric model uncertainties.

This paper's approximate LQR solution is similar to
the constant gain solution that is presented in Ref. 11.
The present development makes a stronger connection
to an underlying periodic LQR problem.  This
connection allows the design to be modified so that it
can be guaranteed to remain stable when actuator
saturation occurs.

Other studies have considered actuator saturation
9,12 or integral-type controller actions 5.  This is the
first paper to consider them together.  Simultaneous
consideration of these issues is important because
integrators can cause stability problems when control
saturation occurs.

Some of this paper's results are also applicable to
magnetorquer-based attitude control of momentum-
bias and spinning spacecraft.  Such systems have
(almost) periodic models that are similar to those of
the present study, and it is possible to design
controllers for such systems using the new methods
that are presented here.

The body of this paper consists of 3 main sections
followed by a short conclusions section.  Section 2
presents models of the magnetically controlled
attitude dynamics of a nadir-pointing spacecraft.
Section 3 develops the theory of asymptotic low-
bandwidth periodic linear quadratic regulation, and it
explains how to modify the resulting controller in
order maintain stability when the control saturates.
Section 4 applies the periodic regulator to the
magnetic attitude control problem, and it presents
analysis and simulation results for the closed-loop
system.

II. Models of the Magnetic Attitude Control
Problem

Reference Frames and Orbital Model
In the case of a nadir pointing spacecraft, it is

traditional to define the vehicle's orientation relative to
the local-level coordinate system, which follows the

spacecraft around its orbit.  The local-level system’s
+z axis points towards nadir, and its y axis is
perpendicular to both the nadir vector and the
instantaneous orbital velocity vector as measured with
respect to an Earth-Centered Inertially-Fixed reference
frame.  The +y axis points towards negative orbit
normal.  The x axis, defined by the right-hand rule,
points approximately along the velocity vector.

The other important reference frame is spacecraft-
fixed.  When the nadir-pointing spacecraft has the
desired attitude, this body-fixed reference frame is
aligned with the local-level reference frame.
Deviations of this reference frame's attitude from that
of the local-level reference frame are parameterized
by the attitude quaternion, q.  The orthonormal
transformation matrix from local-level coordinates to
spacecraft coordinates is a function of q: Asc/ll(q) 17.

A model of the spacecraft’s orbit is used to
compute four important quantities: the instantaneous
Earth-relative position of the spacecraft, rECEF(t), the
instantaneous Earth-relative velocity of the spacecraft,
vECEF(t), the inertial rotation rate of the local-level
reference frame expressed in local-level coordinates,
ωll(t), and the orthonormal matrix transformation from
Earth-Centered Earth-Fixed (ECEF) coordinates to
local-level coordinates, All/ECEF(t).  These quantities vary
with time as the spacecraft moves in its orbit.  They
also depend on the Kepler parameters of the
spacecraft's orbit.

This study uses two orbital models.  One is a
Keplerian model that includes the secular
perturbations due to the Earth's J2 oblateness effect.
These perturbations affect the relationship between the
semi-major axis and the mean motion, and they cause
precession of the line of nodes and of the perigee.
This model's mathematical form is presented in the
appendix of Ref. 18.  The second model is a simple
circular model that neglects all oblateness effects.  It
is used for analysis and design calculations that must
execute repeatedly and, therefore, rapidly.
Nonlinear Attitude Dynamics Model

This study uses a nonlinear rigid-body attitude
dynamics model in many of its simulations.  This
model includes effects that are not included in a
simpler design model, effects such as the drag torque
and the J2 terms in the gravity gradient torque.

The nonlinear attitude model includes kinematic
and dynamic equations of motion:
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ω&I  + ω × Iω  =  m × b +  ngg +  nd (2b)

where eq. (2a) is the quaternion kinematic equation and
eq. (2b) is Euler's equation of motion for a rigid body.
In this model ω = [ω1; ω2; ω3] is the rotation rate of the
spacecraft-fixed reference frame with respect to
inertial coordinates.  It is expressed in the spacecraft
reference frame.  The vector [ωsc/ll1; ωsc/ll2; ωsc/ll3] =
{ω - Asc/ll(q)ωll(t)} is the rotation rate of the spacecraft-
fixed reference frame with respect to the local-level
reference frame, expressed in spacecraft-fixed
coordinates.  The 3×3 I matrix is the mass moment of
inertia matrix of the spacecraft.  The quantity ngg is the
gravity gradient torque, and nd is the net remaining
disturbance torque.

The magnetic field in spacecraft coordinates, b, is
computed using the spacecraft position, the spacecraft
attitude, and a spherical harmonic model of the Earth's
magnetic field 17:
b  =  Asc/ll(q) All/ECEF(t) bECEF[rECEF(t),t] (3)
where bECEF is the Earth's field in ECEF coordinates.  It
is a function of spacecraft position and of time.

The gravity gradient model computes ngg as a
function of the spacecraft’s position, attitude, and
inertia matrix: ngg = ngg[rECEF(t), Asc/ll(q)All/ECEF(t), I].  This
model includes the J2 gravity gradient terms, which is
why it depends on rECEF.

