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GAUSSIAN MIXTURE APPROXIMATION OF THE BEARINGS-ONLY
INITIAL ORBIT DETERMINATION LIKELIHOOD FUNCTION

Mark L. Psiaki∗, Ryan M. Weisman†, and Moriba K. Jah‡

A method is developed to approximate the bearings-only orbit determination like-
lihood function using a Gaussian mixture to incorporate information about an ad-
missible region. The resulting probability density function can provide the a pri-
ori information for a Gaussian mixture orbit determination filter. The new tech-
nique starts with a nonlinear batch least-squares solution. The solution enforces
soft constraints on an admissible region defined in terms of minimum periapsis
and maximum apoapsis. This admissible region information can compensate for
poor observability from a short arc of bearings-only data. Although this soft-
constrained solution lies in or near the admissible region, it does not characterize
that region well. It provides a starting point to develop a Gaussian mixture ap-
proximation of the batch least-squares likelihood function as modified through
multiplication by a finite-support function that is zero outside the admissible re-
gion and equal to one in that region. This Gaussian mixture is optimized to fit the
resulting probability density in the 2-dimensional subspace of position/velocity
space that has the most uncertainty. This optimal fitting allows the Gaussian mix-
ture to use a low number of mixands while fitting the finite-support probability
density function well. By approximating the product of a finite-support function
and the original likelihood function, the new method gains the capability to transi-
tion smoothly between regimes where the admissibility constraints dominate, i.e.,
high-altitude/short-measurement-arc cases, and those where they are irrelevant,
i.e., low-altitude/long-measurement-arc cases.

INTRODUCTION

Orbit Determination (OD) based on bearings measurements has been studied since the time of
Brahe and Kepler, and several of the greats of science have contributed methods.1, 2 If only a few
data points are available from a single observing station over a brief time window, then the resulting
orbital uncertainties can be very large,3 sometime so large that hyperbolic orbits lie within the realm
of possibility. The largest uncertainties tend to be in the range and range rate.

A method of dealing with this problem is to add information about the orbit’s admissible re-
gions.4, 5 References [2] and [3] use this technique with an admissible region that is defined by
upper bounds on the orbital eccentricity and on the semi-major axis, or equivalently, on the orbital
specific energy. Reference [2] uses this admissible region in order to constrain its orbital hypothe-
ses. Reference [3] develops a Gaussian mixture that approximates a flat distribution which covers
the projection of the admissible region onto the range/range-rate subspace.
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A useful capability is that of determining a reasonable Gaussian mixture Initial Orbit Determina-
tion (IOD) state probability density function. Such a function can be used to initialize a Gaussian
mixture OD filter. A Gaussian mixture filter can provide a powerful means to closely approximate
the true Bayesian solution to a nonlinear filtering problem if the individual mixands are narrow
enough and if there are enough of them.6, 7, 8 Sufficiently narrow mixands allow the Bayesian cal-
culations to be implemented using Taylor series approximations that reduce to simple EKF or UKF
calculations on a per-mixand basis. These calculations are followed by a re-weighting among the
mixands after the measurement update.6, 8 Recent advances have been made on the key lagging
technology for Gaussian mixture filtering, a mixture re-sampling algorithm that re-approximates a
distribution accurately while limiting its mixand covariances.6, 7 These advances provide the motiva-
tion for seeking OD filter initialization strategies that are consistent with Gaussian mixture filtering.

This paper develops an advanced version of the admissible-region-based Gaussian mixture IOD
method of Ref. [3]. It makes five new contributions. First, it uses different criteria to define an
admissible region. The new constraints are a minimum orbital periapsis and a maximum orbital
apoapsis. These constraints are developed using Keplerian dynamics, and they remain non-singular
at zero orbital eccentricity. The second contribution is a nonlinear batch least squares solver for an
initial rough approximation of the position/velocity state. This solver includes admissible region
”soft” constraints that are implemented by adding penalty functions to the least-squares cost func-
tion. This paper’s third contribution is to generalize the definition of the subspace in which the IOD
uncertainty is characterized primarily by the admissible region. Instead of using range and range
rate, this subspace is defined as the 2-dimensional sub-space of position/velocity state space that
has the most uncertainty after processing the bearings-only data in a batch least-squares filter. This
subspace will lie primarily in the range/range-rate space for the short-data-arc/single-observing-
station case, despite the lack of an explicit constraint that it correspond exactly to range and range
rate. The fourth contribution is to characterize the IOD probability density in the high-uncertainty
2-D subspace by a combination of admissible region constraints and a Gaussian approximation
of the bearings-only likelihood function. This feature enables the method to operate sensibly in
high-orbit/short-arc cases and in low-orbit/long-arc cases. The former cases rely heavily on the
admissible region constraints, while the latter cases achieve good IOD primarily from the bearings
measurements. The new method is agnostic to this issue and transitions smoothly between these
extremes. The fifth contribution is a new way of forming the Gaussian mixture approximation in
the high-uncertainty 2-D subspace. The method of Ref. [3] uses a product of 1-D Gaussian mix-
tures that have been partially optimized to fit a flat distribution – only their standard deviations
have been optimized. This paper’s method directly fits a 2-D mixture to the underlying admissible-
region/likelihood-function distribution, and it optimizes the weights, mean values, and covariances
of all its 2-D mixands. This approach can reduce the number of mixands needed to obtain a given
approximation accuracy.

This paper develops and explains its new IOD methods in six main sections followed by a section
that summarizes and gives conclusions. Counting from this introductory first section, the second
section presents the periapsis and apoapsis constraints for the IOD admissible region. The third
section develops the nonlinear batch least-squares problem with penalty function constraints, and
it outlines the solution algorithm. The fourth section defines the new 2D subspace that general-
izes the range/range-rate subspace in which the admissibility constraints provide information. The
fifth section defines the theoretical IOD probability density function as a product of two terms.
One is a Gaussian approximation of the bearings-only likelihood function projected onto the 4-
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dimensional compliment of the most uncertain subspace. The other term is itself the product of two
terms: the same likelihood approximation projected onto the 2-D high uncertainty subspace and a
finite-support function on the admissible region’s projection onto that subspace. The sixth section
develops a Gaussian mixture approximation of the IOD probability density function in the 2D max-
imal uncertainty subspace. It also defines an optimization problem to fit of this Gaussian mixture
to the theoretical probability density function, and it presents an algorithm for solving this problem.
The seventh section assembles the results of the preceding sections to form the Gaussian mixture
approximation of the IOD probability density function in the full 6-dimensional position/velocity
OD state space. The final section gives a summary of this paper’s contributions along with its
conclusions.

