
Square-Root Information Filtering and Fixed-Interval Smoothing with Singularities
Mark L. Psiaki*

Cornell University, Ithaca, New York 14853-7501

Abstract
The square-root information filter and smoother

algorithms have been generalized to handle singular state
transition matrices and perfect measurements. This has
been done to allow the use of SRIF techniques for problems
with delays and state constraints. The generalized
algorithms use complete QR factorization to isolate
deterministically known parts of the state and nonsingular
parts of the state-transition and disturbance-influence
matrices. These factorizations and the corresponding
changes of coordinates are used to solve the recursive
least-squares problems that are basic to the SRIF technique.

1. Introduction
1.1 Expanding the Capabilities of Square-Root

Information Filters and Smoothers. Square-Root
Information Filters and Smoothers (SRIF&S) are special
solution techniques for, respectively, the discrete-time
Kalman filter problem and the related smoothing problem
[1]. Square root formulations increase numerical
computation accuracy by guaranteeing positive-definiteness
of the associated covariances and by decreasing the
condition numbers of the manipulated matrices. The
present paper generalizes the SRIF&S techniques to deal
with singularities that can occur in some problems.

Suppose the system dynamics and measurement models
are:
x(j+1) = Φ(j)x(j) + Γ(j)w(j) (1a)
za(j) = A(j)x(j) + ν (j) (1b)
zb(j) = B(j)x(j) (1c)

where x(j) is the state at stage j, w(j) is the random process
disturbance, za(j) is a noisy measurement, ν (j) is its random
measurement error, zb(j) is a prefect measurement, and Φ(j),
Γ(j), A(j), and B(j) are matrices of appropriate dimensions.

The standard SRIF&S algorithms cannot handle a
singular state transition matrix, Φ(j). The filtering algorithm
inverts Φ(j) [1, p. 116] as does one version of the smoothing
algorithm [1, p. 215]. The generalized SRIF&S algorithms
presented below can handle a singular Φ(j), such as occurs
when the system model includes a pure delay.

The standard SRIF&S algorithms cannot deal with
perfect measurements, as given in eq. (1c). This paper's
generalized algorithms can handle such measurements.
Attitude estimation with quaternions is an example problem
in which perfect "measurements" arise.

* Associate Professor, Mech. & Aero. Engineering.
Presented as Paper No. FA05-5 at the 1998 American
Control Conference, Philadelphia, PA.

1.2 Relationship to Prior Research. The smoothing
algorithms of Watanabe [2] and McReynolds [3] are the
only factorized fixed-interval smoothers that can handle a
singular state transition matrix. Watanabe’s algorithm first
executes a backwards pass followed by a forwards pass; it
cannot do just filtering. McReynolds’ algorithm avoids
inverting the state transition matrix only in the case of full-
rank process noise.

Several known algorithms can deal with perfect
measurements [4-6]. None of them use a square-root
factorization, nor do any address the smoothing problem.

This paper generalizes the original SRIF&S algorithms
in Refs. 1 and 7 to deal with a) a singular state transition
matrix and process noise of any rank, b) perfect
measurements, and c) perfect knowledge of a component of
x(0). The generalized algorithms use forward-pass filtering
followed by backwards-pass smoothing.

1.3 Outline of Paper. Section 2 presents the filtering
and smoothing problems, Section 3 the forward-pass
filtering algorithm, and Section 4 the backwards-pass
smoothing algorithm. Section 5 discusses important
algorithmic properties, and Section 6 gives the conclusions.

2. Definition of Filter and Smoother Problems
2.1 Problem Model. The dynamic system and

measurement models are given in eqs. (1a)-(1c). The
statistics of the process noise measurement noise are:
Rww(j)w(j) = zw(j) - νw(j) (2a)
E{νw(j)} = 0, E{νw(j)νw(k)

T} = I δjk (2b)
E{ν (j)} = 0, E{ν (j)ν (k)

T} = I δjk (2c)
E{ν (j)νw(k)

T } = 0 (2d)
where [Rww(j), zw(j)] is the a priori information array for w(j),
with Rww(j) square and nonsingular. The vector sequences
νw(j) and ν (j) are Gaussian white-noise processes.