The disturbance model includes the aerodynamic
drag torque and the effects of residual spacecraft
magnetic dipole moment:
nd  =  rac × fdrag  +  mresid × b (4)
In this equation rac is the position vector of the
______________________________________________________________

aerodynamic center measured with respect to the
center of mass, fdrag is the drag force, and mresid is the
residual magnetic dipole moment of the spacecraft.
These vectors are expressed in spacecraft coordinates.
The drag is
fdrag  =  Asc/ll(q) • All/ECEF(t) •

{- 0.5ρ[rECEF(t)] ||vECEF(t)|| vECEF(t) S CD} (5)
where ρ[rECEF(t)] gives the air density as a function of
altitude from the 1976 U.S. Standard Atmosphere 19, S
is the spacecraft's aerodynamic reference area, and CD

is its drag coefficient.  Other disturbances, such as
solar radiation pressure and outgassing, have not been
modeled because the two torques in eq. (4) are often
the dominant attitude disturbances in low Earth orbit.

The general Kepler orbital model has been used
with this nonlinear attitude dynamics model.  Because
it includes eccentricity and secular J2 effects, this
model is more representative of an actual orbit.  This
increased fidelity is consistent with the nonlinear
attitude model’s purpose, which is to provide a
realistic evaluation of a controller design’s closed-
loop performance.
Linearized Attitude Dynamics Model

The high-fidelity nonlinear model in eqs. (2a) and
(2b) is too complicated for use in control design or in
closed-loop stability analysis.  Fortunately, a simpler
linearized model can accurately approximate the
system over a wide range of conditions. The linearized
model assumes a circular orbit, and linearization is
performed about the equilibrium nadir-pointing
attitude.  The linearized model is:
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In these equations φ, θ, and ψ are the roll, pitch, and
yaw angles, respectively, and ωo is the orbital rate.  Iii is
the moment of inertia of the spacecraft about its ith
principal axis, and σi = (Ijj – Ikk)/Iii for the (i,j,k) index
sets (1,2,3), (2,3,1) and (3,1,2).  bi(t) is the ith
component of the Earth's magnetic field vector in
local-level coordinates, and mi is the ith component of
the spacecraft torquers' induced magnetic dipole
moment in spacecraft coordinates. To first order in the
roll, pitch, and yaw angles, the attitude quaternion is q
≅ [0.5φ; 0.5θ; 0.5ψ; 1].

The model in eq. (6) includes gravity-gradient
effects, gyroscopic effects, magnetic control torques,
and disturbance torques, just as in the nonlinear model
in eqs. (2a) and (2b).  Besides linearization, the only
other simplification in eq. (6) is that the J2 gravity
gradient effects have been neglected.

This model assumes that the nominal nadir-pointing
spacecraft axes are principal axes.  This assumption
can be relaxed.  In that case the disturbance torque, nd,
will include some constant gravity gradient effects, and
the matrices in eq. (6) will change to include the
effects of cross products of inertia.

This model is in the general time-varying linear
system form:
x&   =  A x + B(t) u +  Bw w (7)
where x = [φ; θ; ψ; ωsc/ll1; ωsc/ll2; ωsc/ll3] is the state vector, u
= m is the control vector, and w = nd is the disturbance
vector.  The matrices A, B(t), and Bw are effectively
defined by eq. (6).  Note that only the control
effectiveness matrix, B(t), is time varying.  Its time
variations come from the time variations of the
magnetic field components, bi(t) for i = 1, 2, and 3.

The time variations of this system can be
approximated as being periodic: b(t) = b(t+T) where T
= 2π/ω0 is the orbital period.  True periodicity would
hold if the Earth did not rotate and if the orbit did not
precess.  Earth rotation and orbit precession cause
small deviations from this assumption because of
asymmetries in the Earth's magnetic field.  The
principal asymmetry is the cant of the main dipole
slightly away from the Earth's rotation axis.

A dipole approximation of the Earth's magnetic
field, when coupled with the assumptions of no Earth
rotation and no orbit precession, yields the following
periodic model for the magnetic field vector as
expressed in local-level coordinates:
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where im is the inclination of the spacecraft's orbit with
respect to the magnetic equator and a is the orbit's

semi-major axis.  Time is measured from t = 0 at the
ascending-node crossing of the magnetic equator.  The
field’s dipole strength is µf = 7.9×1015 Wb-m.

III. Periodic Linear Quadratic Regulator Design
in the Low-Bandwidth Asymptotic Limit

Rationale
Suppose one is given the periodic LQR problem:

find: u(t) for 0 ≤ t ≤ T (9a)

to minimize: J  =  { } τττττ duRuxQx
T

0

TT
2
1 ∫ + )()()()(

+ )()( TxPTx T
T

2
1 (9b)

subject to: x&   =  A x + B(t) u (9c)
x(0) given (9d)

where Q and R are constant weighting matrices, PT is
the terminal state weighting matrix, and B(t) is
assumed to be exactly periodic, i.e., B(t) = B(t+T).  It
is well known that the solution to this problem can be
expressed in the form of a feedback control law: u(t) =
- R-1BT(t)P(t)x(t) where P(t) is the solution of a time-
varying matrix Riccati equation.  Furthermore, for an
appropriately chosen PT , the resulting P(t) is periodic
with period T.  This is equivalent to the infinite horizon
solution and leads to a periodic gain, K(t) = K(t+T) =
R-1BT(t)P(t).

A control law of this form is very useful in the
context of magnetic-torquer-based attitude control.
Instead of computing a periodic gain matrix time
history, K(t), it is better to express the gain as
R-1BT(t)P(t).  In this case, one can take advantage of the
fact that the B(t) matrix of eq. (6) can be computed
from magnetometer measurements of b(t) and
knowledge of the spacecraft inertia matrix.  This
allows the computed gain to compensate for
uncertainty in the Earth's magnetic field.