ADMISSIBLE REGION BASED ON ORBITAL PERIAPSIS AND APOAPSIS

The IOD admissible region is defined using a minimum periapsis body-centric radius and a max-
imum apoapsis body-centric radius. This definition represents a departure from the maximum ec-
centricity and maximum semi-major axis constraints of Refs. [2] and [3]. The justification for this
departure is that maximum constraints on eccentricity and semi-major axis can allow orbits that im-
pact the attracting body. If such orbits are allowed by the resulting IOD calculations, then an extra
ad hoc method must be employed to rule out the offending orbits. No extra ad hoc discrimination
is required if a minimum periapsis radius is enforced as part of the admissible region definition,
provided that it is sufficiently larger than the radius of the attracting central body. Thus, the new
admissible regions constraints seem more natural.

The new constraints pose a challenge. A square root operation is required in order to calculate
the Keplerian orbital eccentricity as a function of inertial position and velocity. Therefore, it’s
first derivatives with respect to position and velocity have a singularity at zero eccentricity. The
enforcement of a maximum eccentricity constraint can skirt this difficulty by enforcing a maximum
constraint on the square of the eccentricity. The periapsis and apoapsis formulas, on the other hand,
cannot directly use the square of the orbital eccentricity. Thus, simple constraints on periapsis
and apoapsis could lead to numerical difficulties when using them in an algorithm such as a batch
least-squares solver.

It is possible to transform a minimum constraint on the periapsis and a maximum constraint on
the apoapsis into nonsingular forms. The following two constraints do exactly that:

0 ≥
(
E
µ

)
ρ2min + ρmin −

‖h‖2

2µ
(1)

0 ≥
(
E
µ

)
ρ2max + ρmax −

‖h‖2

2µ
(2)

where ρmin is the minimum body-centric radius of the periapsis, ρmax is the maximum body-centric
radius of the apoapsis, µ is the attracting body’s central gravitational constant, E is the orbital
energy per unit mass, and ‖h‖2 is the square of the magnitude of the orbital angular momentum per
unit mass. The first of these equations of the peripasis constraint, and the second is the apoapsis
constraint. The specific energy and the square of the specific angular momentum are related to the
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Cartesian position vector r and velocity vector v as follows:

E =
1

2
vTv − µ√

rTr
= − µ

2a

‖h‖2 = ‖r× v‖2

= (vTv)(rTr)− (vTr)2 (3)

where a is the orbital semi-major axis. The only possible singularity in these expressions is
√
rTr

at r = 0, a situation unlikely to be encountered in practice.

The constraints in Eqs. (1) and (2) are ambiguous. It is possible to satisfy them both if the
entire orbit lies above the radius ρmax or below ρmin. Note that removal of the ”min” and ”max”
subscripts from ρ in these two equations results in identical terms on their right-hand sides, terms
that are quadratic in ρ. The set of possible orbital radii are those for which this quadratic function is
non-negative. The ρ values that cause this function to equal zero are the periapsis and the apoapsis.
The desired condition is that the non-negative peak value of this quadratic function and all non-
negative values lie in the range ρmin ≤ ρ ≤ ρmax. The anomalous situations have all the non-
negative values lying either in the range ρmax ≤ ρ or in the range ρ ≤ ρmin.

The ambiguity in Eqs. (1) and (2) is removed by adding two more constraints: that the orbital
semi-major axis a also lie between ρmin and ρmax. These constraints can be written as constraints
on the orbital specific energy:

0 ≥ − µ

2ρmin
− E (4)

0 ≥ µ

2ρmax
+ E (5)

These latter constraints are normally satisfied as strict inequalities. They are added in order to
preclude this paper’s batch least squares algorithm from allowing an orbit that violates one of the
constraints in Eqs. (1) and (2) over its entire period.

It is helpful to re-write the 4 inequality constraints in Eqs. (1), (2), (4), and (5) in the following
normalized vector inequality form:

0 ≥ c(

[
r
v

]
) = c(x) =


c1(x)
c2(x)
c3(x)
c4(x)

 (6)

where x = [rT,vT]T is the 6-dimensional orbital position/velocity state vector and where the 4
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constraint function components are

c1(

[
r
v

]
) =

[
E(r,v)
µ

]
ρ2min + ρmin − ‖h(r,v)‖

2

2µ

1
2

[
1−

(
ρmin

ρmax

)]
σρ

c2(

[
r
v

]
) =

[
E(r,v)
µ

]
ρ2max + ρmax − ‖h(r,v)‖

2

2µ

1
2

[(
ρmax

ρmin

)
− 1
]
σρ

c3(

[
r
v

]
) =
−ρmin −

(
2ρ2min
µ

)
E(r,v)

σρ

c4(

[
r
v

]
) =

ρmax +
(
2ρ2max
µ

)
E(r,v)

σρ
(7)

where the parameter σρ serves as an inverse penalty weight given in distance units. Each of these
four inequality constraints is non-dimensional. They reproduce the four right-hand sides of Eqs. (1),
(2), (4), and (5), but with re-scaling factors that non-dimensionalize them and that severely penalize
constraint violations if their range-equivalent values exceed zero by magnitudes on the order of σρ
or larger.

NONLINEAR BATCH LEAST-SQUARES IOD PROBLEM AND SOLVER BASED ON BEAR-
INGS DATA AND ADMISSIBLE REGION CONSTRAINTS

Batch Measurement Model

The initial operation of this paper’s bearings-only IOD algorithm is to solve a batch least-squares
problem that involves the bearings measurements and the periapsis and apoapsis admissible region
bounds in Eq. (6). The right-ascension and declination bearing measurements at a sequence of times
can be modeled in the following nonlinear batch measurement model form:

y = h(x) + ν (8)

where y is a 2N -dimensional vector that contains the stacked right-ascension and declination mea-
surements at N samples times. The function h(x) is a nonlinear measurement model function. It
includes an orbit propagator from the epoch time of the position/velocity state x to each individual
bearing measurement time. This model includes the inverse trigonometric calculation of each right-
ascension/declination pair. Its computations use the body-fixed coordinates of each ground station
from which data are available along with the attracting body’s known orientation time history rel-
ative to inertial space. The 2N -dimensional vector ν models the bearing measurement errors. It
is assumed to be a zero-mean, Gaussian random vector. Its square-root information matrix is Rν ,
which implies that its measurement error covariance is Pν =R−1ν R−T

ν . TypicallyRν is diagonal with
its diagonal elements equal to the reciprocals of the corresponding right-ascension and declination
measurement error standard deviations.

The orbit propagator used to implement h(x) can be a simple Keplerian calculation or something
more complicated. The present study uses the Kepler 2-body orbital motion model. It performs
propagation using non-singular equinoctial elements.9
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Batch Least-Squares Problem

The initial rough orbit estimate is determined by solving the following nonlinear weighted batch
least-squares problem with penalty terms:

find: x

to minimize: J(x) =
1

2
[y − h(x)]TRT

νRν [y − h(x)]

+
1

2

4∑
i=1

{max[0, ci(x)]}2 (9)

The problem’s cost function J(x) contains two terms. The first term is the usual weighted sum
of the squared errors between the actual bearing measurements and their modeled values based on
the epoch state x. The second term penalizes violations of the 4 inequality constraints from Eq.
(6). The maximization operation max[0, ci(x)] ensures that violations are penalized only when the
corresponding ci(x) inequality constraint component is positive.

