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Abstract

The square-root information filter and smoother
algorithms have been generaized to handle singular state
transition matrices and perfect measurements. This has
been done to allow the use of SRIF techniques for problems
with delays and state constraints.  The generaized
algorithms use complete QR factorization to isolate
deterministically known parts of the state and nonsingular
parts of the state-transition and disturbance-influence
matrices. These factorizations and the corresponding
changes of coordinates are used to solve the recursive
least-sguares problems that are basic to the SRIF technique.

1. Introduction

1.1 Expanding the Capabilities of Square-Root
Information Filters and Smoothers.  Square-Root
Information Filters and Smoothers SRIF&S) are specia
solution techniques for, respectively, the discrete-time
Kaman filter problem and the related smoothing problem
[1]. Square root formulations increase numerical
computation accuracy by guaranteeing positive-definiteness
of the associated covariances and by decreasing the
condition numbers of the manipulated matrices. The
present paper generalizes the SRIF& S techniques to deal
with singularities that can occur in some problems.

Suppose the system dynamics and measurement models
are:

Xg+1 = F Xg) + Gy (1a)
Zy) = AgXg) + Ng) (1b)
Zyj) = BgXq) (1c)

where xj) is the state at stage j, w) is the random process
disturbance, z.(;) is a noisy measurement, ng is its random
measurement error, zy is a prefect measurement, and F (),
Gyj), Ayj), and Byj) are matrices of appropriate dimensions.

The standard SRIF&S algorithms cannot handle a
singular state transition matrix, F . Thefiltering agorithm
invertsF () [1, p. 116] as does one version of the smoothing
algorithm [1, p. 215]. The generalized SRIF& S agorithms
presented below can handle a singular F ), such as occurs
when the system model includes a pure delay.

The standard SRIF&S agorithms cannot deal with
perfect measurements, as given in eq. (1c). This paper's
generalized algorithms can handle such measurements.
Attitude estimation with quaternionsis an example problem
in which perfect "measurements” arise.
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1.2 Relationship to Prior Research. The smoothing
agorithms of Watanabe [2] and McReynolds [3] are the
only factorized fixed-interval smoothers that can handle a
singular state transition matrix. Watanabe's algorithm first
executes a backwards pass followed by a forwards pass; it
cannot do just filtering. McReynolds agorithm avoids
inverting the state transition matrix only in the case of full-
rank process noise.

Severa known agorithms can deal with perfect
measurements [4-6]. None of them use a sguare-root
factorization, nor do any address the smoothing problem.

This paper generalizes the original SRIF& S agorithms
in Refs. 1 and 7 to deal with a) a singular state transition
matrix and process noise of any rank, b) perfect
measurements, and c) perfect knowledge of a component of
X(). The generalized agorithms use forward-pass filtering
followed by backwards-pass smoothing.

1.3 Outline of Paper. Section 2 presents the filtering
and smoothing problems, Section 3 the forward-pass
filtering agorithm, and Section 4 the backwards-pass
smoothing algorithm.  Section 5 discusses important
algorithmic properties, and Section 6 gives the conclusions.

2. Definition of Filter and Smoother Problems
2.1 Problem Model. The dynamic system and

measurement models are given in egs. (1a)-(1c). The
statistics of the process noise measurement noise are:
Ran)Wa) = Zag) - Nwg) (29)
E{nug} =0,  E{nugnuw'} = I di (2b)
E{ng} =0,  E{ngnw'} = I d (2¢)
E{npnue'} = 0 (2d)

where [Ruww), Zwj)] isthea priori information array for wy,
with Rwy) Square and nonsingular. The vector sequences
Ny and ng are Gaussian white-noise processes.

The a priori information about the initial state vector
X(0) is assumed to take the form:

gl ~

é a(J)l'Jz Qabij) X(j) forj=0 (33
&Xb() @

Xa(j) glVG’] and Rbb(j) Xb(j) = Zb(J) - ﬁb(j) fOFj =0 (3b)

where Xa(o) IS deterministic and Xp(g) is random and defined
by the Gaussian random vector n po) = N(@OJ) and the

information array [Run(o). Zo(o)] - Qan(o) iS an orthogonal
transformation matrix. The matrix ﬁbb(o) must be square

and nonsingular.

