
ION GPS 2001, 11-14 September 2001, Salt Lake City, UT

Smoother-Based GPS Signal Tracking in a
Software Receiver

Mark L. Psiaki, Cornell University

BIOGRAPHY

Mark L. Psiaki is an Associate Professor of Mechanical
and Aerospace Engineering at Cornell University. His
research interests are in the areas of estimation and
filtering, spacecraft attitude and orbit determination, and
GPS technology and applications. He holds a B.A. in
Physics and M.A. and Ph.D. degrees in Mechanical and
Aerospace Engineering, all from Princeton University.

ABSTRACT

Global Positioning System (GPS) signal tracking
algorithms have been developed using the concepts of
Kalman filtering and smoothing. The goal is to improve
phase estimation accuracy for non-real-time applications.
A bit-grabber/software-receiver has been developed for
the GPS L1 coarse/acquisition signal. The bit grabber
down-converts, digitizes, and stores the raw RF signal.
The software receiver tracks each signal using a 2-step
process. The first step uses phase-locked and delay-
locked loops. The second step refines the tracking
accuracy through the use of linear smoothing techniques.
These techniques make optimal use of after-the-fact data.

INTRODUCTION

A GPS user receiver needs to track the spread-spectrum
signals that it receives from the GPS constellation.
Almost all receivers track the phase of the pseudo-random
number (PRN) code that is used to spread the signal's
spectrum, and many receivers also track the phase of the
underlying carrier signal. The phase of the PRN code is
used to infer the pseudo range from the GPS satellite to
the user, and the accuracy with which this phase can be
tracked constitutes a fundamental limit to the achievable
accuracy of the receiver's determination of absolute
position and time. The phase of the carrier signal is used
to determine the Doppler shift and the accumulated delta
range. Accurate carrier phase tracking is necessary for
precise differential GPS measurements and for precise
velocity determination.

Standard receivers track code phase using a Delay-
Locked Loop (DLL) and carrier phase using a Phase-
Locked Loop (PLL) 1,2. These entities are feedback loops

that align a replica signal in the receiver with the actual
received signal. In a normal receiver, these loops must
operate in real-time, which means that they can rely only
on past measurements of phase errors in order to align the
two signals. This causality constraint limits the receiver's
ability to accurately measure code and carrier phase.

Recently there has been a lot of interest in the use of
software receivers in conjunction with bit-grabbers 3-11.
A bit-grabber samples a down-converted and filtered
version of the raw GPS radio frequency (RF) signal and
either stores it on disk, sends it to a telemetry system, or
sends it directly to a microprocessor. The remainder of
the receiver functions are implemented in software in a
microprocessor, hence the name "software receiver."
These include base-band carrier mixing, PRN code
correlation, and signal tracking. A typical real-time
receiver implements these functions mostly in dedicated
digital hardware because they involve a large
computational load. Implementation in a software
receiver poses execution speed challenges if the system
must act in real-time 11.

There are a number of applications in which non-real-
time data processing is useful. One is to determine what
happened during an interval when a real-time receiver lost
lock 7,8. After-the-fact processing can help sort out the
cause because loss of lock is not an issue for bit-grabbed
raw RF data. Another use for after-the-fact GPS data
processing is in the acquisition of navigation information
from a signal of limited duration 4,6,10; a single short data
interval can be used both for acquisition and to derive
phase observables. Software post-processing can be
useful when there is an extremely low signal-to-noise
ratio (SNR) because it can incorporate sophisticated
algorithms that allow the use of longer averaging intervals
10. After-the-fact software receivers can be used in flight
testing of small payloads. A test vehicle can be equipped
with a bit grabber and a telemetry system that sends the
raw data bits to a ground station. The ground station can
then process the data for use in analysis of the flight test.

This paper concentrates on the design of new signal
tracking functions for use in non-real-time processing of
raw GPS intermediate frequency (IF) signals. Its goal is
to improve the accuracy of a receiver's estimates of the

PRN code phase and carrier phase. It does this by using
data that extends into the "future" – that is, beyond the
time point of interest. It employs an algorithm called a
smoother, which is a variant of a Kalman filter 12. Note,
that the terms "smoother" and "smoothing," as used in this
paper, do not refer to the concept that is commonly
known in the GPS literature as carrier-aided smoothing.

Reference 5 and related works by the same authors
present the only published signal tracking algorithm that
has been designed specifically for use in a GPS software
receiver. This algorithm uses the discrete Fourier
transform as part of its code correlation process, and it
uses simple feedback principles to effectively implement
a frequency-locked carrier tracking loop and a delay-
locked loop that tracks the code phase.

Two works that are more relevant to this research come
from the general area of real-time GPS signal tracking
13,14. These works use Kalman filtering theory in order to
design phase-locked loops for tracking the GPS carrier
signal. Their signal models and Kalman filter design
techniques can be used and extended in order to develop
smoothers to track both carrier phase and code phase.

The present paper makes 3 contributions. First, it
develops signal models for the code and carrier phase that
are suitable for the purpose of designing smoothers.
Second, it presents smoother designs that act on bit-
grabbed data and optimally estimate carrier phase and
code phase. This represents the paper's primary
contribution and is the first use of smoothers in the field
of GPS RF signal tracking. Third, the paper tests the
smoothers using real GPS data that has been collected by
a bit-grabber receiver and a roof-mounted antenna.

These contributions yield an ability to track GPS code
phase and carrier phase with a smaller level of receiver-
induced error. This increased accuracy can be significant
in differential GPS applications, in situations with a very
low SNR, or in cases where the user vehicle is
undergoing highly dynamic maneuvers.

This paper represents a first cut at the application of
smoothing algorithms to GPS signal tracking. Its goals
are to explain the general technique and to show how the
simplest possible smoothers can yield improvements.
Additional work will be needed in order to realize the
fullest possible benefits of smoothing techniques.

The techniques of this paper are generally applicable to
both the coarse/acquisition (C/A) code on the L1
frequency and to the precision (P) code on both the L1
and L2 frequencies. It is necessary to know the code in
order to implement this paper's methods. This paper
targets its developments to the C/A code because the anti-
spoofing Y encryption of the P code precludes civilian
testing of these concepts on P code.

The remainder of this paper is divided into 6 sections plus

conclusions. The second section describes the hardware
and functions of the bit-grabber/software-receiver system.
The third section presents mathematical models for the
dynamic evolution of the carrier phase and the code
phase. The fourth section explains how to design Kalman
filters for purposes of phase tracking. Kalman filters
provide a basis for understanding smoothers. In addition,
they are used in the first step of a two-step signal tracking
process. The fifth section designs the smoothers that
carry out the carrier phase and code phase tracking. The
results of signal tracking experiments are presented in the
sixth section. The seventh section suggests enhancements
that could be made to the smoothing algorithms.

HARDWARE AND FUNCTIONAL DESCRIPTION
OF A BIT-GRABBER/SOFTWARE-RECEIVER
SYSTEM

This paper's signal tracking algorithms function within
the framework of a software receiver that operates on data
from a GPS bit grabber. The overall bit-
grabber/software-receiver system is depicted
schematically in Fig. 1. The bit grabber is a special-
purpose electronics card that down-converts, band-pass
filters, and gain adjusts the L1 RF signal yL1(t). The result
is an intermediate-frequency RF signal, yIF(t). This latter
signal gets digitized and sampled by an analog-to-digital
converter (ADC). This sampled signal is stored on a
computer hard drive for later post-processing by the
software receiver. The software receiver reads yL1(t) from
the disk and processes it in order to acquire and track any
GPS signals that are present in it.