Note that the first term in the cost function in Eq. (9) is the negative log likelihood cost of the
bearings-only measurement problem. Typical batch estimators would include only this term. In the
case of short data arcs from a single ground station and high orbital altitude, the minimum of this
term is not sufficiently well defined to provide the sole basis for orbit determination, hence the extra
penalty terms.

Batch Least-Squares Solution Algorithm

An algorithm with special features has been developed to solve the problem in Eq. (9) for the
soft-constrained bearings-only IOD problem. It is a Levenberg-Marquardt method10 that includes
features which ensure convergence to the global minimum and features which treat the penalty terms
in Eq. (9). One feature is a search step adjustment within the Levenberg-Marquardt algorithm that
ensures a decrease of J(x) with every change that seeks to improve upon the current guess of the x
solution. The use of such adjustments ensures that the method converges at least to a local minimum
of J(x).

Another feature of the algorithm is an active set method for dealing with the inequality penalty
terms in Eq. (9). If the ith constraint is satisfied, then it is ignored in the standard Levenberg-
Marquardt computation of the search direction in x space. If the constraint is violated, then the
Levenberg-Marquardt computation appends the equation 0 = ci(x) to the over-determined system
of equations for which it seeks a least-squares solution. During the iterations that are involved in
a Levenberg-Marquardt solution, a given inequality constraint could switch from inactive to active
and back multiple times.

Global minimization of the cost function J(x) is ensured by re-seeding of the
Levenberg-Marquardt method with multiple randomly chosen first guesses. The solution that pro-
duces the lowest cost is taken as the global solution. The first guesses are chosen by using one of the
bearing measurement pairs and the corresponding observation station location in order to determine
two of the six unknowns in x. The remaining 4 unknowns are the range to the object along the mea-
sured direction and the 3 velocity components. The range to the object, its velocity magnitude, and
the angle between its velocity and position vectors are seeded randomly by using a random number
generator in order to select the periapsis and apoapsis radial distances along with the orbital mean
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anomaly. The former two quantities are sampled from a uniform distribution in the range between
ρmin and ρmax. The mean anomaly is sampled from a uniform distribution in the range 0 to 2π.
The resulting state guess takes the form

xg =

[
rg(

vg‖r̂g + vg⊥cos θg r̂a⊥ + vg⊥sin θg r̂b⊥
) ] (10)

where the guessed epoch-state position is

rg = rstation + ρg

 cosα cos δ
sinα cos δ

sin δ

 (11)

with ρg being the guessed range from the observing station location rstation, α being the measured
right ascension, and δ being the measured declination. The unit direction vector parallel to the
guessed position vector is r̂g = rg/

√
rTg rg. The other two unit direction vectors, r̂a⊥ and r̂b⊥, are

chosen to be perpendicular to r̂g and to each other. The component of the guessed velocity parallel
to r̂g is vg‖, and the component perpendicular to r̂g is vg⊥. The guessed values ρg, vg‖, and vg⊥
are derived based on Kepler’s laws and using the randomly sampled periapsis, apoapsis, and mean
anomaly.

The guessed rotation of the vg⊥ velocity component about r̂g is θg. The guess of this angle is
determined via brute-force optimization of J [xg(θg)]. This optimization holds ρg, vg‖, and vg⊥
constant, and it evaluates J [xg(θg)] on a grid of θg values that span the range from 0 to 2π. The θg
grid value that gives the lowest J [xg(θg)] is chosen as the guessed value. This method of choosing θg
aligns the initial guess of the orbital plane about r̂g in the way that best fits the bearing measurement
time history contained in the y vector.

The batch least-squares algorithm tends to converge from a first guess xg to a local minimum in
10’s to 100’s of Levenberg-Marquardt iterations when using 3-40 pairs of (α, δ) bearing measure-
ments. Fewer iterations tend to be required if the penalty terms are not active. It typically requires
about 15 or fewer independent xg guesses in order to locate the global minimum. These calculations
can be carried out in execution times that range from a few seconds up to 4 minutes when working
in MATLAB on a 3 GHz laptop computer. The robustness of this batch algorithm, when coupled
with its lack of simplifying assumptions, makes it a powerful alternative to existing methods that
address this problem, including those developed by Gauss, Laplace, and others.1, 2

Batch Least-Squares Solution Analysis

Let x̂cmle be the estimate that solves the penalty-function-constrained maximum-likelihood es-
timation problem in Eq. (9). It is useful to develop a square-root information equation11 that is a
projection of the linearized measurement model in Eq. (8) onto the range space of the pre-whitened
Jacobian matrix of the measurement model. The linearization is computed at the batch solution
x̂cmle. The desired square-root information equation takes the form:

Rcmle(x− x̂cmle) = zcmle − νcmle (12)

The 6-by-6 square-root information matrix Rcmle is computed using orthonormal/upper-triangular
(QR) factorization10 of the pre-whitened Jacobian matrix of the measurements:

QcmleRcmle = Rν
∂h

∂x

∣∣∣∣
x̂cmle

(13)
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with Qcmle being a 2N -by-6 matrix that has orthonormal columns. It is also an output of the QR
factorization. This latter matrix and the measurement residuals are used to compute the 6-by-1
non-homogeneous term of Eq. (12):

zcmle = QT
cmleRν [y − h(x̂cmle)] (14)

This term will be zero if none of the inequality constraint penalties in Eq. (9) are active at x̂cmle.
It will be non-zero when one or more of the constraint terms is active. In situations with non-zero
zcmle, an approximation of the unconstrained maximum-likelihood IOD state estimate is

x̂mle = x̂cmle +R−1cmlezcmle (15)

The vector νcmle in Eq. (12) is modeled as being a zero-mean, identity-covariance Gaussian
random vector. Given this assumption, the modeled error covariance of the maximum-likelihood
estimate in Eq. (15) is

E{(x− x̂mle)(x− x̂mle)
T} = Pmle

=

(Rν ∂h
∂x

∣∣∣∣
x̂cmle

)T(
Rν

∂h

∂x

∣∣∣∣
x̂cmle

)−1
= R−1cmleR

−T
cmle (16)

For the problems under consideration, this covariance often has two very large components. They
are so large that the approximate maximum likelihood estimate x̂mle is useless. The remainder of
this paper seeks to add information to the bearing information of Eq. (8) in order to develop a more
useful IOD estimate.