The a priori information about the initial state vector
x(0) is assumed to take the form:

x
x

Q xa(j)

b(j)
ab(j) (j)









 =

~
for j = 0 (3a)

xa(j) given and ~ ~ ~R x zbb(j) b(j) b(j) b(j)= − ν for j = 0 (3b)

where xa(0) is deterministic and xb(0) is random and defined
by the Gaussian random vector ~ν b(0) = N(0,I) and the

information array [~ , ~]R zbb(0) b(0) . ~Qab(0) is an orthogonal

transformation matrix. The matrix ~Rbb(0) must be square

and nonsingular.
2.2 Filtering and Smoothing Problem Statements.

The filtering problem is to find the best estimate of the
state at stage N conditioned on the measurements up to and

2

including stage N: $x(N) = E{x(N)| za(0),zb(0),..., za(N),zb(N)}.

The fixed-interval smoothing problem is to find the best
estimate of the state time history for stages 0 to N
conditioned on the measurements for the entire interval:
x(j)

* = E{x(j)| za(0),zb(0),...,za(N),zb(N)} for j = 0, 1, 2, ..., N.

3. Forward-Pass Filter Algorithm
3.1 Overview of Filtering Procedure. The filtering

problem can be solved by a least-squares technique that
determines the maximum-likelihood solution [1]. This
technique finds ~ν b(0) and the x(j), w(j), ν (j), and νw(j)

sequences that satisfy constraint eqs. (1a)-(1c), (2a), (3a)
and (3b) and minimize

J b(0)
T

b(0) (j)
T

(j)
j=0

N
w(j)
T

w(j)
j=0

N -1
= 1

2
~ ~ν ν ν ν ν ν+ ∑ + ∑












(4)

The algorithm works in an recursive manner analogous
to the original SRIF algorithm, [1,7]. It starts at stage j with
a priori state information in the eq. (3a)-(3b) form. The
filter first performs a measurement update to combine its a
priori state data with the measurement equations for that
stage, eqs. (1b) and (1c). It treats the perfect measurements
as equality constraints that exactly define a component of
the state. Otherwise, the measurement update uses standard
SRIF least-squares methods [1, pp. 69-76].

The propagation phase of the generalized SRIF
computes the a priori state information at stage j+1 using
the a posteriori state information at stage j in conjunction
with eqs. (1a) and (2a) for stage j. The principal of the new
mapping algorithm is the same as that of the original
algorithm: the dynamic model is used to eliminate some
stage-j variables from the information equations, and then
they are QR-factorized to get an information equation for
x(j+1) that is independent of all remaining variables.
Complete QR factorizations of matrices are needed in the
generalized algorithm in order to deal with singularities.

3.2 Review of Complete QR Factorization. The
complete QR factorization of any matrix B is as follows:

Q
R 0
0 0

Q = BL
T

R








 (5)

where QL and QR are orthogonal and R is square, upper-
triangular, and nonsingular [8].

3.3 Detailed Description of Measurement Update.
The update procedure for stage j starts with a priori state
data in the form given in eqs. (3a) and (3b). This is true by
assumption for stage 0 and will be enforced by the filtering
process for all later stages.

First, the update transforms A(j) and B(j) into components
that multiply xa(j) and xb(j) in the measurement equations:

A A
B B

A
B

Qa(j) b(j)

a(j) b(j)

(j)

(j)
ab(j)
T







 =











~
(6)

Next, it right QR factorizes Bb(j), and transforms xb(j):

[]R 0 Q Bcc(j) cd(j) b(j)=
x
x

Q xc(j)

d(j)
cd(j) b(j)









 = (7)

where Qcd(j) is orthogonal and Rcc(j) is square and
nonsingular. If a nonsingular Rcc(j) is unachievable, then the
exact measurements are ill-posed and cannot be satisfied.