The performance of this system is relatively insensitive to
the specific characteristics of the bit grabber, but for the
sake of completeness, the hardware that has been used in
this study is now described. The RF front end is a
Plessey GP2015 chip. It has 3 stages of mixing, 3 stages
of band-pass filtering, and an automatic gain control loop.
Its output maps the nominal L1 carrier frequency to an
intermediate frequency of 4.309 MHz, and the signal is
filtered to a half bandwidth is 1 MHz. This signal is
sampled by a 2-bit ADC at a sampling frequency of 5.714
MHz. This aliases the nominal intermediate frequency of
the sampled signal to 1.405 MHz, and it causes a phase
reversal. The RF front end, the ADC, and the sampler are
all implemented on a single chip 15. The bit-grabber uses
a temperature-compensated crystal oscillator as its timing
reference. Its one-second root Allan variance is no
greater than 10-9 (see Ref. 16).

The bit-grabber's effect on a GPS L1 C/A signal can be
modeled mathematically. Suppose that the signal from a
single GPS satellite comes out of the antenna in the form:

yL1(t) = A C(t) D(t) cos[ωL1t + φ(t)] (1)

In this formula A is the signal's amplitude, C(t) is the
pseudo-random spreading code (±1 with a 1.023 MHz

chipping rate), and D(t) is the encoded data bit of the
navigation message (±1 with a 50 Hz data bit rate) 17.
The frequency ωL1 = 1575.42×106×2π rad/sec is the
nominal L1 carrier frequency, and φ(t) is the carrier phase
perturbation due to the integrated Doppler shift. The bit
grabber operates on the signal in eq. (1) to produce the
following down-converted signal at the output of its
ADC:

yIF(tj) = B C(tj) D(tj) cos[ωIFtj - φ(tj)] + νd(j) (2)

where tj is the sample time, B is the output amplitude, ωIF
is the down-converted image of the L1 carrier frequency,
and νd(j) is digitization error. ωIF = (88.54/63)×106×2π
rad/sec for the implementation that has been used in this
study. The sign in front of φ(tj) is reversed in eq. (2) from
what it is in eq.(1). This phase reversal is the result of the
aliasing that occurs during the 5.714 MHz sampling
process. Note that eq. (2) neglects distortion and delay
that are caused by the RF front end's band-pass filters.
The distortion affects the shapes of C(t) and D(t), and a
common delay applies to C(t), D(t) and φ(t). Neglect of
these effects is reasonable. The distortion is not very
large, and the delay can be treated as an additive receiver
clock error.

Fig. 1. Schematic block diagram of a GPS bit-
grabber/software-receiver system.

The software receiver portion of this system includes 4
basic signal processing functions. The signal acquisition
section generates initial estimates of the code phase and
Doppler shift of a given signal. The Kalman filter section
implements first-cut tracking of the code and carrier of
each signal and operates much a conventional DLL/PLL
channel. The smoother block uses the outputs of the
Kalman filter block and the raw yIF(t) data to generate
refined estimates of each signal's code and carrier phase.

The Data decoding and navigation block includes the
software that decodes each signal's navigation message
and that uses the results of the signal tracking blocks to
deduce pseudo-range and the navigation solution.

The signal acquisition process searches for the C/A PRN
code start time, kT̂ , and the Doppler shift, dφ/dt, of the
signal from a given GPS satellite. The search computes
the cross correlation between yIF(tj) and a replica that
includes the PRN code and the carrier signal. It surveys
the 2-dimensional (kT̂ , dφ/dt) space in order to find a
strong cross-correlation peak. This process uses a
Fourier-transform-based approach that simultaneously
computes the correlation for all code delays of interest at
a given Doppler shift 5. For strong signals, the search
computes its correlations using a single millisecond's
worth of data from the bit grabber, which equals one
period of the C/A PRN code. For weaker signals, it uses
several C/A code periods. The subject of signal
acquisition in a software receiver has been treated by
other researchers, e.g., see Ref. 5, and the present paper
merely makes use of existing results.

The Kalman Filter and Smoother modules in the software
receiver implement functions like those of the DLLs and
PLLs of a conventional real-time receiver: They estimate
the phases of the code and the carrier. They also estimate
the frequency and drift rate of the carrier. The main
difference from a conventional receiver is that the
smoother block uses correlations which extend past the
time point of interest. These two blocks are the subjects
of the remainder of this paper.

MODELS OF CARRIER-PHASE AND CODE-
PHASE MEASUREMENTS AND DYNAMICS

Correlation-Based Phase Measurements

The measurement process begins with reconstructions of
the code phase and the carrier phase of the signal. The
reconstructed code phase is stored in terms of estimated
start/stop times of the C/A PRN code periods, 0T , 1T ,

2T , …, 1kT − , kT , 1kT + , … Suppose that C0(t) is the
nominal PRN code for the tracked satellite. It is a
function with values of ±1, and its period starts at t = 0
and lasts 0.001 sec. The estimated start-stop times are
used to reconstruct the received PRN code according to
the following formula:

)(tC =

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤−−
<≤−−

++

−−−

MM

MM

1kkk1kk0

k1k1kk1k0
TtTTT/TtC

TtTTT/TtC
if)]()[0.001(
if)]()[0.001(

(3)

The reconstructed carrier signal is based on linear

Signal
Acqu.
Code

Kalman
Filter

for
Rough
Track

yL1(t)

RF
Front
-End

yIF(t)

Ref.
Osc.

ADC

Sample
Clock

Mass
Storage

GPS Bit
Grabber

Antenna

Software
Receiver

Smooth
er for
Fine

Track

Data
Decode
& Nav.

interpolation between reconstructed carrier phases at the
estimated code period start/stop times. Suppose that φre(k)
is the reconstructed carrier phase perturbation at time kT .
Then the following two signals are, respectively, the in-
phase and quadrature reconstructions of the IF image of
the carrier signal:

)(tyI =

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤−−−
<≤−−−

+

−−−−

MM

MM

1kkkkrekreIF

k1k1k1kre1kreIF
TtTTtt

TtTTtt
if)](cos[
if)](cos[

)()(

)()(
ωφω

ωφω

 (4a)

)(tyQ =

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤−−−−
<≤−−−−

+

−−−−

MM

MM

1kkkkrekreIF

k1k1k1kre1kreIF
TtTTtt

TtTTtt
if)](sin[
if)](sin[

)()(

)()(
ωφω

ωφω

 (4b)

where ωre(k) = [φre(k+1) -φre(k)]/[1kT + - kT] is the reconstructed
Doppler shift on the time interval from kT to 1kT + .