SUBSPACE OF MAXIMUM BEARINGS-ONLY IOD UNCERTAINTY

For a challenging IOD problem with high altitude and a short data arc, the two most uncertain
components of the state vector can have very large error standard deviations of their maximum-
likelihood estimates. In a typical example, their standard deviations are larger by factors of 2,000
and 20,000, respectively, than the standard deviation of the next most uncertain component. These
two components define the subspace that requires IOD aiding based on admissible region analysis.

It is necessary to make the units of the IOD state vector x uniform in order to determine the most
uncertain subspace of x. Otherwise, one is comparing ”apples” and ”oranges” because the first 3
elements of x are given in distance units and the last 3 are given in velocity units. One can use the
orbit’s Keplerian mean motion in order to transform into consistent units. Using the estimated state
x̂cmle = [r̂T

cmle, v̂
T
cmle]

T and Keplerian dynamics, the mean motion is

n0cmle =

√
µ

[a(r̂cmle, v̂cmle)]3

=

√√√√√µ

 2√
r̂T
cmler̂cmle

−
v̂T
cmlev̂cmle

µ

3

(17)
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The mean motion can be used to define a transformed square-root information matrix that applies
for r given in some sensible distance units, e.g., meters or km, and for v given in those same distance
units per radian of mean motion. This transformed square-root information matrix is

R̃cmle = Rcmle

[
I3×3 03×3
03×3 n0cmleI3×3

]
= RcmleTcmle (18)

where the 6-by-6 diagonal matrix Tcmle in the right-most expression is defined to equal the block
diagonal partial non-dimensionalization matrix in the middle expression.

The most uncertain 2-dimensional subspace can be determined by computing the singular value
decomposition of R̃cmle:

Ũ Σ̃−1Ṽ T = R̃cmle (19)

where Ũ and Ṽ are 6-by-6 orthonormal matrices and Σ̃−1 is a diagonal matrix with positive singular
values on its diagonal in descending order. Suppose that the diagonal elements of Σ̃−1 are 1/σ̃j for
j = 1,...,6 so that σ̃1 ≤ σ̃2 ≤ ... ≤ σ̃6 because their reciprocals are the descending diagonal elements
of Σ̃−1. Let the corresponding columns of Ṽ be designated as ṽj for j = 1,...,6.

The σ̃j singular value reciprocals are maximum-likelihood estimation error standard deviations
for the corresponding state-space directions in Ṽ . Large values correspond to large uncertainties.
Therefore, the two must uncertain IOD directions are those associated with the last two rows and
columns of Σ̃−1. In position/velocity state space with the original units, these two directions are

∆x5 = Tcmleṽ5 and ∆x6 = Tcmleṽ6 (20)

THEORETICAL IOD PROBABILITY DENSITY FUNCTION BASED ON BEARINGS-ONLY
LIKELIHOOD AND ADMISSIBLE REGION

A reasonable way to incorporate the admissible region information is to postulate that the initial
orbit is equally likely to lie anywhere in this region. Suppose that the maximum-likelihood lin-
earized square-root information equation in Eq. (12) contains all of the IOD information from the
bearing measurements. Then the Bayesian fusion of these two sources of information yields the
following IOD probability density function

p(x|y, ρmin, ρmax) = C exp {−1

2
[Rcmle(x−x̂cmle)− zcmle]

T[Rcmle(x−x̂cmle)− zcmle]}

×Πnp[c1(x)]×Πnp[c2(x)] (21)

where Πnp(η) is the scalar finite support function over non-positive values of its scalar input argu-
ment:

Πnp(η) =

{
1 if η ≤ 0
0 if 0 < η

(22)

and where C is a normalization constant defined by:

1

C
=

∫ ∞
−∞

exp {−1

2
[Rcmle(x−x̂cmle)− zcmle]

T[Rcmle(x−x̂cmle)− zcmle]}

×Πnp[c1(x)]×Πnp[c2(x)]dx (23)

The effect of the two Πnp(∗) factors in Eq. (21) is to null out the probability density of all states
that lie outside the admissible region. If this region is very large and if the Gaussian likelihood
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probability density function lies mostly in this region, then the admissible region terms will not
have much impact. The IOD probability density function will be nearly equal to the exponential
likelihood term in Eq. (21), after multiplication by an appropriate normalization constant. This will
be the case for LEO orbits with a sufficiently long bearings-only data arc. If the admissible region
is small relative to the extent of the Gaussian likelihood term, then the two finite-support functions
will have significant effects on the final form of the conditional distribution.

Recall from Eqs. (1)-(7) that the constraint functions c1(x) and c2(x) are used to model, respec-
tively, the minimum periapsis constraint and the maximum apoapsis constraint. Recall, also, that
these two constraints alone can be ambiguous, as per the discussion associated with Eqs. (4) and
(5). This potential ambiguity will be ignored for the remainder of the paper under the reasonable as-
sumption that its resolution will be obvious in the vicinity of solution x̂cmle of the batch estimation
problem of Eq. (9).

The remainder of this paper seeks to develop an accurate and efficient Gaussian mixture approx-
imation of the conditional probability density function given in Eq. (21). Accuracy means that the
approximation lies close to this theoretical probability density function. Efficiency means that it
uses a low number of Gaussian components – also known as mixands – in order to achieve an
accurate approximation.

GAUSSIAN MIXTURE APPROXIMATION OF THE IOD PROBABILITY DENSITY FUNC-
TION IN THE 2D UNCERTAIN SUBSPACE

Transformation and Projection onto the Maximally Uncertain 2D Subspace

In theory, The IOD conditional probability density in Eq. (21) could be directly approximated by
a Gaussian mixture. In practice, it would be very difficult to develop and implement an algorithm
that could optimize such a Gaussian mixture to fit the theoretical probability density function well
in the 6-dimensional x space. Therefore, a variable transformation and a 2-dimensional projection
are implemented in order to simplify the problem of optimizing the fit of the Gaussian mixture. As
will be demonstrated, forming an accurate and efficient Gaussian mixture in just 2 dimensions is
difficult enough.

The change of coordinates employs the singular decomposition of Eq. (19) and the soft-constrained
rough state estimate x̂cmle. Suppose that the new coordinates are αj for j = 1,...,6. Then the original
position/velocity state vector can be written as follows in terms of these new coordinates:

x = x̂cmle + TcmleṼ



α1

α2

α3

α4

α5

α6

 = x̂cmle + ∆X



α1

α2

α3

α4

α5

α6

 (24)

where the 6-by-6 matrix ∆X = TcmleṼ and where its jth column is ∆xj for j = 1,...,6, consistent
with Eq. (20).
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The inverse of this coordinate transformation takes the form

α1

α2

α3

α4

α5

α6

 = (∆X)−1(x− x̂cmle) (25)

The required inverse of ∆X is easy to compute because this matrix is the product of a diagonal ma-
trix and an orthonormal matrix. This latter transformation demonstrates that the new αj coordinates
keep track of state perturbations from the soft-constrained batch least-squares estimate x̂cmle. These
new coordinates measure perturbations along the different columns of the orthonormal matrix Ṽ in
the partially non-dimensionalized position/velocity state space. Each of them has identical units,
length units.