The control law u(t) = - R-1BT(t)P(t)x(t) would be
even more attractive for use in a real system if P(t)
were a constant matrix, i.e., if P(t) = Pss.  A constant Pss

would be much easier to store than a whole matrix time
history.  Furthermore, a constant Pss would not need to
have its time variations synchronized with the actual
time variations in B(t).  As already noted, the true B(t)
is not exactly periodic.  Therefore, synchronization of
a periodic P(t) with the quasi-periodic B(t) could be
difficult.  The same would go for a controller that
lumped R-1, BT(t), and P(t) together into the periodically
time-varying gain K(t).

In summary, this paper envisions a control law of
the form u(t) = - R-1BT(t)Pss x(t).  The only time-varying
component of its gain is the matrix B(t).  B(t) is
constructed from magnetometer measurements
according to its formula in eq. (6).  The matrix Pss is
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(approximately) the solution to a periodically time-
varying matrix Riccati equation, but it happens to be
constant.  The next sub-section will demonstrate
conditions under which such a Pss exists.

This control law is somewhat similar to that of Ref.
7.  If R is a scaled identity matrix, then multiplication
by R-1BT(t) projects the control input perpendicular to
the local magnetic field.  This projection is
accomplished by forming a cross product with the field
vector, as in Ref. 7.
Asymptotic Analysis of a Low-Bandwidth Solution
to a Periodic Matrix Riccati Equation

The P(t) matrix is the solution of the following
time-varying matrix Riccati equation:

)(tP&   =  -P(t) A  - ATP(t)  - Q  + P(t)B(t)R-1BT(t)P(t)
(10)

For an infinite-horizon problem, the steady-state
solution can be found by imposing the following
periodic boundary condition: P(0) = P(T).

Theorem.  If the following conditions are met:
a) R = R0/ε2 where R0 is positive definite.
b) [A, 0B~ ] is stabilizable where

T
00B

~
B
~

=  τττ dBRB T1
0

T

0
T
1 )()( −∫  by definition.

c) [A, C] is observable, where CTC = Q by
definition.

d) A has no eigenvalues in the right-half plane.
e) Every eigenvalue of A is unique; i.e., there are

no repeated eigenvalues.
then P(t) → Pss, a constant matrix, in the limit as the
control weighting goes to infinity, i.e., as ε → 0.  Note
that condition (e) allows A to have complex conjugate
pairs of eigenvalues.

Proof.  The proof uses a combined Fourier and
asymptotic series representation of P(t).  Start by

expressing P(t) and B(t) 1
0R− BT(t) as Fourier series:

P(t)  =  P0 + ∑
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This is possible because these two matrix time
histories are periodic.  The matrices P0, Pck, Psk, BRBck,
and BRBsk are constant Fourier coefficients.

Next, express the Fourier coefficients of P(t) as
asymptotic series in the small quantity ε:
P0  =  ε -1P0(-1) + P0(0) + ε P0(1) + ε 2P0(2) + … (12a)
Pck  =  Pck(0) + ε Pck(1) + ε 2Pck(2) + …

for k = 1, 2, 3, … (12b)

Psk  =  Psk(0) + ε Psk(1) + ε 2Psk(2) + …
for k = 1, 2, 3, … (12c)

Next, perform an asymptotic decomposition of eq.
(10) followed by a Fourier decomposition.  Substitute
eqs. (12a)-(12c) into eqs. (11a) and (11b) and
substitute the results into eq. (10).  Asymptotic
analysis dictates that the sum of the coefficients of ε j

on the right-hand side of the equation must equal the
sum of the coefficients of ε j on the left-hand side of
the equation for all j = -1, 0, 1, 2,…  Fourier analysis
dictates that, in each of the resulting ε j equations, the
sum of the coefficients of cos(2πkt/T) on the right-
hand side of the equation must be equal to the sum of
the coefficients of cos(2πkt/T) on the left-hand side.
The same goes for the constant terms and for the sums
of the coefficients of sin(2πkt/T).

If one recognizes that R-1 = ε2 1
0R− , then this

matching of powers of ε and of cosine, sine, and
constant terms yields the following relationships:
ε -1 eq., constant terms:

0 = - P0(-1)A - ATP0(-1) (13a)
ε 0 eq., constant terms:

0 = - P0(0)A - ATP0(0) - Q + P0(-1)
T
00B

~
B
~

P0(-1) (13b)
ε 0 eq., cos(2πkt/T) terms:

T
k2π Psk(0) = - Pck(0)A - ATPck(0) + P0(-1)BRBckP0(-1)

(13c)
ε 0 eq., sin(2πkt/T) terms:

- T
k2π Pck(0) = - Psk(0)A - ATPsk(0) + P0(-1)BRBskP0(-1)

(13d)
The remainder of this proof will show that, if Pss =

ε -1P0(-1) + P0(0), then ||P(t)x - Pssx|| is on the order of ε
||P(t)x||.  This is a good working definition of
equivalence between P(t) and Pss as ε → 0 because it
implies that u from the approximate control law, u =
- R-1BT(t)Pss x, will approach the exact LQR feedback
control, u = - R-1BT(t)P(t) x, as ε → 0.

Assume, without loss of generality, that A has been
diagonalized and that the first p diagonal elements are
the neutrally stable eigenvalues of A: A =
diag(λ1,λ2,λ3,…,λn), where real(λi) = 0 for i = 1, …, p
and real(λi) < 0 for i = (p+1), …, n.  Diagonalization of
A is possible because of the assumption (e) of the
theorem.

Making use of the diagonal form of A, eq. (13a)
becomes

0 = 
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where {P0(-1)}ij is the i-j element of P0(-1) and the bar
overstrike denotes complex conjugation.  Note that the
matrix transpose operation includes complex
conjugation.