The reconstructed signals in eqs. (3)-(4b) can be used to
measure carrier phase and code phase errors. The phase
error measurements make use of 4 correlations:

)(keI =)()()(emlj

j

jj
jIjIF t5.0tCtyty

)k(stop

)k(start

Δ+∑
=

 (5a)

)(keQ =)()()(emlj

j

jj
jQjIF t5.0tCtyty

)k(stop

)k(start

Δ+∑
=

 (5b)

)(klI =)()()(emlj

j

jj
jIjIF t5.0tCtyty

)k(stop

)k(start

Δ−∑
=

 (5c)

)(klQ =)()()(emlj

j

jj
jQjIF t5.0tCtyty

)k(stop

)k(start

Δ−∑
=

 (5d)

These are standard early and late in-phase and quadrature
accumulations, which are also used in typical real-time
receivers 2. The interval Δteml is the delay, measured in
seconds, between an early version of the reconstructed
PRN code and a late version. The accumulation interval
goes from 1kT − to kT , which implies that the sample
index limits jstart(k) and jstop(k) are chosen according to the
rules

jstart(k) = minimum j such that 1kT − ≤ tj (6a)

jstop(k) = maximum j such that tj < kT (6b)

Recall from eq. (2) that tj, tj+1, tj+2, …etc… are the sample
times of the bit grabber's ADC.

The accumulations in eqs. (5a)-(5d) can be used to
compute carrier and code phase errors. The measured
carrier phase error is

ycarr(k) =

⎪⎩

⎪
⎨
⎧

+<++−

+≤++−

][][if]arctan2[
][][if]arctan2[

)()()()()()(

)()()()()()(
2

kl
2

kl
2

ke
2

keklkl

2
ke

2
ke

2
kl

2
klkeke

QIQInI,Q
QIQInI,Q

π
π

 (7)

This quantity measures the difference between the true
carrier phase perturbation, φ, and its reconstruction, φre.
The integer n is selected to undo both the 2π phase
ambiguity of the arctan2 function and the effects of GPS
data bit shifts. This study assumes that the SNR at the
sampling frequency is sufficiently high to allow for
reliable determination of n by comparing ycarr(k) with ycarr(k-1);
n gets adjusted to minimize the absolute value of the
phase error change.

This phase error measurement is sub-optimal, and the
method of computing n does not work well if the SNR is
too low. Better techniques could be incorporated into this
paper's developments, but such improvements would
increase their complexity. The paper's goal is to
introduce the concept of smoothing to the problem of
GPS signal tracking. This goal is easier to accomplish if
one keeps the smoothing algorithms as simple as possible.
Equation (7) promotes simplicity because it gives rise to a
linear carrier phase smoothing problem.

The measured code phase error is computed using a non-
coherent calculation:

ycode(k) =

2
kl

2
kl

2
ke

2
ke

2
kl

2
kl

2
ke

2
ke

6
eml

6

QIQI

QIQI

10046.2
t10023.12

)()()()(

)()()()(

+++

+−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

×
×−

β
Δ

 (8)

This phase error measures the difference between the
estimated PRN code start time T and the actual code
start time T. Equation (8) assumes a symmetric,
triangular peak in the cross-correlation of the
reconstructed code and the received code. The scalar β is
nearly equal to 1 and accounts for slight variations in the
slope of the autocorrelation function of different PRN
codes.

Stochastic Carrier Phase Dynamics Model

A discrete-time carrier phase model has been developed
which is similar to the one used in Ref. 14. It is a three-
state discrete-time model:

1ka

v

p

x
x
x

+⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

100
10

2
1

k

2
k

k

T

T
T

Δ

ΔΔ

ka

v

p

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 -

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
0

kTΔ
ωre(k)

 +
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0100
0010
0001

wk (9a)

ycarr(k+1) =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

62
1

2
kk TT ΔΔ

ka

v

p

x
x
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
-

2
kTΔ ωre(k)

 + []1000 wk + νk+1 (9b)

The sample interval for this discrete-time model is ΔTk =
1kT + – kT , which is nominally 0.001 sec. The model's

three states are xp = φ - φre, the carrier phase difference
between the actual signal and the software receiver's
reconstructed signal, xv = φ& , the carrier signal's Doppler

shift, and xa = φ&& , the drift rate of the Doppler shift, which
is caused by acceleration. The subscripts p, v, and a
denote position, velocity, and acceleration.

The 4×1 vector wk in eqs. (9a) and (9b) is the process
disturbance vector. It models the effects of receiver
vehicle maneuvers. It is a discrete-time Gaussian white
noise process and has the following statistics:

E{wk} = 0
E{ T

lk ww }

= δkl qct

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

252243072
2426
30238
726820

5
k

3
k

4
k

5
k

3
kk

2
k

3
k

4
k

2
k

3
k

4
k

5
k

3
k

4
k

5
k

TTTT
TTTT
TTTT
TTTT

ΔΔΔΔ
ΔΔΔΔ
ΔΔΔΔ
ΔΔΔΔ

= δkl Qk (10)

In this equation δkl is the Kronecker delta, and qct is the
intensity of an equivalent scalar continuous-time white
noise process that models φ&&& . Equation (10) effectively
defines the 4×4 discrete-time process noise intensity
matrix Qk.

Measurement eq. (9b) relates the states of the model in
eq. (9a) to the carrier phase measurement that is defined
in eq. (7). This relationship models ycarr(k+1) as being the
difference between φ(t) and φre(t) averaged over the
accumulation interval [kT , 1kT +).

Equation (9b) includes a measurement error term, νk+1.
This error is modeled as being a discrete-time white noise
random process. It is assumed to be uncorrelated with the
process noise vector, wk, to be Gaussian, and to have the

following statistics:

E{νk+1} = 0, E{ T
1l1k ++ νν } = δkl 2

vσ (11)

This error term accounts for all measurement error
sources other than vehicle dynamics. These include
receiver thermal noise and digitization error, receiver
clock jitter, etc. The form of this model is reasonable for
errors with a wide spectrum, but it is less than optimal for
low-frequency errors such as the ionospheric phase
advance. In the future it may be possible to develop
Kalman filters and smoothers that make use of error
models which are more sophisticated.

The dynamic model in eqs. (9a) and (9b) can be put into
standard matrix-vector form. Suppose that the model's
3×1 state vector is x = [xp; xv; xa]. Then the model
becomes:

xk+1 = Φk xk + Γk ωre(k) + Γw wk (12a)

ycarr(k+1) = Ck xk + Dk ωre(k) + Dw wk + νk+1 (12b)

where the matrices Φk, Γk, Γw, Ck, Dk, and Dw are
effectively defined in eqs. (9a) and (9b).

Stochastic Code Phase Dynamics Model

The code phase dynamics model is a first-order discrete-
time model of the variations of the actual start times of
the received signal's code periods:

Tk+1 = Tk +
)(1

0.001

1Lk / ωφ&+
 + wcode(k) (13a)

ycode(k+1) =)(2
1

k1k TT ++ -)(2
1

k1k TT ++ + νcode(k+1)

 (13b)

In this model Tk, Tk+1, … etc. are the actual start times of
the received PRN code periods. Recall that kT , 1kT + ,
…, etc. are the start times of the receiver reconstruction of
the code that is used to generate correlations. The second
term on the right-hand side of eq. (13a) models the
nominal PRN code period with an adjustment for Doppler
effects. The quantity kφ& is the average Doppler shift of
the carrier signal during the time interval from Tk to Tk+1.