In order to derive the transformed probability density, it is necessary to define the transformed
functions that implement the minimum periapsis constraint and the maximum apoapsis constraint.
These transformed functions take the forms

c̃i(α1, α2, α3, α4, α5, α6) = ci(x̂cmle + ∆X



α1

α2

α3

α4

α5

α6

) for i = 1, 2 (26)

The transformed unconstrained maximum-likelihood estimates of the αj values are also useful
for deriving the transformed probability density. Starting from Eq. (15), one can apply various
matrix relationships in order to show that these estimates are

α̂1

α̂2

α̂3

α̂4

α̂5

α̂6

 = Σ̃ ŨTẑcmle (27)

Given the foregoing definitions and transformations, the transformed IOD conditional probability
density takes the form

p(α1, . . . , α6|y, ρmin, ρmax) = n30cmleC exp {−1

2

6∑
i=1

(
αi − α̂i
σ̃i

)2

}

×Πnp[c̃1(α1, . . . , α6)]×Πnp[c̃2(α1, . . . , α6)] (28)

Next, the assumption is made that the αi for i = 1,2,3,4 do not vary enough from their uncon-
strained maximum likelihood estimates to have much effect on the finite-support constraint terms in
Eq. (28). This is a reasonable assumption because σ̃i for i = 1,2,3,4 tend to be much smaller than σ̃5
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and σ̃6 for cases in which the admissible set terms play any important role. Using this assumption,
the following approximation is made of the transformed probability density function:

p(α1, . . . , α6|y, ρmin, ρmax) ≈ n30cmleC exp {−1

2

6∑
i=1

(
αi − α̂i
σ̃i

)2

}

×Πnp[c̃1(α̂1, α̂2, α̂3, α̂4, α5, α6)]

×Πnp[c̃2(α̂1, α̂2, α̂3, α̂4, α5, α6)]

≈ p(α1, α2, α3, α4|y)× p(α5, α6|y, ρmin, ρmax) (29)

where

p(α1, α2, α3, α4|y) =
1

(2π)2
∏4
i=1 σ̃i

exp {−1

2

4∑
i=1

(
αi − α̂i
σ̃i

)2

} (30)

and

p(α5, α6|y, ρmin, ρmax) = C̃ exp {−1

2

6∑
i=5

(
αi − α̂i
σ̃i

)2

}

×Πnp[c̃1(α̂1, α̂2, α̂3, α̂4, α5, α6)]

×Πnp[c̃2(α̂1, α̂2, α̂3, α̂4, α5, α6)] (31)

and where C̃ is another normalizing constant that is computed as follows:

1

C̃
=

∫ ∞
−∞

∫ ∞
−∞

exp {−1

2

6∑
i=5

(
αi − α̂i
σ̃i

)2

}

×Πnp[c̃1(α̂1, α̂2, α̂3, α̂4, α5, α6)]

×Πnp[c̃2(α̂1, α̂2, α̂3, α̂4, α5, α6)]dα5dα6

=

∫
S

exp {−1

2

6∑
i=5

(
αi − α̂i
σ̃i

)2

}dα5dα6 (32)

The set S is the region of (α5,α6) space where the probability density has support. This is the region
where c̃1(α̂1, α̂2, α̂3, α̂4, α5, α6) and c̃2(α̂1, α̂2, α̂3, α̂4, α5, α6) are both non-positive.

As a reminder, the subspace (α1,α2,α3,α4), in which a sample Gaussian applies, maps roughly
to the right-ascension and declination bearing and bearing rate for typical high-altitude, short-data-
arc, single-ground-station cases. The highly uncertain subspace (α5,α6) maps roughly to range and
range rate in this situation. Thus, this decomposition approach has many similarities to the approach
used in Ref. [3].

Visualization of 2-Dimensional Finite-Support Region and Probability Density Function

The projection of the admissible region onto (α5,α6) is depicted in Fig. 1 for a simulated example
problem. This example is the same as the first test case in Ref. [3]. Its orbital properties are semi-
major axis = 43,000 km, eccentricity = 0.03, inclination = 3o, right-ascension of the ascending node
= 0o, argument of perigee = 0o, and mean anomaly at epoch = 0o. The data arc is 19.5 seconds long.
The admissible region is defined to have a minimum periapsis radius of 30,000 km and a maximum
apoapsis radius of 47,300. These values encompass the true peripasis and apoapsis, respectively
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Figure 1. Example of admissible region projection into (α5,α6) space.

41,710 km and 44,290 km. The constraint weight parameter σρ used in Eqs. (7) has been tuned to
the value 500 km.

Figure 1 shows the projection of the admissible region onto (α5,α6) space. The figure’s horizon-
tal axis is the α5 axis, and its vertical axis is the α6 axis. The blue region is the admissible set S that
has been defined in connection with the integral in the last line of Eq. (32). The point (α5,α6) = (0,0)
lies on the boundary of this region. This is the point solved for in the rough IOD batch least-squares
problem in Eq. (9). The fact that (0,0) lies on the maximum apoapsis boundary indicates that this
constraint was active at the constrained batch least-squares solution. The ”truth” state’s projection
onto (α5,α6) space is indicated by the brown asterisk in Fig. 1. It lies within the admissible region,
as expected. It lies much closer the the green maximum apoapsis constraint than it does to the red
minimum periapsis constraint, consistent with the relationship of the ”truth” periapsis and apoap-
sis values to the constraint values. The black maximum semi-major axis constraint in this figure
does not border the admissible region, consistent with expectations. Recall that this constraint has
been included only to remove ambiguity about the active constraints during the batch least-squares
solution of the problem in Eq. (9).

Figure 2 shows a 3-dimensional plot of the projected probability density function
p(α5, α6|y, ρmin, ρmax) vs. α5 and α6. Consistent with its design in Eq. (31), it is zero outside
the (α5,α6) admissible region. Inside the region its variations are dictated by the exponential factor
in Eq. (31). This variation is based on the fit to the bearing measurements. It distinguishes this ap-
proach from that of Ref. [3]. In that reference, the equivalent projected probability density function
is exactly constant over the admissible region. The ability to allow probability density variations
over the admissible region enables this paper’s method to transition smoothly from cases where the
admissible region constraints provide significant information to those where they do not.
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Figure 2. Example theoretical probability density function in (α5,α6) space – distri-
bution that will be approximated by a Gaussian mixture.

The goal of the remainder of this section is to develop methods to approximate probability density
functions such as the one in Fig. 2. These approximations will take the form of Gaussian mixtures.