2.2 Filtering and Smoothing Problem Statements.
The filtering problem is to find the best estimate of the
state at stage N conditioned on the measurements up to and



including stage N: )A((N) = E{X(N)l Za(0)1Zb(0)s+++» Za(N)vzb(N)}-
The fixed-interval smoothing problem is to find the best

estimate of the state time history for stages O to N
conditioned on the measurements for the entire interval:

Xa) = E{X(j)| Za(0)Zo(0),---Zan), Zogny} fOrj =0,1,2,...,N

3. Forward-Pass Filter Algorithm
3.1 Overview of Filtering Procedure. The filtering
problem can be solved by a least-squares technique that
determines the maximum-likelihood solution [1]. This
technique finds Ny and the xg, W, Ng, and Nug

sequences that satisfy constraint egs. (1a)-(1c), (2a), (34)
and (3b) and minimize
N N-1 y
J =%1| b(O)nb(0)+ & ”(T)”(,) v a ”w@)”w@)g (4)

The agorithm Works in an recursive manner analogous
to the original SRIF agorithm, [1,7]. It starts at stage j with
a priori state information in the eq. (3a)-(3b) form. The
filter first performs a measurement update to combine its a
priori state data with the measurement equations for that
stage, egs. (1b) and (1c). It treats the perfect measurements
as equality constraints that exactly define a component of
the state. Otherwise, the measurement update uses standard
SRIF |least-squares methods [1, pp. 69-76].

The propagation phase of the generalized SRIF
computes the a priori state information at stage j+1 using
the a posteriori state information at stagej in conjunction
with egs. (1a) and (2a) for stagej. The principa of the new
mapping agorithm is the same as that of the origind
algorithm: the dynamic model is used to eliminate some
stage-j variables from the information eguations, and then
they are QR-factorized to get an information eguation for
Xj+1 that is independent of al remaining variables.
Complete QR factorizations of matrices are needed in the
generalized algorithm in order to deal with singularities.

3.2 Review of Complete QR Factorization. The
complete QR factorization of any matrix B is asfollows:

QL g“_o OSQR =B 5)

where Q. and Qg are orthogonal and R is sguare, upper-
triangular, and nonsingular [8].

3.3 Detailed Description of Measurement Update.
The update procedure for stage j starts with a priori state
datain the form given in egs. (3a) and (3b). Thisis true by
assumption for stage 0 and will be enforced by the filtering
processfor al later stages.

First, the update transforms A and B;) into components
that multiply Xag) and Xpg) in the measurement equations:

eAa)  Ao()U_ AGUsT 5
&Ba) Bo() i gB(j)auqab(” ©
Next, it right QR factorizes By), and transforms Xp):

[Rcc(j) O]ch(,) Bh() g o
&Xd()
where Q) is orthogonal and R is square and
nonsingular. If anonsingular R iS unachievable, then the
exact measurements areill-posed and cannot be satisfied.
The vector X IS determined from the exact
measurements by using egs. (1¢), (3a), (6), and (7):

Xof) = Reci)(Zo) - Bag)Xag)) (8)
Next, the update transforms F\~’bb(j) and Ay into factors

yu
0= Qcd(j)Xn()) (7)

that multiply Xy and Xq() in the noisy measurements and in
Xp()'Sapriori |nformat|on equat|on

eR u eR
o) Roa) U Foniy L) )

A0 A 840 g

Equations (3b) and (1b) then become:

Rod() Xd0) = Zag) - Nb() (109)
Adg) Xag) = Zag) = Ng) (10b)
where Zyj) = Zy(j) - RocgyXet) @d Zag) = Zag) -Aag) Xag)
-Ac(j) Xefj)-

The update process finishes by combining egs. (10a) and
(10b) into a single a posteriori information equation for
Xq() using aleft QR factorization as in [1, p. 71]:

)eRbdo) 28 Faogy 2oy
8AG) %08 6 0 €
where T is orthogonal and ﬁdd(j) is square, nonsingular,

(11)

and upper-triangular. ey isthe residual measurement error,
and thea posteriori information equation is:

Radgy*d0) = 2dg) ~ ) (12)
The state X is composed of deterministic parts, Xag)
and X(j), and a stochastic part, Xq():
éx.,\U
eXa(J)u R &l i~
Qacd(])exc(]) 4 WhereQaeq(jy = % Q L;Qab(j) (13)
&xa)f ¢ e
Thea posteri ori state estimate and covariance are;
a(j) © 0 0 @
X(j) = Qacd(j)eXC(J) a Pg= Q;cd(j)(f.o 0 0 LQacd(J)
&a()t D 0 Pyl
(14)

where % 4y = Ridg)2qg) iS derived by taking the expectation

of eq. (12). At stagej
filtering problem.