The scalars wcode(k) and νcode(k+1) are discrete-time white noise
sequences, the former is called the process noise, and the
latter is called the measurement noise. They are assumed
to be Gaussian and uncorrelated with each other and to
have the following statistics:

E{wcode(k)} = 0,
E{ T

)l(code)k(code ww } = δkl 2
wcodeσ (14a)

E{νcode(k+1)} = 0,
E{ T

)1l(code)1k(code ++ νν } = δkl 2
vcodeσ (14b)

The process noise accounts for code/carrier divergence

that can be caused by ionospheric variations. The
measurement noise accounts for receiver thermal noise,
digitization error, and code multi-path error. The white-
noise model for νcode(k+1) is not totally consistent with code
multi-path characteristics, but this is acceptable because
Kalman filters and smoothers are often insensitive to such
inconsistencies.

Equation (13b) relates the states Tk, Tk+1, … etc. of the
dynamic model in eq. (13a) to the code phase
measurement that is defined in eq. (8). Effectively, it says
that the measured code phase at sample k+1 is the
average over the accumulation interval [kT , 1kT +) of the
phase difference between the eq.-(3) reconstructed PRN
code and the actual received PRN code.

KALMAN FILTERS AND IMPLEMENTATION OF
PLL AND DLL FUNCTIONS

The main contribution of this work is in the area of GPS
signal smoothing, but there are two good reasons also to
consider the subject of Kalman filtering of GPS signals.
First, Kalman filtering is closely related to smoothing.
Second, Kalman filters have been used to design a PLL
for tracking carrier phase and a DLL for tracking code
phase. The PLL and the DLL are needed in order to get
the receiver's replicas of the carrier and code to match
closely with the received signal; otherwise, the linear
models of this paper's third section would not be valid for
purposes of smoothing.

Carrier Phase Kalman Filter and Associated PLL

The carrier phase Kalman filter produces the optimal
estimate of the carrier phase state at time kT based on the
carrier phase measurements taken before and including
that time. Suppose that this estimate is called kx~ . Then
the Kalman filter is based on eqs. (12a) and (12b), and it
uses the following recursive formula to estimate kx~
starting from an initial estimate, 0x~ :

1k
~

+ν = ycarr(k+1) - Ck kx~ - Dkωre(k) (15a)

1kx~ + = Φk kx~ + Γkωre(k) + Lk+1 1k
~

+ν (15b)

The quantity 1k
~

+ν is called the filter innovation. It is the
difference between the measured ycarr(k+1) from eq. (7) and a
prediction of ycarr(k+1) that is based on the measured values
of ycarr(0), …, ycarr(k). The time-varying Lk+1 vector is the
optimal Kalman filter gain 18.

A steady-state version of the Kalman filter in eqs. (15a)
and (15b) can be used to develop a PLL. If ΔTk is
constant, which is a good approximation, then the Kalman
filter gain approaches a constant as k gets large; i.e.,
Lk+1 → L as k → ∞. This constant gain is used in the PLL.
The PLL feeds back the estimated carrier phase state at

time 1kT + to select the carrier reconstruction frequency
for the time interval 2kT + to 3kT + :

ωre(k+2) =
 {),}2({1 ,)[(1 2

2k1k TT ++ +−− ΔΔαα

)]}{20.5(22
2k1k1k TTT +++ ++− ΔΔΔα 1kx~ +

 - (1-α)2 xpeq - (1-2α) ωre(k+1) ΔTk+1}/ΔTk+2 (16)

The scalar xpeq is a desired equilibrium value of xp, the
phase difference between the reconstructed carrier signal
and the actual carrier signal. The quantity α is a tuning
parameter that is in the range 0 ≤ α < 1. Assuming that
the Kalman filter's phase estimate is correct, α determines
how fast xp will converge to xpeq: α = 0 causes
convergence in two code periods, but α near 1 yields very
slow convergence. Although not needed in the current
application, the use of 1kx~ + to determine ωre(k+2) allows for
causal operation of the PLL even when one considers its
computational delay.

The xpeq bias term is set to ±π/2, whichever is nearer to the
initial phase error. This bias has been added in order to
keep the PLL's steady-state response as far away as
possible from the ±π ambiguity of the arctan2 function in
eq. (7). If xpeq = 0 were used, which is typical, then data
bit shifts would place the eq. (7) calculation near to the
ambiguity half of the time.

The entire PLL consists of eqs. (15a), (15b), and (16). It
is stable for reasonable choices of L. It is 5th-order, but α
is normally chosen to be small enough to cause the PLL's
response to be dominated by the Kalman filter. This
makes the PLL effectively 3rd order.

This PLL is used by the software receiver to determine
ωre(2), ωre(3), ωre(4), … etc. These quantities are needed in
order to set up a linear smoothing problem. The values of
ωre(0) and ωre(1) are needed to initialize the PLL. They are
determined by the signal acquisition process.

Code Phase Kalman Filter and Associated DLL

A Kalman filter can also be developed to estimate the
code phase. It is based on the code phase model in eqs.
(13a) and (13b). It takes the following recursive form

)1k(code
~

+ν = ycode(k+1) -)(
2
1

k1k TT ++ + kT~

+
⎭
⎬
⎫

⎩
⎨
⎧

+)0.0005] 1, ([0,1
0.001

2
1

1Lk /x~ ω
 (17a)

1kT~ + = kT~ +
)0.0005] 1, ([0,1

0.001

1Lk /x~ ω+

+ Lcode(k+1))1k(code
~

+ν (17b)

The scalar kT~ is the optimal estimate of Tk based on the

measurements ycode(0), ycode(1), ycode(2), …, ycode(k). The quantity
)1k(code

~
+ν is the code phase innovation, and Lcode(k+1) is the

code phase Kalman filter gain.

This Kalman filter uses carrier aiding. The aiding term
uses an estimate of the average carrier Doppler shift for
the time interval [kT , 1kT +). This estimate is
[0, 1, 0.0005] kx~ .

A steady-state version of the code phase Kalman filter
can be used as the basis for a DLL. The steady-state filter
uses a constant Lcode filter gain that is the asymptotic limit
of Lcode(k+1) as k approaches infinity. The DLL is completed
by inclusion of a "feedback control law" that computes
future values of T based on current estimates T~ . The
feedback control law computes

3kT + = 1kT~ + +
)0.0005] 1, ([0,1

0.001

1L1k /x~ ω++

+
)0.0015] 1, ([0,1

0.001

1L1k /x~ ω++
 (18)

The last two terms on the right-hand side of this equation
use aiding from the carrier phase Kalman filter. This
formula for 3kT + defines how the DLL regulates the
PRN chipping rate for the interval [2kT + , 3kT +); it sets it
to 1023/(3kT + - 2kT +). Equations (17a), (17b), (18) and
the chipping rate formula constitute the complete DLL.
The control law assumes that the DLL calculations take
place in real time and during the time interval from 1kT +

to 2kT + . That is why it uses 1kT~ + to determine 3kT +
rather than 2kT + . After 1kT + has passed, the receiver
assumes that the code chipping rate remains fixed until
time 2kT + , which means that eq. (18) executes too late to
affect 2kT + .