The vector xc(j) is determined from the exact
measurements by using eqs. (1c), (3a), (6), and (7):
x R z B xc(j) cc(j)

-1
b(j) a(j) a(j)= −() (8)

Next, the update transforms ~Rbb(j) and Ab(j) into factors

that multiply xc(j) and xd(j) in the noisy measurements and in
xb(j)'s a priori information equation:

~ ~ ~R R
A A

R
A

Qbc(j) bd(j)

c(j) d(j)

bb(j)

b(j)
cd(j)
T











=












(9)

Equations (3b) and (1b) then become:
~Rbd(j) xd(j) = ~zd(j) - ~ν b(j) (10a)

Ad(j) xd(j) = zd(j) - ν (j) (10b)
where ~zd(j) = ~zb(j) - ~Rbc(j) xc(j) and zd(j) = za(j) -Aa(j) xa(j)

-Ac(j) xc(j).
The update process finishes by combining eqs. (10a) and

(10b) into a single a posteriori information equation for
xd(j) using a left QR factorization as in [1, p. 71]:

T
R z
A z

R z
0 e(j)

bd(j) d(j)

d(j) d(j)

dd(j) d(j)

(j)

~ ~ $ $











=












(11)

where T(j) is orthogonal and $Rdd(j) is square, nonsingular,

and upper-triangular. e(j) is the residual measurement error,
and the a posteriori information equation is:
$ $ $R x zdd(j) d(j) d(j) d(j)= − ν (12)

The state x(j) is composed of deterministic parts, xa(j)

and xc(j), and a stochastic part, xd(j):

x Q
x
x
x

(j) acd(j)
T

a(j)

c(j)

d(j)

= $
















where $ ~
Q

I 0
0 Q

Qacd(j)
cd(j)

ab(j)=








 (13)

The a posteriori state estimate and covariance are:

$ $

$
x Q

x
x
x

(j) acd(j)
T

a(j)

c(j)

d(j)

=

















$ $

$

$P Q
0 0 0
0 0 0
0 0 P

Q(j) acd(j)
T

dd(j)

acd(j)=

















(14)
where $ $ $x R zd(j) dd(j)

1
d(j)= − is derived by taking the expectation

of eq. (12). At stage j = N eq. (14) gives the solution to the
filtering problem.

3

3.4 Detailed Description of Mapping with Process
Noise. The propagation phase uses the a posteriori
information about x(j), eqs. (3b), (8), (12) and (13), the a
priori information about w(j), eq. (2a), and the difference
equation, eq. (1a), to compute a priori information about
x(j+1) in the form of eqs. (3a)-(3b).

First, the mapping process transforms the state
transition matrix into the coefficients of xa(j), xc(j), and xd(j)

in the state difference equation:

[]Φ Φ Φ Φa(j) c(j) d(j) (j) acd(j)
T= $Q (15)

A deterministic, nonhomogeneous component of the
difference equation is then computed, p(j) = Φa(j) xa(j) +
Φc(j) xc(j), and eq. (1a) becomes:
x(j+1) = Φd(j)xd(j) + Γ(j)w(j) + p(j) (16)

Next, the mapping process completely QR factorizes
Φd(j) and makes corresponding changes to Γ(j) and p(j):

Q
0

0 0
Q =gh(j+1)

T ge(j)
ef(j) d(j)

Φ
Φ









 (17a)

Γ
Γ

Γg(j)

h(j)
gh(j+1) (j)









 = Q and

p
p

Q pg(j)

h(j)
gh(j+1) (j)









 = (17b)

This factorization orthogonally transforms xd(j) and x(j+1):
x
x

Q xe(j)

f(j)
ef(j) d(j)









 = and

x
x

Q xg(j+1)

h(j+1)
gh(j+1) (j+1)