Equation (14) implies that the only non-zero
elements of P0(-1) are {P0(-1)}ii for i = 1, …, p.  This is
true because )( ji λλ +  is nonzero except when i = j ≤

p. The nonzero elements are the diagonal elements that
are associated with the neutrally stable eigenvalues of
A.

The nonzero {P0(-1)}ii values can be deduced from eq.
(13b):

{P0(-1)}ii  =  
ii

T
00

ii

B
~

B
~

Q

}{
for i = 1, …, p (15)

where ii
T
00B

~
B
~

}{  is the ith diagonal element of the

matrix T
00B

~
B
~

.  Equation (15) holds because {P0(0)A +
ATP0(0)}ii = 0 for i = 1, …, p, as in eq. (14).  Assumption

(b) of the theorem guarantees that these ii
T
00B

~
B
~

}{
values are positive, and assumption (c) ensures that Qii

is positive.  Therefore, all of these
{P0(-1)}ii values are guaranteed to be positive real
numbers.

Equation (13b) can also be used to compute all of
the elements of P0(0) except for its first p diagonal
elements.  This fact is implied by reasoning which is
similar to the reasoning that has been applied to eq.
(14).  The fact that {P0(-1)}ij = 0 if either i or j is greater
than p, when coupled with assumption (c) of the
theorem, implies that the lower-right (n-p)×(n-p)
block of P0(0) is positive definite.  This is the block of
P0(0) that is associated with the stable subspace of A.  It
is positive definite because it is the solution of a
Lyapunov equation for a stable (sub-) system.

Equations (13c) and (13d) can be used to show that
{Pck(0)}ij = 0 and {Psk(0)}ij = 0 if either i or j is greater
than p.  Because {P0(-1)}ij = 0 in this case, eqs. (13c) and
(13d) can be written in scalar component form as
follows:

T
k2π {Psk(0)}ij   =  - {Pck(0)}ij )( ji λλ +

for all i and j such that i > p or j > p (16a)
- T

k2π {Pck(0)}ij   =  - {Psk(0)}ij )( ji λλ +

for all i and j such that i > p or j > p (16b)
This pair of homogeneous linear algebraic equations
has the unique solution {Pck(0)}ij = 0 and {Psk(0)}ij = 0 if
and only if

T
k2

ji

jiT
k2

π

π

λλ

λλ

−+

+

)(

)(
  ≠  0 (17)

It is straightforward to show that this determinant is

nonzero if real(λi+λj) < 0, which is implied by
assumption (d) of the theorem coupled with the
condition that max(i,j) > p.

It is now possible to conclude the proof of the
theorem.  Suppose that PAA(-1) is the p×p upper left-hand
block of P0(-1).  Similarly, suppose that PAA(0) is the p×p
upper left-hand block of P0(0), that PAB(0) is the p×(n-p)
upper right-hand block of P0(0), and that PBB(0) is the (n-
p)×(n-p) lower right-hand block of P0(0).  Then the
forgoing analysis has demonstrated that

P(t)  =  
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where the notation O(ε j) denotes an expression whose
highest power of ε is the jth power.  Using this formula
for P(t) and the fact that PAA(-1) and PBB(0) are both
positive definite, it is straightforward to show that
||P(t)x - Pssx|| is O(ε||P(t)x||) for all x ≠ 0, which is the
effective definition of equivalence between P(t) and
Pss, as previously discussed.  Note that

Pss  =  
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)0(BB
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)0(AB

)0(AB)0(AA)1(AA
1

PP

PPPε (19)

If x has a component in the neutrally stable subspace of
A, i.e., if any of the first p elements of x are nonzero,
then ||P(t)x - Pssx|| is O(1) and ||P(t)x|| is O(ε-1).
Otherwise, ||P(t)x - Pssx|| is O(ε) and ||P(t)x|| is O(1).
Taken together, these two facts imply the desired
equivalence condition.

Remarks about the Theorem.  It is probably
possible to relax assumption (e) of the theorem.  If the
modified theorem is true, then its proof is more
complicated, especially if some of the repeated
eigenvalues of A are on the imaginary axis.  In this
case, the lowest power of ε that appears in the
asymptotic expansion of P0 is ε -{2-(1/l)}, where l is the
maximum number of repetitions of an eigenvalue that
is on the imaginary axis.

Computational experience with this technique
demonstrates that the method works when there are
repeated eigenvalues on the imaginary axis.  In fact, it
even seems to work if some of the eigenvalues of A are
unstable, so long as they are near the imaginary axis.

The key idea of this theorem is that the closed-loop
system responds relatively slowly compared to the
system periodicity, T.  In this case, P(t) does not vary
rapidly over one period.  Therefore, it cannot vary
much from its average value, which is Pss.

A Practical Method for Computing Pss.   A
slightly different approximation of the matrix Pss can
be determined by solving the following steady-state
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time-invariant Riccati equation:

0  =  -PssA  - ATPss  - Q  + Pss
T

00 B
~

B
~

}}{{ εε Pss (20)

This equation can be solved using standard software
packages.  Note that the control effectiveness matrix is

}{ 0B~ε , and the control cost weighting matrix is an
identity matrix.  From assumptions (a) and (b) of the
theorem, it is possible to calculate }{ 0B~ε  from a
square root factorization of the average weighted
square of B(t):

T
00 B

~
B
~

}}{{ εε   =  τττ dBRB T1
T

0
T
1 )()( −∫ (21)

The square root factorization of the integral can be
computed using an eigenvalue decomposition.  Note
that the rank of }{ 0B~ε  may be greater than the
instantaneous rank of B(t).  This is true in the magnetic
torque attitude control problem.