The software receiver uses this DLL. It needs accurate
values for 0T , 1T , 2T , … in order to set up its linear
smoothing problem. The signal acquisition algorithm can
be used to estimate 0T and 1T to sufficient accuracy, but
the DLL is needed in order to estimate 2T , 3T , 4T , …

SMOOTHERS THAT TRACK CARRIER PHASE
AND CODE PHASE

A fixed-interval smoother processes a batch of data that
extends over a given time interval and optimally estimates
the state over that entire time interval based on the entire
data batch. The resulting estimated state time history is
more accurate than that of a Kalman filter. The accuracy
increases because the estimate at any given time is based
on a larger data set.

Carrier Phase Smoother

The following is a least squares formulation of the carrier
phase smoothing problem:

find: xk for k = 0, …, N
wk andνk+1 for k = 0, …, N-1 (19a)

to minimize: J = 2
1 (000 z~xR~ −)T(000 z~xR~ −)

 + ∑
−

=

1

0

T
2
1)()(

N

k
k)k(wk)k(w wRwR

 + ∑
=

N

k
kk RR

1

T
2
1)()(νν νν (19b)

subject to: xk+1 = Φkxk +Γkωre(k) +Γwwk
 for k = 0, …, N-1 (19c)

 ycarr(k+1) = Ckxk +Dkωre(k) +Dwwk + νk+1
 for k = 0, …, N-1 (19d)

were eqs. (19c) and (19d) repeat the carrier phase
dynamic model of eqs. (12a) and (12b). This problem
seeks an optimal state time history, x0, …, xN, an optimal
process noise time history, w0, …, wN-1, and an optimal
measurement error time history, ν1, …, νN. These optimal
time histories must satisfy the dynamic model in eq. (19c)
and must reproduce the measurements ycarr(1), …, ycarr(N) in
accordance with the measurement model in eq. (19d).
They also must minimize the weighted sum of the squares
of the process-noise and measurement-error vectors along
with a weighted sum of the difference between x0 and its
a priori estimate 0x~ = 00 z~R~ 1− .

The given quantities of this problem are the scalar νR ,
the scalars Dk and ycarr(k+1) for k = 0, …, N-1, the vector 0z~ ,

the matrices 0R~ , Γw, and Dw, and the matrices)k(wR , Φk,

Γk, and Ck for k = 0, …, N-1. The only quantities in this
set that have not been defined already are those which
weight the errors in the eq.-(19b) least-squares cost
function. Each of these quantities has a statistical
definition. The 3×3 matrix 0R~ is the square root of the
inverse of the estimation error covariance of 0x~ :

T1 −−
00 R~R~ = E{(0x~ -x0)(0x~ -x0)T}, where the notation ()-T

stands for the transpose of the inverse of the matrix in
question. The 3×1 vector 0z~ = 0R~ 0x~ . The 4×4 matrix
Rw(k) is the square root of the inverse of the process noise
covariance matrix: T1 −−

)k(w)k(w RR = Qk, where Qk comes

from eq. (10). The scalar νR = 1/σν, the inverse of the
standard deviation of the measurement error.

This smoothing problem can be solved by using a
modified form of the standard square-root information
filter/covariance smoother (SRIF/S) algorithm 12. The
modified algorithm begins with a manipulation of

measurement eq. (19d). It subtracts Dk ωre(k) from both
sides and then multiplies both sides by νR . The result is

zm(k) = Akxk + Awwk + νm(k) for k = 0, …, N-1 (20)

where zm(k) = νR [ycarr(k+1) -Dkωre(k)], Ak = νR Ck,
Aw = νR Dw, and νm(k) = νR νk+1.

The following steps define the smoothing algorithm:

1. Set k = 0.

2. Use left QR factorization to compute Q1k,)k(wwR ,

)k(wxR , and kR̂ such that T
k1k1 QQ = I and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

00
0T

k

)k(wx)k(ww

k1 R̂
RR

Q =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

k

kw

w

R~
AA

R

0

0

3. Compute
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)k(e

k

)k(w

z
ẑ

z
 =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

k

)k(mk1
z~

zQ
0

4. If k = N-1 go to Step 8.

5. Use left QR factorization to compute Q2k,)k(wwR̂ ,

)k(wxR̂ , and 1kR~ + such that T
k2k2 QQ = I and

⎥
⎦

⎤
⎢
⎣

⎡

+1k

)k(wx)k(ww
k2 R~

R̂R̂Q
0

T =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
−−

−−

11

11)(

kkwkk

k)k(wxwk)k(wx)k(ww

R̂R̂
RRR

ΦΓΦ
ΦΓΦ

6. Compute ⎥
⎦

⎤
⎢
⎣

⎡

+1k

)k(w
z~
ẑ

 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+
−

−

)(
)(

1

1

)k(rekkkk

)k(rekk)k(wx)k(w
k2 R̂ẑ

Rz
Q

ωΓΦ
ωΓΦ

7. Replace k with k+1 and go to Step 2.

8. Compute *
1Nx − = 1N1N ẑR̂ −−

-1 ,
*

1Nw − =][-1 *
1N)1N(wx)1N(w)1N(ww xRzR −−−− − ,

and *
Nx = ΦN-1

*
1Nx − + ΓN-1ωre(N-1) + Γw

*
1Nw − and set

k = N-2.

9. Compute *
kw =][-1 *

1k)k(wx)k(w)k(ww xR̂ẑR̂ +− and
*
kx =][-1 *

kw)k(rek
*

1kk wx ΓωΓΦ −−+

10. If k = 0 stop; otherwise, replace k with k-1 and go to
Step 9.

In this algorithm *
0x , …, *

Nx is the smoothed state time

history, and *
0w , …, *

1Nw − is the smoothed process noise
time history. The smoothed measurement error time
history, *

1ν , …, *
Nν , can be computed by using eq. (19d).

The smoother consists of a forward pass through the data,
Steps 1-7, followed by a backwards recursion, Steps 8-10.
The forward pass is equivalent to the Kalman filter of eqs.
(15a) and (15b) 12.

This smoother can be tuned by selecting the various
statistical weighting matrices in the eq.-(19b) least-
squares cost function. The 0R~ matrix affects the initial
transient behavior of the smoother near the start of the
data batch. A large value of 0R~ causes the smoother to
rely more on the a priori guess 0x~ than on the measured

data for small values of k. In the current application 0R~
is set to zero. This causes the smoother to ignore the
initial guess of the state and to determine the state based
only on the measurements. The other tuning parameters
are the process noise intensity, qct from eq. (10), and the
measurement noise standard deviation, vσ from eq. (11).
A high value of qct or a low value of vσ will cause the

smoother to form its *
kx estimate mostly based on data

taken very near time kT . Conversely, a low value of qct

or a high value of vσ will cause *
kx to be based on a long

window of data, which will get mapped to time kT by
using the dynamic model in eq. (19c).

Code Phase Smoother

The code phase smoothing problem has a least-squares
formulation which is similar to that of the carrier phase
problem:

find: Tk for k = 0, …, N
wcode(k) and νcode(k+1) for k = 0, …, N-1
 (21a)

to minimize: J = 2
1 ()0(T00 z~Tr~ −)2

 + ∑
−

=

1

0

2
2
1)(

N

k
wcode)k(code /w σ

 + ∑
=

N

k
)k(code

1

2
code2

1)/(νσν (21b)

subject to: Tk+1 = Tk

 +
})0](0.5, {[0,1

0.001
**

1L1kk /xx ω+++

 + wcode(k) for k = 0,…,N-1 (21c)

 ycode(k+1) =)(2
1

k1k TT ++ -)(2
1

k1k TT ++

 + νcode(k+1) for k = 0,…,N-1 (21d)

This smoothing problem has a scalar state, Tk. The
quantities 0r~ and)0(Tz~ are defined in terms of the

statistics of 0T~ , which is the a priori estimate of the start
time of the initial code period. 1/ 0r~ is the a priori

standard deviation of the estimation error in 0T~ , and

)0(Tz~ = 0r~ 0T~ .