=N eqg. (14) gives the solution to the



3.4 Detailed Description of Mapping with Process
Noise. The propagation phase uses the a posteriori
information about X, egs. (3b), (8), (12) and (13), the a
priori information about w;), eg. (2a), and the difference
equation, eg. (1a), to compute a priori information about
X(+1) in theform of egs. (3a)-(3b).

First, the mapping process transforms the state
transition matrix into the coefficients of Xag), Xcg), and Xqg)
in the state difference equation:

Fay Fei) Fap)=F ¢Qacl) (15)
A deterministic, nonhomogeneous component of the
difference equation is then computed, pg = Fag) Xag +
F <) Xeij), and eq. (1a) becomes:
= F ag)Xdg) + GyWe) + Po) (16)
Next, the mapping process completely QR factorizes
F a(j) and makes corresponding changes to Gy and py;):

& gey OU

T Tge() MU -E

Qoni+ng o R0 =Fdi)

€G g() U €Pg

&~ U= Qgnj+1G ) and &

Lpa V0T gy

X(j+1)

(1738)

WU 17

0= Qgn+1) Pg) (170)

() a

Thisfactorization orthogonal ly transforms Xqgy and X+ 1):
Xej)U_ Xg(+1)U
a Qei(iV X end =Q X 18
&gy 4™ QX eXh( 1)u gh(+1)X(+1) (18)

and isolates a square, honsingular part of the state transition
matrix, F 4e(). The dynamic map in eg. (16) becomes:
ot & ooy O0e) eGQ(J) u . €Pg(d
é g +e " a(19)
Brgrng 6 0 Ofxid Crph &P
Note that Xej) and Xg+1) have the same dimension, and Xej)
affects Xg+1) through F ge(j). X1y does not affect the state at
stagej+1, and Xn+1) is not affected by the state at stagej.
The next operation is a complete QR factorization of
Gy

e Ou
Q|a(J+1)e |v(\;a() Okpwawb(j) = Ghnj) (20)
a
with corresponding changes to Gyy and pn):
Ggwa(j) Gng(J)]:Gg(j)QvTvawb(j) (218)
epl(j
21b
SPa (J)u = Qiag+1) Pn() (21b)
This factorization transformswg and Xng+1y:
Wa) _ eXiG+1) U _
weiy and @ X 22
Sy~ Quwawb(j)W() Sagen Qiag+1)Xn(+1) (22)

and the difference equation in eg. (19) becomes:
éX i+1 u & f ou, N
9+ a 9e(j) ey U
eX|(]+1) u—é 0 0y a+

8ol g 0 of 00

&G N GaubiU é u

gwag) gwi(j) ¥4 <Pq() -

& EWa() U

SGiwaq) 0 ¢ a(])quel%)u (23)
g 0 o g0 &pag) i

Note that wag) and X;g+1) have the same dimension, and wx)
affects Xg+1) through Guagy, which is a square, nonsingular
matrix.
The vector Xag+1) is deterministically known:
Xa+1) = Pa() (24)
which gives part of thea priori information at stagej+1.
To finish, the propagation agorithm combines egs. (2a),
(12), (18), (22), and (23) to eliminate Xd()s Xeg)s Xij)s W),
Wag), and Wy and deduce an independent information
equatlon for
g+

Xp(j+1) = & Sxigen) o

The next step is to left QR factorize information

(25)

equation (12) after using eg. (18) to replaceXq() by X and
Xi)- In terms of information arrays thisyields:
eR 0
Tet(j) (Rdd(J)Qef(j)) Zd(J) e<l) Ze(J)u (26)

SRfe@') Rirgy 218
where T is an orthogonal matrix, and Ree(j) and Iiﬁ(j)

are both square, nonsingular matrices. The corresponding
information equations are:

Ree() Xet) = Zg(j) -
Rfe(j) Xe) + Rf‘f(j) Xig) = if(J) -n 0) (27b)
Equation (2a) must be re-expressed in terms of wxjy and
We()- Their respective coefficientsin the modified equation
ae [Ruwagy Rwbp] = Rw(Quawg- The resulting
information equationis:
Ruma()Wag) + Runb(Wo() = Zug) - Nwg) (28)
A combined information equation for Xgg+1), Xig+1), ahd
W) can be constructed from egs. (27a) and (28). One must

first use the first 2 rows in eg. (23) to solve for Xej) and
Waj) in terms of Xg(+1), Xig+1), aNd Wh):

i o) (273)