An asymptotic analysis of this Pss shows that
||{ε -1P0(-1) + P0(0)}x - Pssx|| is on the order of
ε||{ε -1P0(-1) + P0(0)}x||, which means that, for small ε, the
new form of Pss is equivalent to the form used in the
proof.  This analysis expands the new Pss in an
asymptotic series in ε that is like the asymptotic
expansion in eq. (12a).  It then derives equations for
the coefficients of this series.  The first two of these
equations are like eqs. (13a) and (13b).  The remaining
details of this analysis are straightforward, and they
have been omitted for the sake of brevity.

This controller design technique is similar to the
technique that is employed in Ref. 11 for its constant
gain algorithm.  There are two main differences.  First,
Ref. 11 squares the B(t) control effectiveness matrix
twice, once before averaging and once when it gets
used in the time-invariant Riccati equation.  Second,
Ref. 11 makes no attempt to relate the solution of its
time-invariant LQR problem to the asymptotic low-
bandwidth solution of a periodically time-varying
problem.  This relationship can be an important aid to
the development of a method for dealing with actuator
saturation.

After-the-Fact Floquet Analysis.  It is a good
idea to check the stability of the resulting closed-loop
system.  The theorem only says things about the
limiting small ε behavior of the system.  It says nothing
about what constitutes "small."  It may be possible to
use a rather "large" ε and achieve good performance.  If
it remains stable, then the system response is likely to
be faster for a larger value of ε because this involves
less control weighting.

The best way to design this type of control law is to
pick the LQR weighting matrices Q and R, compute Pss,
evaluate the closed-loop stability, and tune R

accordingly.  If the system is unstable, then R must be
increased.  The closed-loop system model is: x&  =
{A - B(t)R-1BT(t)Pss} x.  This is a periodic model, and its
stability can be evaluated via Floquet analysis 20.
Floquet stability analysis computes a state transition
matrix for one period of the system and verifies that all
of its eigenvalues have complex magnitude less than
unity.  One can use Floquet analysis to tune Q and R.
One might optimize the speed of response by
minimizing the maximum magnitude of the eigenvalues
of the closed-loop state transition matrix.
System Robustness

Such systems can be expected to have a degree of
robustness with respect to system modeling errors.
This is true because the controllers are approximately
full-state feedback linear quadratic regulators.  Time-
invariant full-state feedback LQRs are known to
possess certain robustness properties 21.  This
robustness should carry over into the low-bandwidth
time-varying case because it is similar to a time-
invariant system.  In the case of the magnetic-torquer-
based attitude controller, there is even more reason to
expect robustness.  In that case, the BT(t) matrix that is
used in the control law is derived from magnetometer
data; therefore, it contains very little modeling error.
Design for Control Saturation

Control saturation occurs when any component of
the computed u vector exceeds the maximum that is
permitted by the actuators, i.e., |(u)i| > (umax)i for some
i.  Any practical controller must be designed to behave
stably if this occurs.  It is not always obvious how best
to deal with this situation, especially if the feedback
controller includes integrators.

Reference 22 presents a method for dealing with
control saturation in the context of time-invariant LQR
controllers.  Its approach exploits the fact that an LQR-
based controller has infinite gain margin.  That is, if the
control law u = - Kx stabilizes the system and if K has
been computed by solving an LQR problem, then the
control law u = - αKx will also stabilize the system for
any positive scalar α in the range 0.5 < α  < ∞.  For all
α > 1 the modified controller is the solution to a
modified LQR problem.

Reference 22 designs an initial LQR that has a very
low bandwidth.  If the system has no open-loop
eigenvalues in the right-half plane, then K can be made
arbitrarily small by this method, and the nominal LQR
control law can be made to function stably in an
arbitrarily large region of state space without violating
any of the limits |(u)i| ≤ (umax)i.  Unfortunately, the
resulting controller will have poor performance close
to the origin of the state space because u will be very
small in this region.
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The technique goes on to use the infinite gain
margin of the LQR in order to recover good
performance near the equilibrium.  It does this by
scaling the control law by a factor α ≥ 1.  It first tries a
nominal value of α that is much larger than 1, call this
α0.  If this produces a control input that does not
violate any of the bounds |(u)i| ≤ (umax)i, then α0 is used.
Otherwise, it scales α down from α0 until all of the
feedback control inputs respect all of the saturation
bounds.

This same technique can be used for the problem at
hand.  A time-varying LQR of the form u = - K(t)x has
the same gain margin as a time-invariant LQR.  For any
α > 1, a modified time-varying control law of the form
u = - αK(t)x will be the solution to a modified time-
varying LQR problem and will stabilize the system.  In
order to design its control saturation logic, the
asymptotic periodic LQR starts by using a very large R
matrix in its design.  This yields a Pss matrix and a
control law u = - R-1BT(t)Pss x that satisfies the no-
control-saturation criterion in a very large region of
state space.  In order to speed the system response
near the state space origin, the control law scales up
the gain according to the following rules:
unom  =  - α0 R-1BT(t)Pss x (22a)

β  =  
imax

inom
i u

|u|
max

)(
)( (22b)

u  =  






<

≤

β

β

β 1u

1u

nom
1

nom

if

if
(22c)

where α0 > 1 is the scaling factor that increases the
response speed near the equilibrium, and β is an
inverse scaling factor that kicks in if saturation occurs.
Using Lyapunov techniques like those of Ref. 22, the
"sped-up" system with its saturation logic can be shown
to be stable for the same large region of state space
that is guaranteed to be stable if the slow controller is
used.