Gaussian Mixture Definition

The Gaussian mixture approximation of the p(α5, α6|y, ρmin, ρmax) probability density function
takes the form:

pgm(α5, α6) =
K∑
k=1

wkNsr2(α5, α6;µαk, Rαk) (33)

The Nsr2 function is 2-dimensional Gaussian distribution given in square-root-information form:

Nsr2(α5, α6;µα, Rα) =
|det(Rα)|

2π
exp {−1

2
(

[
α5

α6

]
− µα)TRT

αRα(

[
α5

α6

]
− µα)} (34)

with the 2-by-1 mean value vector µα and the 2-by-2 square-root information matrix Rα. The
mixand weights wk of the K mixands in Eq. (33) are non-negative, and they sum to 1:

0 ≤ wk for k = 1, ...,K

1 =
K∑
k=1

wk (35)

The 2-by-2 square-root information matrix Rαk has 4 elements, but only 3 affect the corre-
sponding Gaussian mixand independently. This is true because Rαk can be altered through left-
multiplication by any orthonormal 2-by-2 matrix without changing the corresponding mixand. There-
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fore, one can arbitrarily choose Rαk to have a zero-valued (2,1) element without loss of generality:

Rαk =

[
R11αk R12αk

0 R22αk

]
(36)

Thus, each of the K mixands is characterized by a weight and 5 other independent parameters. It
is convenient to lump the other parameters into the following 5-by-1 vector

pk =


µαk
R11αk

R12αk

R22αk

 (37)

It is also convenient to lump all of the individual mixand weights into aK-by-1 vector of weights
and all of the 5-element parameter vectors into a 5K-by-1 vector of parameters. The resulting two
vectors are

w =


w1

w2

w2

...
wK

 and p =


p1

p2

p3

...
pK

 (38)

Given these two definitions, one can formally denote the dependence of the Gaussian mixture
in Eq. (33) on these vectors by writing it in the form pgm(α5, α6;w,p). The goal of the Gaus-
sian mixture fitting operation is to choose the w weight vector and the p parameter vector so that
pgm(α5, α6;w,p) optimally approximates p(α5, α6|y, ρmin, ρmax) from Eq. (31).

Optimal Approximation of Projected Probability Density by a Gaussian Mixture

The Gaussian mixture optimal fit problem takes the form

find: w and p

to minimize: Jgm(w,p) =
1

2

∫ ∞
−∞
dα5

∫ ∞
−∞
dα6[p(α5, α6|y, ρmin, ρmax)

− pgm(α5, α6;w,p)]2

subject to: 0 ≤ w

1 = eTw (39)

where e = [1,...,1]T is a K-by-1 vector of all 1’s.

The cost function in this problem statement is the integral-squared difference (ISD) between
the two probability distributions. It equals half the square of the function-space 2-norm of the
difference between these two distributions. It has been used as a fit metric in other Gaussian mixture
studies.3, 7, 12 It can be re-written in the form

Jgm(w,p) = Jgm0 + [gw(p)]Tw +
1

2
wTHww(p)w (40)
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The constant term in this latter fit error cost expression is

Jgm0 =
1

2

∫ ∞
−∞
dα5

∫ ∞
−∞
dα6 [p(α5, α6|y, ρmin, ρmax)]2

=
C̃2

2

∫
S
dα5dα6 exp {−1

2

6∑
i=5

(
αi − α̂i
σ̃i

)2

}2 (41)

The kth element of the K-by-1 gradient vector gw(p) is

[gw(p)]k = −
∫ ∞
−∞
dα5

∫ ∞
−∞
dα6 p(α5, α6|y, ρmin, ρmax)Nsr2(α5, α6;µαk, Rαk)

= −C̃
∫
S
dα5dα6 exp {−1

2

6∑
i=5

(
αi − α̂i
σ̃i

)2

}Nsr2(α5, α6;µαk, Rαk) (42)

The (jk)th element of the K-by-K Hessian matrix is7

[Hww(p)]jk =

∫ ∞
−∞
dα5

∫ ∞
−∞
dα6Nsr2(α5, α6;µαj , Rαj)Nsr2(α5, α6;µαk, Rαk)

=
|det(Rαj)det(Rαk)|

2π
√
det(RT

αjRαj+R
T
αkRαk)

× exp {−1

2
(µαj − µαk)

T(RT
αjRαj+R

T
αkRαk)(µαj − µαk)]} (43)

Note that the [gw(p)]k gradient element only depends on the 5 pk elements of the Gaussian mixture
parameter vector p. Similarly, the [Hww(p)]jk Hessian element depends only on the 5 pj elements
and the 5 pk elements of p.

A challenge in evaluating this cost function arises because the integrals over the admissible region
S cannot be performed analytically. These needed integrals occur in Eqs. (32) and (42). Equation
(41) also contains such an integral, but it does not need to be evaluated in order to solve the problem
in Eq. (39) because that cost term is independent of the optimization variables w and p. The next
subsection describes a strategy for approximating the needed integrals.

A variant of Newton’s method10 is used to solve the optimization problem in Eq. (39). It works
with guesses of the solution vectors w and p. It computes improved guesses by optimizing a
quadratic Taylor series expansion of Jgm(w,p) about the current guess. The gradient and Hessian
of Jgm(w,p) with respect to the full 6N -by-1 unknown vector [w;p] are both computed analyti-
cally – to the extent that the integrals over the admissible set S can be approximated analytically.
The particular implementation of Newton’s method used here ensures cost function descent on
each iteration by adding a common non-negative scalar to each diagonal element of the Hessian
matrix before computing the approximate optimal increment to the [w;p] solution vector. This non-
negative scalar acts like a Levenberg-Marquardt parameter in a nonlinear least-squares solver.10

The first guess of the w weights vector and all solution increments to w are explicitly constrained
to satisfy the unit-normalization condition 1 = eTw. The non-negativity constraints on the weights
are enforced by starting with an all-positive guess of w and by enforcing an ad hoc restriction on the
size of the search step. If needed, the restriction is enforced through an increase of the Levenberg-
Marquardt-like parameter that gets added to the diagonal Hessian elements before computing the
search step.
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This implementation of Newton’s method can make slow progress when far from the optimal
[w;p] vector. It tends to converge rapidly in the vicinity of the optimum. Its ad hoc method of
ensuring non-negativity of the Gaussian mixture weights tends to work well. It is conjectured that
the optimization would rather adjust the mean and square-root information matrix of a given mixand
in order to achieve a better probability density fit instead of deleting the mixand by driving its weight
to zero. Having more mixands with non-zero weights tends to enable a better fit.

It is important to use reasonable scalings during the Newton’s method optimization calculations.
Reasonable scalings can be achieved through non-dimensionalization of the two elements of each
mixand mean µαk and the 3 elements of each mixand square-root information matrixR11αk,R12αk,
and R22αk. The mixand means can be non-dimensionalized through division by the respective
maximum α5 and α6 extents of the admissible region S, as in Fig. 1. Non-dimensionalization
of R11αk can be achieved through multiplication by the same maximum α5 extent of S. Non-
dimensionalization of R12αk and R22αk can be achieved through multiplication by the maximum
α6 extent of S.