— -1 1
Xej) =F ge(j){xg(j+1) - G gwa(j)Ciwag) (Xig+1) = Pig))
= G gwi(j) Why() - pg(j)} (293)
Wag) = Ginag) (Xig+1) - Pig)) (29b)

Substitution of these results into egs. (27a) and (28) yields
the following information equation:



5 -1 4 -1 -1
ReeyF 060)) “(ReeyF ge(i)G gwa(i)C iwa))

e
A -1
g 0 (waaa)Giwa(j))
g(J+1)
(R geo)Ggwom)ﬁx o
Ruwb(j) be 0 )u
& () G
e 5 5 -1 -1 v}
gzem * Reeg)F ge(J)(' G gwa(j)Giwa() Pij) * pg(i))}a
& ) a
g {%(j) * waa(j)Giwla(i)Pi(j)} g
A o U
e Vg (30)
&'w()

The final propagation step is a left QR factorization of
eg. (30) to make the Xq(+1) and Xjg+1y information equations

independent of wy) asin[1, p. 117]:
1 A -1 -1
-|’—‘(J+1)gRee(j)F 0e)) = (ReeF 06)C gwa()C iwa()
8 0 (Rwwa(j)G i\}vla(j))
~ (ReegyF 5ot G w5 =
Rumbj) i
a R~gg(J+1) - 0 0 ﬂ
eRigg+y  Rigryp 0 q (314)
CRabgG+1) Ruwbigr1) Ruowbg)

. 5 -1 41 u
_ 42y * RF (- G guaC vk Py * pga))]u
Ti+ne

1 u
& [Zwo) * Ruwaj) Ciwa) l%‘)] i
Sg+ )Y
= e%(i+1) u (31b)
ezWb(J) a
where 'I?(j+1) is an orthogonal matrix and ﬁgg(jﬂ) , ﬁii(jﬂ) ,

and ﬁwbwb(j) are al sguare, nonsingular matrices.

Given the definition of Xpg+1) in eg. (25), the a priori
information for stagej+1, egs. (3a) and (3b) for j+1, can be
completed:

_ &Rogir ~0 u éfg0+1)@

R u’ Zb(]
8Rigi+1)  Riig+n g

eeOud)ILu 0

Qang+1) = &l 4 33 OLU l;IQgh(j+1)
8 O [| 0] Hg) Qla(J+l)

This is the end of the recursion. The data computed in
egs. (24), (32a), and (32b) provide the inputs to egs. (3a)-
(3b) for stage j+1. Thus, the agorithm can repeat itself at
the next stage.

Rbb(j +1) =

(32b)

4. Backwar d-Pass Fixed-I nterval Smoother Algorithm
4.1 Overview of Smoothing Procedure. The

smoother uses data from the filtering solution to execute a

recursive backwards pass. Each iteration of this recursion

starts with the smoothed state estimate at stagej+1, Xjyy-

It uses an information equation and a part of the difference
equation to determine the smoothed process disturbance

estimate w;,. This process noise, X.qy, and the
difference equation determine a component of the
smoothed state at Stage j, Xe)- Xg) IS Used in another
information equation to determine another component of
Xj. Xgg- Finaly, the smoothed and deterministic
components are assembled and transformed to compute
X?j) , which compl etes the recursion.

This algorithm is a generalization of the Dyer-
McReynolds covariance smoother [1, pp. 214-217].

4.2 Detailed Backwards Recursion of the Smoothed
State with Calculation of the Smoothed Process
Disturbance. The smoother begins at stagej+1 = N. The

smoothed state at this stageis: ng) = Xy , fromeq. (14).
First, the backwards pass transforms xa-+ 1) to determine

the components Xy 1y and Xj) -

e>(a(J+l) G exa(] )

exg(1+1)9 & 2™ G= Qapgi+1)X(+1)
( Eog+n
B '(J+1)EI

Thisfollows from egs. (3a) and (25).
The next step determines w;) from eq. (29b), wyy)

(33)

from the expectation value of the 3rd row of the
information equation associated with egs. (31a) and (31b):

W) = Ridbui)| Zub) = Rbg(+1)X g+ 1)
- ﬁwbi(j+1)xi(j+1) (34)
and w;, from eq. (22):
WZj) = Q\-/\r/awb(j)é f(j)g (35)
ENb(j)

Next, Xg; is computed from eg. (29a), Xy, from the
expectation value of eq. (27b):

* A1 ~ ~ *
X15) = RitG) [21G) ~ Rreg) Xe)] (36)
and xa(j)from inversion of the transformation in eq. (18):

i U
=Qap¢ U
&) B



The backwards iteration to stage j is completed by
assembling state components and making a transformation.
The deterministic state components, Xag) and Xcj), come
from egs. (3b) and (8), respectively. These components

together with x;(j) are substituted into the transformation

in eg. (13) to determine Xy . If j > 0, then the backwards

recursion is repeated, starting at eq. (33) with a
decremented value of j.