IV. Application to the Magnetic Torquer Attitude
Control Problem

The asymptotic periodic LQR technique has been
applied to the magnetic-torquer-based attitude control
design problem.  This section describes how it has
been applied, and it presents analysis and simulation
results for two different spacecraft configurations.
Incorporation of Integrators in the Design

Integrators are often used in feedback control
systems.  They can eliminate the steady-state effects
of constant disturbances.  For the magnetic attitude
control problem, the use of integrators is challenging
because of the system’s time-variations and especially
because of the under-actuation issue:  One cannot

totally counteract the effects of a constant 3-axis
disturbance torque because the magnetic toque is
constrained to be perpendicular to the Earth's field.
Nevertheless, integrators are useful because they
enable the controller to counteract the average effects
of any 3-axis disturbance torque.  This feature
eliminates pointing biases from the system.

Integrators can be added to the controller via state
augmentation.  Suppose that xaug = [z; x], where x is the
6×1 state vector associated with the linear model in
eqs. (6) and (7) and z is a 3×1 vector of integrals of the

attitude errors: zi(t) = ∫ t
i dx ττ )(  for i = 1, 2, 3.  Then

the augmented state space model takes the form:

augx&   =  






 ×

A
,I 33

0
0][0

 xaug + 







)(

0
tB

 u +  








wB
0

 w

(23)
where the matrices A, B(t), and Bw are the same as in
eqs. (6) and (7).  This system is a periodic time-varying
linear system of the same form as in eq. (9c).
Although assumption (e) of the theorem is violated by
the repeated eigenvalues at the origin, computational
experience has shown that this system admits the
design of asymptotic low-bandwidth periodic LQR
controllers.
Nominal Controller Designs for two Different
Spacecraft Configurations

Configuration A.  The first spacecraft for which a
controller has been designed has 3-axis gravity
gradient stability.  It's inertia matrix is I = diag(8.7, 10,
6.5) kg-m2.  It is a box of dimension 0.7 m along the
roll axis, 0.6 m along the pitch axis, and 0.9 m along
the yaw axis.  Its orbit is circular with an altitude of
600 km and an inclination of 90 deg.

An asymptotic periodic controller has been
designed for this spacecraft.  It uses the design that
accounts for control saturation.  Its slow LQR
controller, the one that gets used when far from the
equilibrium, has been designed using the following
cost weighting matrices:
Q  =  diag(1.5×10-8, 1.5×10-7, 1.5×10-8,  0.1, 1.0, 0.1,

0.1, 1.0, 0.1) (24a)
R  =  diag(6.2×107, 6.2×107, 6.2×107) (24b)
The units of Q are: 1/(rad-sec)2 for the first 3 diagonal
elements, 1/rad2 for the middle 3 diagonal elements,
and (sec/rad)2 for the last 3 diagonal elements.  The
units of R are all 1/(amp-m2)2.  During unsaturated
operation, when operating near the nadir-pointing
equilibrium, fast controller response is achieved by
scaling up the slow-controller's gain by the factor α0 =
2,500.
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The fast response of this periodic system is good.
Its one-orbit state transition matrix has a maximum
eigenvalue magnitude of 0.57.  This translates into a
settling time constant of 1.8 orbits, which means that
all transients will settle to less than 2% of their initial
values in about 7 orbits if control saturation does not
occur.  The motion associated with this slowest
transient response is primarily coupled roll and yaw.
This design has been optimized in the sense that α0, the
scalar gain, has been chosen so as to minimize the
upper bound on the absolute values of the eigenvalues
of the closed-loop system’s one-orbit state transition
matrix.

The eigenvalues of the actual system state
transition matrix are relatively near to those of the
state transition matrix for the averaged time-invariant
closed loop system whose LQR solution was used to
determine Pss.  Recall that this time-invariant system is
the one whose Riccati equation appears as eq. (20).
This nearness of eigenvalues demonstrates that the
time-invariant averaged model is a reasonably good
approximation of the time-varying system when the
closed-loop time constants are on the order of one or
two orbits.

Configuration B.  The spacecraft for this second
case has roll and pitch gravity gradient stability, but its
yaw motion is neutrally stable.  It's inertia matrix is I =
diag(250, 250, 10) kg-m2, and its rectangular form has
roll, pitch, and yaw dimensions of 0.5 m, 0.5 m, and
3.4 m, respectively.  It is in a circular orbit with an
inclination of 57 deg and an altitude of 657 km.  It is
like the spacecraft that was considered in Ref. 7.  The
weights that have been used to design its slow LQR
controller are
Q  =  diag(1.5×10-8, 1.5×10-8, 1.5×10-8,  0.01, 0.01,

0.01,   1.0, 1.0, 1.0) (25a)
R  =  diag(4.9×104, 4.9×104, 4.9×104) (25b)
where the units in eqs. (25a) and (25b) are the same as
in eqs. (24a) and (24b).  The scale-up factor that it uses
to achieve fast control response near the equilibrium is
α0 = 8,130.

This system is not quite as fast as the other one.
The maximum eigenvalue magnitude for its one-orbit
state transition matrix is 0.76.  This translates into a
slowest time constant of 3.7 orbits and an upper bound
on its 2% settling time of about 14 orbits.  Similar to
Case A, the slowest mode is primarily roll-yaw
motion.  In contrast to Case A, the actual periodic
system’s state transition matrix eigenvalues are not as
similar to those of its time-invariant approximation,
and the value of α0 is not quite optimized to minimize
the worst-case settling time – the optimal α0 would be
about 16,000 in this case.