 = (18)

and isolates a square, nonsingular part of the state transition
matrix, Φge(j). The dynamic map in eq. (16) becomes:

x
x

0
0 0

x
x

w
p
p

g(j+1)

h(j+1)

ge(j) e(j)

f(j)

g(j)

h(j)
(j)

g(j)

h(j)









 =


















 +









 +











Φ Γ
Γ

(19)

Note that xe(j) and xg(j+1) have the same dimension, and xe(j)

affects xg(j+1) through Φge(j). xf(j) does not affect the state at
stage j+1, and xh(j+1) is not affected by the state at stage j.

The next operation is a complete QR factorization of
Γh(j)

Q
0

0 0
Q =ia(j+1)

T iwa(j)
wawb(j) h(j)

Γ
Γ









 (20)

with corresponding changes to Γg(j) and ph(j):

[]Γ Γ Γgwa(j) gwb(j) g(j) wawb(j)
T= Q (21a)

p
p

Q pi(j)

a(j)
ia(j+1) h(j)









 = (21b)

This factorization transforms w(j) and xh(j+1):
w
w

Q wa(j)

b(j)
wawb(j) (j)









 = and

x
x

Q xi(j+1)

a(j+1)
ia(j+1) h(j+1)









 = (22)

and the difference equation in eq. (19) becomes:

x
x
x

0
0 0
0 0

x
x

g(j+1)

i(j+1)

a(j+1)

ge(j)
e(j)

f(j)

















=
























 +

Φ

Γ Γ
Γ

gwa(j) gwb(j)

iwa(j)
a(j)

b(j)

g(j)

i(j)

a(j)

0

0 0

w
w

p
p

p

























 +

















(23)

Note that wa(j) and xi(j+1) have the same dimension, and wa(j)

affects xi(j+1) through Γiwa(j), which is a square, nonsingular
matrix.

The vector xa(j+1) is deterministically known:
xa(j+1) = pa(j) (24)

which gives part of the a priori information at stage j+1.
To finish, the propagation algorithm combines eqs. (2a),

(12), (18), (22), and (23) to eliminate xd(j), xe(j), xf(j), w(j),
wa(j), and wb(j) and deduce an independent information
equation for

x
x
xb(j+1)

g(j+1)

i(j+1)
=









 (25)

The next step is to left QR factorize information
equation (12) after using eq. (18) to replace xd(j) by xe(j) and
xf(j). In terms of information arrays this yields:

[]T R Q z
R 0 z

R R z
ef(j) dd(j) ef(j)

T
d(j)

ee(j) e(j)

fe(j) ff(j) f(j)

()$ $
$ $

$ $ $
=















(26)

where Tef(j) is an orthogonal matrix, and $Ree(j) and $R ff(j)

are both square, nonsingular matrices. The corresponding
information equations are:
$Ree(j) xe(j) = $ze(j) - $ν e(j) (27a)

$R fe(j) xe(j) + $R ff(j) xf(j) = $z f(j) - $ν f(j) (27b)

Equation (2a) must be re-expressed in terms of wa(j) and
wb(j). Their respective coefficients in the modified equation
are [Rwwa(j), Rwwb(j)] = Rww(j)Qwawb(j)

T. The resulting
information equation is:
Rwwa(j)wa(j) + Rwwb(j)wb(j) = zw(j) - νw(j) (28)

A combined information equation for xg(j+1), xi(j+1), and
wb(j) can be constructed from eqs. (27a) and (28). One must
first use the first 2 rows in eq. (23) to solve for xe(j) and
wa(j) in terms of xg(j+1), xi(j+1), and wb(j):

{x x x pe(j) ge(j)
 -1

g(j+1) gwa(j) iwa(j)
 -1

i(j+1) i(j)= − −Φ Γ Γ ()

}− −Γ gwb(j) b(j) g(j)w p (29a)

w x pa(j) iwa(j)
 -1

i(j+1) i(j)= −Γ () (29b)