This smoothing problem incorporates aiding from the
carrier phase smoother. Carrier aiding affects the second
term on the right-hand side of eq. (21c).

Like the carrier phase smoother, the code phase smoother
is a modified version of the standard SRIF/S algorithm of
Ref. 12. It takes the form:

1. Set k = 0.

2. Use left QR factorization to compute Q1co(k), kr̂ ,

1kŝ + , and 1kr~ + such that T
)k(co1)k(co1 QQ = I and

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

00
0T

1k

1kk

)k(co1 r~
ŝr̂

Q =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

)(21)(21
11

0

codecode

wcodewcode

kr~

νν σσ
σσ

3. Compute
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

)k(eco

)1k(T

)k(T

z
z~
ẑ

 =

{ } ⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++

++

+

)1k(codek1k
code

1L1kkwcode

)k(T

)k(co1

yTT

/xx

z~

Q

-)(1
})0](0.5, {[0,1

0.001-1

2
1

**

νσ

ωσ

4. If k = N-1 go to Step 6.

5. Replace k with k+1 and go to Step 2.

6. Compute *
NT = N)N(T r~/z~ .

7. Set k = N-1.

8. Compute *
kT = k

*
1k1k)k(T r̂/Tŝẑ][++− .

9. If k = 0 stop; otherwise, replace k with k-1 and go to
Step 8.

The quantities *
0T , …, *

NT are the smoothed estimates of
the PRN code period start times. The smoothed estimates

*
)k(codew and *

)1k(code +ν can be determined from eqs.

(21c) and (21d).

This smoother is similar to the carrier phase smoother. It
implements a forward iteration, Steps 1-5, followed by a

backwards iteration, Steps 6-9. The forward iteration is
equivalent to the code phase Kalman filter of eqs. (17a)
and (17b). Tuning is accomplished by adjusting 0r~ , σwcode,
and σνcode. A value of 0r~ = 0 has been assumed so that

*
0T will be based only on measurement data with no

influence from an a priori guess of 0T~ .

Checking the Smoothed Results via Re-Correlation

The smoothers' performance can be checked by
recalculation of the following quantities: the correlations
in eqs. (5a)-(5d), the measured carrier phase error in eq.
(7), and the measured code phase error in eq. (8). If the
smoother is functioning properly, then the re-calculated
phase error measurements will not display transient
behavior. The re-correlation process uses the smoother
outputs to update its replicas of the received carrier and
PRN code signals. The PRN code signal replica gets
updated by replacing kT with *

kT for k = 0, …, N. The
carrier signal gets updated by creating a new φre(k) that is
equal to the original value plus the correction term
{[1, 0, 0] *

kx - xpeq}. In addition, the new φre(k) gets
interpolated in order to transfer its definition from the
DLL-generated time grid point kT to the smoothed time

grid point *
kT . As part of this process, ωre(k) gets changed

in order to maintain its defined relationship to φre(k).

Post-Processing of Data from a Conventional Real-
Time Receiver

These smoothing algorithms could be used to post-
process data from a real-time receiver, which would
improve signal tracking accuracy. The real-time receiver
would have to store the following quantities for later
processing: 0T , 1T , 2T ,…, NT , φre(0), φre(1), φre(2), …, φre(N),
ycarr(1), ycarr(2), ycarr(3), …, ycarr(N), and ycode(1), ycode(2), ycode(3), …,
ycode(N). Alternatively, accumulations like those of eqs.
(5a)-(5d) could be stored in lieu of ycode(k) and ycarr(k). Post
processing will be effective only if the receiver has
generated the kT and φre(k) time histories in such a way
that it maintains lock on the signal.

EXPERIMENTAL RESULTS

The Kalman filters and smoothers of this paper's fourth
and fifth sections have been applied to track actual GPS
signals. These signals have been recorded using the bit
grabber that is described in this paper's second section.
The nominal carrier phase Kalman filter/smoother tuning
parameters are qct = 1,300 rad2/sec5 and σν = 0.114 rad.
The nominal tuning parameters for the code-phase
Kalman filter/smoother are σwcode = 2.55×10-10 sec and
σνcode = 4.06×10-8 sec. These tuning parameters lead to a
carrier-tracking PLL bandwidth of 3.42 Hz with L =

[0.043; 0.913; 9.787]. The nominal code-tracking DLL
bandwidth is 1 Hz with Lcode = -0.00626.

Carrier Phase Tracking Results

The Doppler shift estimates for a typical case are shown
in Fig. 2. The Kalman filter starts with an initial Doppler
shift estimate of 1700 Hz, but the actual Doppler shift is
1780 Hz. The Kalman filter-based PLL takes 0.4 sec to
converge to the true Doppler shift. The smoother, on the
other hand, has no convergence transient. It correctly
estimates the Doppler shift for the entire interval as being
1780 Hz. This lack of a convergence transient implies
that there is no inherent phase lag between a smoother's
Doppler shift estimate and the actual Doppler shift.

The smoother also produces a less noisy Doppler shift
estimate. Figure 3 presents another comparison between
a Kalman-filter-based Doppler shift estimate and a
smoother-based estimate. The Kalman filter for this case
starts with very accurate a priori values for the carrier
signal's initial phase and Doppler shift. This eliminates
transient error effects. Even so, the Kalman-filter-
generated estimate obviously contains significantly more
high-frequency noise than does the smoother's estimate.
Most of the Kalman filter's dynamic variations on this
plot are caused by receiver noise, while most of the
smoother's variations constitute a real signal, perhaps the
Selective Availability (SA) signal. This data was
collected during the second half of 1999, before SA was
turned off.

It is possible to analytically compare the Kalman filter
and the smoother in terms of their effective SNRs. If one
neglects the effects of initial transients in the Kalman
filter and of end conditions in the smoother, then each of
these estimators can be recast in the following form:

xk = ∑
=

−
N

1l
)l(carrlk yα + ∑

−

=
−

1N

0l
)l(relk ωγ

 for k = 0,…,N (22)

where the 3×1 vectors αk-l and γk-l are influence coefficient
distributions. Figure 4 plots the second element of αk-l vs.
the time offset -(k-l)ΔT. As can be seen in the figure, the
Kalman filter's distribution is one-sided, on the lagging
side of the estimation point. This reflects its causal
nature. The smoother's distribution is asymmetric about
the estimation point and has no time lag. The asymmetry
is caused by the need to differentiate the carrier phase
measurement in order to determine the Doppler shift.
Both distributions have about the same time width, which
means that they are roughly equivalent in terms of the
signal bandwidth that they can successfully track.

Fig. 2. Estimated Doppler shift time histories from the
Kalman filter and from the smoother, PRN 14.