Robustness with Respect to Parametric System
Uncertainty

An important aspect of any controller design is its
tolerance of uncertainty in the open-loop system
model that has been used to design it.  This is
especially so in the present situation.  Simplifying
assumptions have been made about the magnetic field
model, yet under-actuation causes the controller to
rely on model predictions about the field’s future
pointing directions.

Stability robustness has been investigated by
calculating the system state transition matrix for
various cases that involve model error.  The one-orbit
state transition matrix is calculated for the closed-loop
system model x& = {Atruth - Btruth(t)R-1Bmixed(t)Pss} x.  The
matrices Atruth and Btruth(t) are defined by the true orbit,
the true spacecraft inertial properties, and the true
magnetic field.  The Bmixed(t) matrix time history is
based on the true magnetic field and the controller
design model of the spacecraft inertial properties; this
is consistent with the assumption that magnetometer
measurements and an inertial model will be used to
construct Bmixed(t) on orbit.  The Pss matrix is the result
of design calculations that use the matrices Amodel and
Bmodel(t), which are based solely on the design model of
the orbit, the spacecraft inertial properties, and the
magnetic field.

Various types of parametric uncertainty between
the model and the true system have been investigated.
The orbital altitude has been perturbed ± 100 km.  The
orbital inclination has been perturbed ± 30 deg for the
Case-A system and ± 20 deg for the Case-B system –
this latter system should not be expected to work for
inclination perturbations that make its inclination too
low because the system becomes uncontrollable in
pitch at zero inclination.  Perturbations in the overall
inertia levels of ± 30 % have been tried.  Also tested
have been perturbations in the ratios of principal
inertias that range up to ± 25 %.  Some of the Case-B
inertia ratio perturbations were large enough to
destabilize the open-loop system.

This study has considered two types of discrepancy
between the modeled and truth magnetic fields.  One is
a perturbation in its period of up to ± 7%.  This is
representative of one of the effects of Earth rotation.
The other discrepancy is an addition of higher
harmonics to the truth field model.  Fourier terms out
to 5 times the orbital frequency have been added.
Although not taken directly from a spherical harmonic
Earth magnetic field model, these terms have been
sized to approximate the effects of the higher
harmonics that exist in the Earth’s field.
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Both systems exhibit robust stability for all of the
parameter sets that have been considered, 16 sets per
case.  In all mis-modeling situations, the fast-system
closed-loop state transition matrix is stable – recall
that the fast system is the one that uses α0 to speed up
the response.  The slow system, the effective system
when large amplitude response causes extreme control
saturation, is stable for most of the parameter sets that
have been tried.  For the Case-A system, the slow
system is stable for all parameter variations.  The
Case-B system exhibits instability in 3 scenarios, but
instability occurs only for very large state amplitudes
that cause the inverse scaling factor β to be 127 or
greater – review eqs. (22a)-(22c).  One scenario is
when the true altitude is 100 km higher than the
modeled altitude, and the other two scenarios occur
when the yaw inertia factor σyaw = (Iroll-Ipitch)/Iyaw varies by
± 0.1 away from its modeled value of 0.

The bottom line on system robustness is that the
system will remain stable for a wide range of orbital
and inertial variations if the nominal closed-loop
response has been designed to be relatively fast.  When
very large state perturbations cause extreme levels of
control saturation to occur, then in some cases the
resultant slow system will be somewhat less robust to
parameter uncertainty.  At these large state
perturbations the system is likely to experience other
problems as well, problems such as large modeling
errors due to a breakdown of the linearization
assumption that has been used to derive the control
law.
Nonlinear Simulation Results

A number of nonlinear simulations have been run
for designs A and B.  The nonlinear simulations test
four aspects of system performance: a) its response to
the real magnetic field of the rotating Earth, which is
not a dipole and which is not quite periodic, b) the
effects of system nonlinearities, including the attitude
kinematic and dynamic nonlinearities of eqs. (2a) and
(2b) and the control saturation nonlinearity of eqs.
(22a)-(22c), c) its ability to counteract disturbance
torques such as those caused by the drag and by
residual magnetic dipole moments, and d) the impact
of small orbital perturbations such as eccentricity and
the secular J2 effect.

Both systems perform well in a wide range of
situations.  They both show good transient response
that agrees with the predictions of their linear models
when not in a saturated situation.  Both systems are
able to converge from initial attitude errors of over 50
deg (30 deg per axis).  These large initial conditions
test both the functioning of the control saturation logic
and the efficacy of linear control of this nonlinear

system.  Both controllers showed good steady-state
response to disturbance torques

A simulation example of the Case-A system is
presented in Figs. 1 and 2.  Figure 1 presents the roll,
pitch, and yaw angle time histories, and Fig. 2 presents
the corresponding magnetic dipole moment feedback
control input time histories.  This case is one that
starts with a large initial attitude error, about 30 deg
per axis.  These large initial conditions cause
controller saturation, as evidenced on Fig. 2 – the value
of umax = 0.03 amp-m2 in this case.  Nevertheless, the
system successfully converges to its equilibrium
response in a little more than a day.

Fig. 1. System-A pointing error time histories that
start with 30 deg initial errors on all 3 axes.

Fig. 2. Control input time histories for the system-A
example that starts with 30 deg initial
pointing errors on all 3 axes.