Substitution of these results into eqs. (27a) and (28) yields
the following information equation:

4

() ()

()

$ $R R

0 R
ee(j) ge(j)

 -1
ee(j) ge(j)

 -1
gwa(j) iwa(j)

 -1

wwa(j) iwa(j)
 -1

Φ Φ Γ Γ

Γ

-





-()$R
R

x
x

w

ee(j) ge(j)
 -1

gwb(j)

wwb(j)

g(j+1)

i(j+1)

b(j)

Φ Γ 





















=

(){ }
{ }

$ $z R p p

z R p

e(j) ee(j) ge(j)
 -1

gwa(j) iwa(j)
 -1

i(j) g(j)

w(j) wwa(j) iwa(j)
 -1

i(j)

+ − +

+

















Φ Γ Γ

Γ

−












$ν
ν

e(j)

w(j)
(30)

The final propagation step is a left QR factorization of
eq. (30) to make the xg(j+1) and xi(j+1) information equations
independent of wb(j) as in [1, p. 117]:

~ $ $
T

R R

0 R
(j+1)

ee(j) ge(j)
 -1

ee(j) ge(j)
 -1

gwa(j) iwa(j)
 -1

wwa(j) iwa(j)
 -1

() ()

()

Φ Φ Γ Γ

Γ

-





- ()$R
R

ee(j) ge(j)
 -1

gwb(j)

wwb(j)

Φ Γ 





=

~
~ ~

~ ~ ~

R 0 0

R R 0
R R R

gg(j+1)

ig(j+1) ii(j+1)

wbg(j+1) wbi(j+1) wbwb(j)

















(31a)

(){ }
{ }

~ $ $
T

z R p p

z R p
(j+1)

e(j) ee(j) ge(j)
 -1

gwa(j) iwa(j)
 -1

i(j) g(j)

w(j) wwa(j) iwa(j)
 -1

i(j)

+ − +

+

















Φ Γ Γ

Γ

=

















~

~
~

z
z

z

g(j+1)

i(j+1)

wb(j)

(31b)

where ~T(j+1) is an orthogonal matrix and ~Rgg(j+1) , ~Rii(j+1) ,

and ~Rwbwb(j) are all square, nonsingular matrices.

Given the definition of xb(j+1) in eq. (25), the a priori
information for stage j+1, eqs. (3a) and (3b) for j+1, can be
completed:

~
~
~ ~R
R 0
R Rbb(j+1)

gg(j+1)

ig(j+1) ii(j+1)
=













, ~
~
~z
z
zb(j+1)
g(j+1)

i(j+1)
=









 (32a)

[]
~Q

0
I

0 I
0 0

0 I 0

I 0
0 Q

Qab(j+1)
ia(j+1)

gh(j+1)=












































 (32b)

This is the end of the recursion. The data computed in
eqs. (24), (32a), and (32b) provide the inputs to eqs. (3a)-
(3b) for stage j+1. Thus, the algorithm can repeat itself at
the next stage.

4. Backward-Pass Fixed-Interval Smoother Algorithm
4.1 Overview of Smoothing Procedure. The

smoother uses data from the filtering solution to execute a
recursive backwards pass. Each iteration of this recursion
starts with the smoothed state estimate at stage j+1, x(j+1)

* .

It uses an information equation and a part of the difference
equation to determine the smoothed process disturbance
estimate w(j)

* . This process noise, x(j+1)
* , and the

difference equation determine a component of the
smoothed state at stage j, xe(j)

* . xe(j)
* is used in another

information equation to determine another component of
x(j)

* , x f(j)
* . Finally, the smoothed and deterministic

components are assembled and transformed to compute
x(j)

* , which completes the recursion.

This algorithm is a generalization of the Dyer-
McReynolds covariance smoother [1, pp. 214-217].