The SNR performance improvement of a smoother can be
understood in terms of these influence coefficients. The
SNR of each estimator varies inversely with ∑ −

2
lkα , the

sum of the squares of the influence coefficients.
Therefore, according to the data in Fig. 4, the smoother's
Doppler estimate has an SNR that is 12.5 dB larger than
that of the Kalman filter. This explains why the
smoother's Doppler shift curve in Fig. 3 is so much less
noisy than that of the Kalman filter. Although not shown,
the smoother exhibits similar SNR performance
improvements in its xp carrier phase estimates (7.8 dB of
improvement over the Kalman filter) and in its xa Doppler
drift rate estimates (7.7 dB of improvement). These
performance improvements will change if the tuning
parameters qct and σν get changed.

Figure 5 further illustrates the performance of the carrier
phase smoother by plotting the measured phase difference
between the received carrier signal and its smoothed
replica. The vertical axis is essentially ycarr from eq. (7),
but with n set to 0. This plot clearly shows the effects of
navigation data bit transitions. These are the 0.5-cycle
jumps that occur at regular multiples of 20 msec. This
plot illustrates the smoother's lack of an initial transient,
and it shows the effects of thermal noise. Noise causes
the significant phase fluctuations that occur between the
bit transitions. This type of noise is what caused the
high-frequency errors in the Kalman filter's Doppler shift
estimate on Fig. 3. The smoother also has to contend
with this noise, but it does a much better job of
attenuating the noise through signal processing.

1720

1740

1760

1780

1800

1820

D
op

pl
er

 S
hi

ft
(H

z)

Kalman Filter
Smoother

0 0.2 0.4 0.6 0.8
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Time (sec)

D
op

pl
er

 S
hi

ft
(H

z)

Kalman Filter
Smoother

Fig. 3. Comparison of a Kalman filter and a smoother in
terms of the noise effects on their Doppler shift
estimates, PRN 25. The Kalman filter has been
given a good first guess in order to eliminate
transients.

Code Phase Tracking Results

The operation of the code phase Kalman filter and its
associated smoother are illustrated by the results of Fig. 6.
The solid curve on this figure is the time history of the
Kalman-filter-based DLL's estimated C/A code period
minus the nominal code period, (1kT + - kT - 0.001). The
figure's dashed-dotted curve is the corresponding quantity
for the smoother, (*

1kT + - *
kT - 0.001). The Kalman filter's

estimated code period experiences an initial transient
decay that is caused by a code phase error from the
acquisition module. The smoother, on the other hand, has
no such transient. Also, the smoother's code period is
much less noisy.

Fig. 4. Time histories of effective influence coefficients
for Kalman filter and smoother estimation of the
Doppler shift.

Fig. 5. Measured carrier phase difference between
received signal and smoothed replica signal,
PRN 16.

The relative SNRs of the code phase Kalman filter and
the code phase smoother have been analyzed. The
analysis has computed influence coefficients much like
the carrier phase influence coefficients of eq. (22) and
Fig. 4. This analysis shows that the smoother estimates
the code phase with an SNR that is 3 dB larger than that
of the Kalman filter. The SNR of the smoother's code
period estimate is 28 dB larger than that of the Kalman
filter, which explains the difference in the noisiness of the
two curves on Fig. 6. As in the case of carrier phase, the
code phase smoother achieves its SNR improvements
without a significant loss of signal tracking bandwidth in
comparison to the Kalman filter. Similarly, the code
phase smoother does not have the Kalman filter's phase
lag.

Fig. 6. Time histories of C/A code period offsets from
0.001 sec for a code phase Kalman filter and for
a code phase smoother, PRN 25.

Computational Cost

The computational costs of these algorithms are
reasonable for a post-processing environment. They scale
linearly with N, the number of code periods. This scaling
is the result of the Kalman filters' and smoothers' efficient
recursive implementations.

The actual time to run these algorithms has been recorded

-0.4 -0.2 0 0.2 0.4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time Offset Between Estimation Point & Data Point (sec)

D
op

pl
er

 S
hi

ft
In

flu
en

ce
 C

oe
ffi

ci
en

t (
pe

r s
ec

) Kalman Filter
Smoother

0

0.5

-a
rc

ta
n2

(Q
,I)

 (c
yc

le
s)

0 0.2 0.4 0.6 0.8
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time (sec)

Es
tim

at
ed

 M
in

us
 N

om
in

al
 C

od
e

Pe
rio

d
(n

se
c)

Kalman Filter
Smoother

for a particular computing platform. It is a 400 MHz
Pentium machine that runs the Windows NT operating
system. The algorithms have been encoded and executed
in MATLAB. The following execution speeds have been
achieved: The Kalman filtering with correlations required
56.6 sec of computation time per second of bit-grabbed
receiver data. The smoothing with re-correlation used
58.9 sec of computation per second of bit-grabbed data.
The majority of this time was used to compute the
correlations in eqs. (5a)-(5d).

This computation time could be improved by using a
language other than MATLAB or by using compiled
MATLAB. MATLAB has been run in its interpretive form
during this study. Equivalent compiled code might
execute as much as 10 times faster.

OPEN QUESTIONS ABOUT SMOOTHER-BASED
GPS SIGNAL TRACKING

This is study represents a first cut at the use of smoothing
to track a GPS signal in a software receiver. Many
possible smoother refinements have not been studied in
the interests of maintaining a reasonable scope for this
paper. In the future, however, it would be good to
consider various possible enhancements to smoother-
based GPS signal tracking.

One natural enhancement would be to let the smoother do
optimal data demodulation along with optimal
determination of the modulo-20 code period at which data
bit shifts can occur. The present paper assumed that the
received SNR was high enough to allow the use of ad hoc
methods to detect the data bit shifts. One of the important
applications of a smoother is to the case of a very low
received SNR, which causes the issue of optimal data bit
estimation to become important. One possible approach
to this problem is to use multiple-model estimation
techniques in conjunction with integer least-squares
techniques. A research challenge will be to adapt integer
programming techniques to the iterative framework of a
Kalman-filter/smoother.

Another important set of issues involves cycle slips and
loss of signal lock. The current algorithms assume that
neither problem occurs. These problems tend to arise in
applications with low SNR or high dynamics. Cycle slips
and loss of lock can be addressed in a Kalman-
filter/smoother framework, but significant enhancements
to the current algorithms would be needed. One way to
deal with these issues is to design a nonlinear
filter/smoother that employs an iterative nonlinear least-
squares technique such as the Gauss-Newton method.
Such a nonlinear estimator might employ the present
smoother as a means of determining a search direction in
phase-time-history space. It would iteratively search for
the optimum of a nonlinear estimation performance index.

Another interesting issue is that of the code/carrier

divergence, which can be caused by the ionosphere. The
smoother could be adapted to look for this. The
adaptation might involve integration of the carrier-phase
and code-phase algorithms into a single coupled
smoother. In this case, the measurement error models
would be modified to include the negative correlation that
exists between the ionosphere's effect on code phase and
its effect on carrier phase.

Smoother-based signal tracking also could be developed
for a dual-frequency receiver. If the receiver were a
military receiver with access to the encrypted P(Y) code,
then the present developments should adapt in a
straightforward manner. If, however, the receiver did not
have access to the P(Y) code, then the smoother would
have to be based on cross-correlation between the L1 and
L2 versions of the code. The development of such a
cross-correlation-based smoother would require some
further thought. Of course, any dual-frequency work
would require a dual frequency bit grabber that could
sample at about 5 times the P(Y) code chipping rate, i.e.,
at about 50 MHz.