Practical Approximation of Integrals over the Admissible Set S

Calculation of the integrals over the set S in Eqs. (32) and (42) is carried out using various
approximations. The first approximation is to the actual set S. The boundary of this set is defined
implicitly by the equations 0 = c̃1(α̂1, α̂2, α̂3, α̂4, α5, α6) and 0 = c̃2(α̂1, α̂2, α̂3, α̂4, α5, α6). These
equations are nonlinear in α5 and α6, and they do not admit closed-form solution. Instead of exact
equations, quadratic approximations are used for these equations. These approximations are based
on quadratic Taylor series expansions of the original constraint functions c1(x) and c2(x) that are
defined in position/velocity state space. The two Taylor series are calculated about the rough batch-
least squares solution point x̂cmle. These quadratic approximations are then used in place of c1(x)
and c2(x) in Eq. (26) in order to develop quadratic approximations of c̃1(α̂1, α̂2, α̂3, α̂4, α5, α6) and
c̃2(α̂1, α̂2, α̂3, α̂4, α5, α6). Using these approximations, the corresponding approximate boundaries
of S are conic sections. In fact, these approximations have been used to generate the red and
green hyperbolic approximate boundary curves in Fig. 1. The exact nonlinear constraints have
been used to generate the blue shaded region. The correspondence of the approximate boundaries
with the shaded region demonstrate the accuracy of the quadratic constraint approximation in this
representative case.

Next, a coordinate transformation is introduced. New integration variables β1 and β2 replace α5

and α6 in the integrals of Eqs. (32) and (42). Figure 3 shows the β1 and β2 axes super-imposed on
an example plot of the S region given in the original (α5,α6) coordinates. This figure shows the
same admissible S region as in Fig. 1. The origin of the new (β1,β2) lies at the intersection point of
the approximate c̃1 and c̃2 constraints that is nearest to the origin of the (α5,α6) coordinate system.
The positive β1 axis points from this intersection point to the next nearest intersection point of the
two approximate admissibility constraints. These two intersection points are indicated by black
diamonds in Fig. 3. Their (α5,α6) coordinates can be determined by solving a 4th-order polynomial
that is derivable from the intersection conditions for the two constraints’ conic sections. The β2 axis
is defined to be perpendicular to the β1 and to obey the right-hand rule. In Fig. 3 the β2 axis does
not appear to be perpendicular because of distortion in the figure: The figure’s α5 and α6 scales are
not equal. The mathematical transformation between the two coordinate systems takes the form[

α5

α6

]
=

[
α50

α60

]
+ Q̃

[
β1
β2

]
=

[
α50

α60

]
+

[
Q̃11 Q̃12

Q̃21 Q̃22

] [
β1
β2

]
(44)
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where the point [α50, α60]
T is the right-most constraint intersection point shown in Fig. 3 and Q̃ is a

2-by-2 orthonormal rotation matrix with determinant equal to 1 and with elements Q̃ij for i,j = 1,2.
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Figure 3. Coordinate transformation from (α5,α6) space to (β1,β2) space with admis-
sible region approximation by 5 trapezoids that are distributed along the β1 axis and
aligned parallel to the β2 axis.

The coordinate transformation in Eq. (44) can be applied directly to evaluation of the integrals in
Eqs. (32) and (42). They become

1

C̃
=

∫ β1max

β1min

dβ1

∫ β2max(β1)

β2min(β1)
dβ2 exp {−1

2

6∑
i=5

(
αi0 + Q̃(i−4)1β1 + Q̃(i−4)2β2 − α̂i

σ̃i

)2

} (45)

[gw(p)]k = −C̃
∫ β1max

β1min

dβ1

∫ β2max(β1)

β2min(β1)
dβ2 exp {−1

2

6∑
i=5

(
αi0 + Q̃(i−4)1β1 + Q̃(i−4)2β2 − α̂i

σ̃i

)2

}

× Nsr2(β1, β2;µβk, Rβk) (46)

The limits of the outer β1 integrals, β1min and β1max, are determined from the two constraint inter-
section point solutions that are used to define the β1 axis, as in Fig. 3. The β1-dependent limits of
the inner β2 integrals, β2min(β1) and β2max(β1), can be determined by solving the quadratic equa-
tion that is the projection of each quadratic constraint approximation along the β2 axis at the given
β1 value. The Gaussian mixand means and square-root information matrices can be transformed
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from (α5,α6) space into (β1,β2) space in order to yield

µβk = Q̃T
(
µαk −

[
α50

α60

])
Rβk = RαkQ̃ (47)

for all k = 1,...,K.

The integral formulas in Eqs. (45) and (46) are not yet in a state amenable to closed-form evalu-
ation. The inner integrals with respect to β2 can be evaluated in closed form by using the standard
error function from statistics, erf (*). The outer β1 integral cannot be evaluated analytically because
the two erf (*) terms that result from the inner integral are evaluated at arguments which depend on
β1 through the integration limit functions β2min(β1) and β2max(β1).

Two approximations are made in order enable evaluation of the outer β1 integrals in Eqs. (45)
and (46). The first approximates the admissible region S as a union of trapezoids. An example of
such a union is depicted in Fig. 3. It consists of 5 trapezoids with their vertices on the quadratic
constraint approximations and with their parallel axes aligned along the β2 axis. (Actually there are
3 trapezoids plus 2 triangles at the ends – a triangle is a trapezoid with one parallel edge that has zero
length.) This union of trapezoids model amounts to approximating the β2min(β1) and β2max(β1)
functions as being piecewise linear in β1 with a common set of β1 nodes defining their respective
linear domains. The 5 trapezoids shown in Fig. 3 give a somewhat coarse approximation of S. The
use of more trapezoids with smaller β1 dimensions can improve the multi-trapezoid approximation
of S to any desired accuracy.

The second approximation is to model each of the erf (*) terms from the inner β2 integral using a
Taylor series in β1. A unique approximation is used for each trapezoid. The Taylor series expansion
is performed about the β1 midpoint of the corresponding trapezoid. This last approximation, when
coupled with the multi-trapezoid approximation of S, enables analytic evaluation of the outer β1
integrals. The number of terms in the β1 Taylor series for each erf (*) is user selectable. For the
present paper, all terms in the Taylor series out to 5th order have been retained. If a very fine β1 grid
is used to break S up into many trapezoids, then it should be possible to use a lower order Taylor
series approximation.