4.2 Detailed Backwards Recursion of the Smoothed
State with Calculation of the Smoothed Process
Disturbance. The smoother begins at stage j+1 = N. The

smoothed state at this stage is: x(N)
* = $x(N) , from eq. (14).

First, the backwards pass transforms x(j+1)
* to determine

the components xg(j+1)
* and xi(j+1)

* :

x

x

x

x

x
Q x

a(j+1)
*

g(j+1)
*

i(j+1)
*

a(j+1)
*

b(j+1)
* ab(j+1) (j+1)

*































= = ~ (33)

This follows from eqs. (3a) and (25).
The next step determines wa(j)

* from eq. (29b), wb(j)
*

from the expectation value of the 3rd row of the
information equation associated with eqs. (31a) and (31b):

[w R z R xb(j)
*

wbwb(j)
-1

wb(j) wbg(j+1) g(j+1)
*= −~ ~ ~

]− ~R xwbi(j+1) i(j+1)
* (34)

and w(j)
* from eq. (22):

w Q
w

w(j)
*

wawb(j)
T a(j)

*

b(j)
*=













(35)

Next, xe(j)
* is computed from eq. (29a), x f(j)

* from the

expectation value of eq. (27b):

x f(j)
* = $R ff(j)

1− [$z f(j) - $R fe(j) xe(j)
*] (36)

and xd(j)
* from inversion of the transformation in eq. (18):

x Q
x

xd(j)
*

ef(j)
T e(j)

*

f(j)
*=













(37)

5

The backwards iteration to stage j is completed by
assembling state components and making a transformation.
The deterministic state components, xa(j) and xc(j), come
from eqs. (3b) and (8), respectively. These components
together with xd(j)

* are substituted into the transformation

in eq. (13) to determine x(j)
* . If j > 0, then the backwards

recursion is repeated, starting at eq. (33) with a
decremented value of j.

4.3 Backwards Recursion for the Smoothed State
Covariance. A backwards covariance recursion can be
developed by using the equations of the backwards state
recursion, the definition of covariance, and the expectation
operation. The recursion begins at stage j+1 = N, where the
smoothed state covariance is known because it is the same

as the filtered state covariance from eq. (14): P(N)
* = $P(N) .

The lengthy details of this procedure, although tedious and
algebraically intensive, are straightforward. They have been
omitted for the sake of brevity.

5. Algorithm Characteristics
The present algorithms inherit the numerical stability of

the original SRIF&S algorithms. Numerical stability means
that the effects of small computer round-off errors do not
grow excessively during the calculations. The good
numerical properties of the original algorithms and of the
new algorithms derive from their use of square roots of
information matrices, which reduces condition number and
ensures positive-semi-definiteness of the associated
covariances [1]. The use of dynamically stable covariance
and state propagation equations, i.e., sweep methods [9],
also enhances numerical stability. Numerical stability of
the new algorithms has been experimentally demonstrated
by comparison of their solutions with solutions generated
by a numerically stable batch algorithm.

The operation counts of the present algorithms and of
the original SRIF&S algorithms have been compared for a
representative case. Execution time varies linearly with
operation count. The comparison assumes that dim(x(j)) =
n, dim(w(j)) = m, dim(za(j)) = pa, dim(zb(j)) = pb, and
dim(xa(j)) = 0, with (pa + pb) ≤ n and pb ≤ m. It also
assumes that the standard SRIF processes (pa + pb) noisy
measurements and no perfect measurements, that it can
invert its state transition matrix, and that it uses QR
factorization to compute the transition matrix inverse. The
operation counts have been totaled only for multiplications
and divisions that occur during matrix factorizations and
matrix-matrix multiplications. Only the dominant (highest
power) terms have been included in these counts.