SUMMARY AND CONCLUSIONS

New signal tracking algorithms have been designed for
use in a non-real-time software GPS receiver. These
algorithms perform PRN code phase tracking and carrier
phase tracking for the C/A civilian signal. The code
phase tracking is performed in two steps. The first step
implements a Kalman-filter-based delay-locked loop. It
tracks the code phase to within the linear region of its
discriminator function. The second step uses after-the-
fact data in a non-causal square-root information
filter/smoother in order to refine the code phase estimates.
A random-walk process and carrier aiding have been
included in the dynamic code phase model that gets used
by the filter and the smoother. The carrier phase tracking
loop works similarly. It uses a Kalman-filter-based
phase-locked loop to perform rough-cut signal tracking
and a non-causal smoother to make the final carrier phase
estimate. These latter two algorithms use a carrier phase
signal model that is a cascade of 3 integrators driven by
white noise.

The two smoothers make optimal use of correlation-based
phase measurements. They are non-causal because they
use data from before and after a given time of interest.
This allows them to eliminate the filtering lags that are
normally associated with phase-locked loops and delay-
locked loops. Also, they significantly increase the SNR
without decreasing their tracking bandwidth. The only
drawback of these smoothers is that they cannot be used
in real time. Fortunately, there are significant
applications that do not require real-time operation.

These new signal tracking algorithms have been tested
using experimental C/A GPS data. The data has been
collected using a bit-grabber/digital storage receiver that
was connected to a roof-top antenna. Test results show
that the smoothers can track code phase and carrier phase
with good accuracy. A carrier phase smoother with a 3
Hz bandwidth has a phase estimation SNR that is 7.8 dB
higher than for an equivalent Kalman-filter-based PLL,
and its Doppler shift SNR is 12.5 dB higher. A code
phase smoother with a 1 Hz bandwidth has a code phase
SNR that is 3 dB higher than that of the corresponding
Kalman-filter-based delay-locked loop, and its code
period SNR is 28 dB higher. The bottom line is that
smoothers offer significant SNR improvements and the
ability to track dynamic signals without introducing an
estimation lag.

ACKNOWLEDGMENT

The data that has been used in this paper was collected
using a bit-grabber that was designed, built, and operated
by Mark Krangle as part of his Master of Engineering
project in the Department of Electrical Engineering at
Cornell University. Hee Jung developed the software
receiver's Fourier-transform-based signal acquisition

algorithm.

References

1. Spilker, J.J. Jr., "Fundamentals of Signal Tracking
Theory," in Global Positioning System: Theory and
Applications, Vol. I, Parkinson, B.W. and Spilker, J.J.
Jr., eds., American Institute of Aeronautics and
Astronautics, (Washington, 1996), pp. 245-327.

2. Van Dierendonck, A.J., "GPS Receivers," in Global
Positioning System: Theory and Applications, Vol. I,
Parkinson, B.W. and Spilker, J.J. Jr., eds., American
Institute of Aeronautics and Astronautics,
(Washington, 1996), pp. 329-407.

3. Akos, D.M., and Tsui, J.B.Y., "Design and
Implementation of a Direct Digitization GPS
Receiver Front End," IEEE Transactions on
Microwave Theory and Techniques, Vol. 44, No. 12,
Dec., 1996, pp. 2334-2339.

4. Reichert, A., Axelrad, P., Wu, S.C., Bertiger, W., and
Srinivasan, J., "Initial Demonstration of a Point
Solution Algorithm for Orbit Determination Using
the microGPS Receiver," Proceedings of the ION
National Technical Meeting, Institute of Navigation,
Alexandria, Virginia, Jan., 1997, pp. 377-386.

5. Tsui, J.B.Y., Stockmaster, M.H., and Akos, D.M.,
"Block Adjustment of Synchronizing Signal (BASS)
for Global Positioning System (GPS) Receiver Signal
Processing," Proceedings of the ION GPS '97,
Institute of Navigation, Alexandria, Virginia, Sept.,
1997, pp. 637-641.

6. Srinivasan, J., Bar-Sever, Y., Bertiger, W., Lichten,
S., Muellerschoen, R., Munson, T., Spitzmesser, D.,
Tien, J., Wu, S.C., and Young, L., "microGPS: On-
Orbit Demonstration of a New Approach to GPS for
Space Applications," Proceedings of the ION GPS
'98, Institute of Navigation, Alexandria, Virginia,
Sept., 1998, pp. 1537-1545.

7. Snyder, C.A., Feng, G., and van Graas, F., "GPS
Anomalous Event Monitor (GAEM)," Proceedings of
the ION 55th Annual Meeting, Institute of Navigation,
Alexandria, Virginia, June, 1999, pp. 185-189.

8. Feng, G., and van Graas, F., "GPS Receiver Block
Processing," Proceedings of the ION GPS '99,
Institute of Navigation, Alexandria, Virginia, Sept.,
1999, pp. 307-315.

9. Schamus, J.J., and Tsui, J.B.Y., "Acquisition to
Tracking and Coasting for Software GPS Receiver,"
Proceedings of the ION GPS '99, Institute of
Navigation, Alexandria, Virginia, Sept., 1999, pp.
325-328.

10. May, M., Brown, A., and Tanju, B., "Applications of
Digital Storage Receivers for Enhanced Signal
Processing," Proceedings of the ION GPS '99,
Institute of Navigation, Alexandria, Virginia, Sept.,
1999, pp. 2199-2208.

11. Fridman, A., and Semenov, S., "Architectures of
Software GPS Receivers," GPS Solutions, Vol. 3,
No. 4, Spring, 2000, pp. 58-64.

12. Bierman, G.J., Factorization Methods for Discrete
Sequential Estimation, Academic Press, (New York,
1977), pp. 57-67, 69-76, 115-122, and 214-217.

13. Gustafson, D.E., "GPS Signal Tracking Using
Maximum-Likelihood Parameter Estimation,"
Navigation: Journal of the Institute of Navigation,
Vol. 45. No. 4, Winter, 1998-1999, pp. 287-295.

14. Psiaki, M.L., "Attitude Sensing Using a Global-
Positioning-System Antenna on a Turntable," to
appear in the Journal of Guidance, Control, and
Dynamics. Currently available at
http://www.mae.cornell.edu/Psiaki/rot_ant_gps_attitu
de.pdf.

15. Anon., "GP2015 Global Positioning System Receiver
RF Front End," Global Positioning Products
Handbook, GEC Plessey Semiconductors, Wiltshire,
U.K., 1996, pp. 49-59.

16. Anon., "TXO4080 Temperature Compensated
Crystal Oscillators," Rakon, 1999.
http://www.rakon.com/models/browse-
model?model_id=89&model_type=O.

17. Spilker, J.J. Jr., "GPS Signal Structure and
Theoretical Performance," in Global Positioning
System: Theory and Applications, Vol. I, Parkinson,
B.W. and Spilker, J.J. Jr., eds., American Institute of
Aeronautics and Astronautics, (Washington, 1996),
pp. 57-119.

18. Stengel, R.F., Optimal Control and Estimation,
Dover, (New York, 1994), pp. 340-364, 460-488.