4.3 Backwards Recursion for the Smoothed State
Covariance. A backwards covariance recursion can be
developed by using the equations of the backwards state
recursion, the definition of covariance, and the expectation
operation. Therecursion begins at stagej+1 = N, where the

smoothed state covariance is known because it is the same
as the filtered state covariance from eq. (14): P(T\]) = F3(N).

The lengthy details of this procedure, athough tedious and
algebraicaly intensive, are straightforward. They have been
omitted for the sake of brevity.

5. Algorithm Characteristics

The present algorithms inherit the numerical stability of
the original SRIF& S algorithms. Numerica stability means
that the effects of small computer round-off errors do not
grow excessively during the caculations. The good
numerical properties of the origina algorithms and of the
new agorithms derive from their use of square roots of
information matrices, which reduces condition number and
ensures positive-semi-definiteness of the associated
covariances [1]. The use of dynamically stable covariance
and state propagation eguations, i.e., sweep methods [9],
also enhances numerical stability. Numerical stability of
the new algorithms has been experimentally demonstrated
by comparison of their solutions with solutions generated
by anumerically stable batch algorithm.

The operation counts of the present algorithms and of
the original SRIF& S agorithms have been compared for a
representative case. Execution time varies linearly with
operation count. The comparison assumes that dim(xg)) =
n, dim(wg) = m, dim(zg) = Pa dim(z,;) = pb, and
dim(Xag) = 0, with (pa + pp) £Enand p, £ m It aso
assumes that the standard SRIF processes (pa + po) hoisy
measurements and no perfect measurements, that it can
invert its state transition matrix, and that it uses QR
factorization to compute the transition matrix inverse. The
operation counts have been totaled only for multiplications
and divisions that occur during matrix factorizations and
matrix-matrix multiplications. Only the dominant (highest
power) terms have been included in these counts.

The computation count comparison yields the following
leading terms per stage of filtering:

Standard SRIF: 2.5213 +3n’m+ 2nnt + (2/3)m® +n°pa
+ NP

Generadized SRIF: 6.5n° + 4n’m + 3nn? + @/3)m® +
3n%pa - 2.5n%py + 3npy’ - 2npapp +
Paby” + (5/6)py° + 2MPy” - 2nMpPy
There are no additional dominant terms for smoothing
unless the smoothed covariance is to be calculated. The
new agorithms are slower than the old algorithms by a
factor of about 3.

The computation time scales linearly with the number of
stages, N. That is much better than the only competing
agorithm that can exactly solve the present problem, a
batch least-squares algorithm. The computation time for a
dense-matrix batch agorithm scales as N°.  The new
agorithms have been compared with a batch algorithm for a
problem with N = 100 stages and n = 4 states. Running in
MATLAB the new algorithms executed 95 times faster than
the batch agorithm, even though the latter has an advantage
in MATLAB.

Matrix storage requirements dictate computer RAM
size requirements. Storage requirements are significant
when smoothing is being done because matrices that get
computed during the forward filtering pass must be saved
for re-use during the backwards smoothing pass. Using the
same dimensions as for the comparison of operation
counts, the following is a comparison of matrix storage
requirements between the standard SRIF&S and the new
agorithms:

Standard SRIF&S:  2n” + nm+ n?

Generalized SRIF&S: 4n? + 2nm + nf - 4npy, - 3mpp, +3py°
The new algorithms use roughly twice the storage of the old
ones. This is much more efficient than a dense-matrix
batch algorithm, which requires order N? storage for an N-
stage problem, as opposed to the order N storage
requirement for the present algorithms.

6. Conclusions

This paper has presented a generalization of the square-
root information filter and smoother agorithms. The
generaized agorithms have been designed for use on linear
time-varying discrete-time problems. The new smoother
agorithm is the only known factorized smoother that can
handle the general case of a singular state transition matrix
while also executing as a forwards filtering pass followed
by a backwards smoothing pass. These are also the only
known factorized filter and smoother algorithms that can
handle perfect measurements. These algorithms will be
useful when performing filtering or smoothing for systems
with delays or for systems with state constraints or perfect
measurements.
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