The computation count comparison yields the following
leading terms per stage of filtering:
Standard SRIF: 2.5n3 + 3n2m + 2nm2 + (2/3)m3 +n2pa

+ n2pb

Generalized SRIF: 6.5n3 + 4n2m + 3nm2 + (4/3)m3 +
3n2pa - 2.5n2pb + 3npb

2 - 2npapb +
papb

2 + (5/6)pb
3 + 2mpb

2 - 2nmpb

There are no additional dominant terms for smoothing
unless the smoothed covariance is to be calculated. The
new algorithms are slower than the old algorithms by a
factor of about 3.

The computation time scales linearly with the number of
stages, N. That is much better than the only competing
algorithm that can exactly solve the present problem, a
batch least-squares algorithm. The computation time for a
dense-matrix batch algorithm scales as N3. The new
algorithms have been compared with a batch algorithm for a
problem with N = 100 stages and n = 4 states. Running in
MATLAB the new algorithms executed 95 times faster than
the batch algorithm, even though the latter has an advantage
in MATLAB.

Matrix storage requirements dictate computer RAM
size requirements. Storage requirements are significant
when smoothing is being done because matrices that get
computed during the forward filtering pass must be saved
for re-use during the backwards smoothing pass. Using the
same dimensions as for the comparison of operation
counts, the following is a comparison of matrix storage
requirements between the standard SRIF&S and the new
algorithms:
Standard SRIF&S: 2n2 + nm + m2

Generalized SRIF&S: 4n2 + 2nm + m2 - 4npb - 3mpb +3pb
2

The new algorithms use roughly twice the storage of the old
ones. This is much more efficient than a dense-matrix
batch algorithm, which requires order N2 storage for an N-
stage problem, as opposed to the order N storage
requirement for the present algorithms.

6. Conclusions
This paper has presented a generalization of the square-

root information filter and smoother algorithms. The
generalized algorithms have been designed for use on linear
time-varying discrete-time problems. The new smoother
algorithm is the only known factorized smoother that can
handle the general case of a singular state transition matrix
while also executing as a forwards filtering pass followed
by a backwards smoothing pass. These are also the only
known factorized filter and smoother algorithms that can
handle perfect measurements. These algorithms will be
useful when performing filtering or smoothing for systems
with delays or for systems with state constraints or perfect
measurements.

Acknowledgments
Ya’akov Oshman and Stephen McReynolds both

provided helpful suggestions concerning the literature
search for this paper.

6

References
1. Bierman, G.J., Factorization Methods for Discrete

Sequential Estimation, Academic Press, (New York, 1977).
2. Watanabe, K., “A New Forward-Pass Fixed-Interval Smoother

Using the U-D Information Matrix Factorization,” Automatica,
Vol. 22, No. 4, 1986, pp. 465-475.

3. McReynolds, S.R., “Covariance Factorization Algorithms for
Fixed-Interval Smoothing of Linear Discrete Dynamic Systems,”
IEEE Transactions on Automatic Control, Vol. 35, No. 10,
1990, pp. 1181-1183.

4. Tse, E. and Athans, M., “Optimal Minimal-Order Observer-
Estimators for Discrete Linear Time-Varying Systems,” IEEE
Transactions on Automatic Control, Vol. 15, No. 4, 1970, pp.
416-426.

5. Anderson, B.D.O., and Moore, J.B., Optimal Filtering, Prentice-
Hall, (Englewood Cliffs, N.J., 1979). pp. 292-295.

6. Mendel, J.M., Lessons in Digital Estimation Theory,
Prentice-Hall, (Englewood Cliffs, N.J., 1987), pp. 230-233.

7. Dyer, P. and McReynolds, S., “Extension of Square-Root
Filtering to Include Process Noise,” Journal of Optimization
Theory and Applications , Vol. 3, No. 6, 1969, pp. 444-458.

8. Gill, P.E., Murray, W., and Wright, M.H., Practical
Optimization, Academic Press, (New York, 1981), pp. 37-40.

9. McReynolds, S.R., “Fixed Interval Smoothing:
Revisited,” Journal of Guidance, Control, and
Dynamics, Vol. 13, No. 5, 1990, pp. 913-921.