In this simulation case there are significant
discrepancies between the simulation model and the
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model that has been used to design the controller.  In
addition to the field model differences, there are
differences in the orbit and in the spacecraft inertias.
Thus, this simulation demonstrates the controller’s
robustness.

The residual system oscillations after 30 hours are
caused by the disturbance torques.  The average drag
torque is 1.6×10-7 N-m about the pitch axis and
1.0×10-7 N-m about the yaw axis, which is somewhat
conservative for this configuration.  In addition, there
are oscillatory disturbance torques from the drag (due
to the orbital eccentricity of 0.002) and from a
residual magnetic dipole moment.  These oscillatory
torques have peak-to-peak amplitudes as large as 3×10-

7 N-m.  The closed-loop steady-state response is
unbiased on all 3 axes with maximum pitch and roll
errors of 0.7 deg and a maximum yaw error of 1 deg.
In open-loop operation, the mean drag torque alone
would have produced mean roll, pitch, and yaw errors
of 0 deg, 0.5 deg, and 7.8 deg, respectively.  This
controller greatly improves the system's yaw accuracy
at the expense of slightly increased roll and pitch
errors.

The response of system B to large initial errors is
depicted in Fig. 3.  As in Fig. 1, the initial errors are
about 30 deg on all three axes.  This system takes
longer to settle down, but it is clearly stable.  The
dipole moment control input time history, not shown,
displays saturated operation for the first 81 hours of
this transient.  The value of umax is 0.1 amp-m2 in this
case.  As in Fig. 2, the saturated response is
oscillatory, like bang-bang control.  It is remarkable
that the controller converges at all in this case.  Recall
that the yaw mode for this design is neutrally stable.
When combined with the integral action in the
controller, the entire yaw subsystem is a series of 3
integrators.  Such systems are very hard to stabilize
when there is control saturation, even in the time-
invariant case.  What is more, the yaw mode's 3
repeated roots at the origin violate assumption (e) of
the theorem.  The ability to converge for this situation
demonstrates that the proposed method is a powerful
tool for attitude controller design.

System B’s steady-state response to disturbances is
shown in Fig. 4.  This example has mean drag torques
of 7.3×10-7 N-m about the pitch axis and 2.6×10-7 N-m
about the yaw axis.  These torques are consistent with
the size of this spacecraft and its likely aerodynamic-
center-to-center-of-mass offset.  The maximum
steady-state roll, pitch, and yaw errors are 0.6 deg, 0.4
deg, and 0.4 deg respectively.  These roll and pitch
errors are significantly larger than would be caused by
the drag torque in an open-loop situation, but the yaw

error is much lower.  It would be infinity in open-loop
operation because the yaw mode is neutrally stable.

Fig. 3. System-B pointing error time histories that
start with 30 deg initial errors on all 3 axes.

Fig. 4. Transient and steady-state pointing error
time histories for system B, an example that
includes an unmodeled residual magnetic
dipole moment and a moderate level of drag
torque based on the given spacecraft size.

Much of the oscillatory steady-state response in
Fig. 4 is due to the way in which this quasi 3-axis
system deals with a true 3-axis disturbance.  In the
process of nulling out the average effects of the
constant drag torque, the controller induces
oscillations.  A good controller design will induce
relatively small "side-effect" oscillations while it
counteracts a given constant disturbance torque, but
there will always be some minimum level of
oscillation.
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An unmodeled residual magnetic dipole moment
also contributes to the steady-state attitude
oscillations shown in Fig. 4.  The residual dipole
moment for this example has a norm of 0.016 amp-m2,
which equals 1/6 of umax, and it gives rise to oscillatory
disturbance torques as large as 1×10-6 N-m peak-to-
peak.  The controller is not so good at dealing with this
type of oscillatory disturbance.

In principle, a magnetic-torque-based controller
should be able to completely counteract this
disturbance.  It would need to use some sort of
estimator of the residual dipole moment in order to
better null out this disturbance effect.  Such an addition
to the controller logic might be very important because
residual dipole moments can be much larger than the
levels used in this study.

V. Conclusions
This paper has shown how to design a class of

stabilizing attitude controllers for nadir-pointing
spacecraft.  These controllers use only magnetic
actuation.  Their control laws are designed using a new
type of periodic linear quadratic regulator whose
Riccati equation solution is approximated by a linear
time-invariant solution for an averaged system.  The
resulting full-state feedback controller derives its
periodicity from the time-varying control influence
matrix, which can be derived from on-board
magnetometer measurements.  The controllers use
integrators in order to counteract steady-state
disturbance torques, and they employ a type of
saturation logic that maintains stability by using the
infinite gain margin property of linear quadratic
regulators.

This technique has been applied to two example
systems, both of which have only magnetic actuation
and no wheels or gravity gradient booms.  The
controller's performance has been studied via analysis
and simulation.  The system has been shown to be very
robust with respect to modeling errors in the magnetic
field, the spacecraft inertia matrix, and the orbital
properties.  The system can converge from attitude
errors of 30 deg per axis.  It can achieve pointing
accuracies on the order of 0.5 to 1.0 deg for spacecraft
designs that have reasonable levels of drag torque.

This system may be an attractive alternative to a
gravity gradient boom or a set of thrusters.  It can
provide more accuracy for less weight than can a
gravity gradient system, and it does not expend fuel
like a thruster system.

The techniques developed in this paper also can be
applied to momentum bias systems and other similar
systems.  They may prove helpful in such systems by

increasing the pointing accuracy or by decreasing the
required wheel size for a given level of accuracy.
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