The resulting analytic formals for 1/C̃ and [gw(p)]k in Eqs. (45) and (46) are very complicated.
The Newton’s method solution algorithm for the Gaussian mixture fit optimization problem in Eq.
(39) also requires first and second partial derivatives of each [gw(p)]k with respect to the relevant
elements of p. Although complicated, it is possible to derive suitable partial derivative formulas
using the chain rule, formulas that are practical to evaluate within a numerical optimization routine’s
software.

A 2-Dimensional Gaussian Mixture Fit Example

The Gaussian mixture fit optimization problem in Eq. (39) has been solved to fit the example
probability density function shown in Fig. 2. One of the fits used K = 1 mixands, and the other fit
used K = 13 mixands. The 1-mixand fit is shown in Fig. 4, and the 13-component fit is shown in
Fig. 5. Both figures show the original distribution in their left-hand panels for comparison purposes,
the one from Fig. 2. Their corresponding Gaussian mixture approximations are shown in their right-
hand panels. Each fit involves 6 parameters per Gaussian mixand and a total of 1 equality constraint
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on the sum of the mixand weights. Therefore, the fit in Fig. 4 involves 6 - 1 = 5 optimized free
parameters, and the fit in Fig. 5 involves 13x6 - 1 = 77 optimized free parameters.

Figure 4. Optimal approximation of a 2-dimensional distribution by a 1-component
Gaussian mixture.

A comparison of these two figures shows the superiority of the 13-mixand fit to the 1-mixand fit.
The flat top and vertical sides of the true distribution are much better approximated by the 13-mixand
fit in Fig. 5 than by the 1-mixand fit in Fig. 4. The cost function fit error from Eq. (39) tells a similar
tale. The 13-mixand optimized cost equals 19% the optimized 1-mixand cost. The 13-mixand cost is
only 4% of the cost value that results from setting w = 0 in the Jgm(w,p) formula of Eq. (39). Thus,
the functional 2-norm of the error between pgm(α5, α6) and p(α5, α6|y, ρmin, ρmax) is only a factor
of
√

0.04 = 0.2 as large as the functional 2-norm of the original distribution p(α5, α6|y, ρmin, ρmax).

The fit of the 13-component Gaussian mixand is further illustrated by Fig. 6. This figure shows
a plan view of the admissible region in (α5,α6) space. The mixands are indicated by their 1-σ
contours (the dotted green ellipses). The boundaries of the admissible region are the solid red and
blue curves. There are no ”holes” between the mixands because the mixands do not immediately
vanish to zero outside their 1-σ contours. This figure shows the efficient arrangement of the 13
mixands. The mixands towards the middle have large variances in both dimensions. The mixands
near the boundaries of the admissible region are narrow in their dimensions that are perpendicular to
the boundary, which is necessary in order to develop a good approximation of the steep probability
density fall-off at the boundary. Different from the mixtures of Ref. [3], there is no way to de-
compose this mixture along grid lines so that it can be represented as a product of one-dimensional
mixtures. This new arrangement enables the current method to achieve accurate approximation of
the original distribution with many fewer mixands, 10’s of mixands rather than 100’s.

This paper has made no attempt to analyze the efficacy of the 13 mixands of Figs. 5 and 6 as
the initial probability density function for a Gaussian mixture OD Kalman filter. It is possible,
perhaps likely, that further splitting of its mixands would be needed in order to approximate the
dynamic propagation of these mixands accurately in the face of orbital dynamics nonlinearities.
That question is left for a future study, one that anticipates using the techniques of Ref. [7] in order
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Figure 5. A 13-component optimal Gaussian mixture approximation of a 2-dimensional distribution.

to efficiently plan the needed further splits of the original 13 mixands.

Solution of the optimization problem in Eq. (39) requires a first guess to seed Newton’s method.
In the case of the 1-mixand problem, seeding of the first guess is easy. The guessed mixand is placed
near the center of the admissible region, and its square-root information matrix is sized to give a
1-σ contour that nearly covers the admissible region. Development of a sensible first guess for the
13-mixand case is more difficult. It starts with the solution to the 1-mixand case. The optimal result
for that case is used to develop a first guess for a K = 7 mixand case by distributing 6 smaller initial
guess mixands around the initial 1-mixand optimal solution. The optimal 7-mixand result is then
used to develop a first guess for the K = 13 mixand case. The 6 additional mixands are designed
”by-hand” by placing them in ”holes” in a figure like Fig. 6 that applies for the optimal 7-mixand
solution. Future work on this algorithm will seek to automate this process in a way that produces
better first guesses for higher numbers of mixands.

IOD GAUSSIAN MIXTURE IN POSITION/VELOCITY STATE SPACE

A Gaussian mixture in the original x position/velocity state space can be constructed by start-
ing from the 2-dimensional transformed and projected Gaussian mixture in Eq. (33). First, one
calculates the mixture’s optimal-fit weights, mean values, and square-root information matrices by
solving the problem in Eq. (39). Next, one forms an approximation of p(α1, . . . , α6|y, ρmin, ρmax)
from Eq. (28) by multiplying the optimized (α5,α6) mixture by the Gaussian p(α1, α2, α3, α4|y)
from Eq. (30). Finally, one performs a probability density coordinate transformation from [α1, α2,
α3, α4, α5, α6]T coordinates to x coordinates using the transformation in Eq. (25).

The resulting Gaussian mixture IOD conditional probability density function takes the form:

p(x|y, ρmin, ρmax) =
K∑
k=1

wkNsr6(x;µxk, Rxk) (48)
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Figure 6. Arrangement of 13 components of an optimal Gaussian mixture approxi-
mation in (α5,α6) plane.

where the 6-dimensional Gaussian distributions in square-root-information form are:

Nsr6(x;µxk, Rxk) =
| det(Rxk)|

(2π)3
exp {−1

2
(x− µxk)

TRTxkRxk(x− µxk)} (49)

The mixand means are

µxk = x̂cmle + ∆X


α̂1

α̂2

α̂3

α̂4

µαk

 for k = 1, . . . ,K (50)

and the mixand square-root information matrices are

Rxk =


(1/σ̃1) 0 0 0 0

0 (1/σ̃2) 0 0 0
0 0 (1/σ̃3) 0 0
0 0 0 (1/σ̃4) 0
0 0 0 0 Rαk

 (∆X)−1 for k = 1, . . . ,K (51)

This position/velocity IOD Gaussian mixture is in a form suitable for initialization of a Gaussian
mixture OD filter, perhaps an OD version of the general Gaussian mixture algorithm described in
Ref. [6].

SUMMARY AND CONCLUSIONS

This paper has developed a new means of approximating an initial orbit determination conditional
state probability density function based solely on bearing measurements and a known admissible
region. It defines its admissible region as the set of position/velocity states that respect a lower
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bound on the Keplerian orbital periapsis and an upper bound on the corresponding apoapsis. The
method starts by computing a rough orbit estimate using a batch least-squares fit to the bearing
measurements that includes soft constraint terms which penalize violations of the admissible region
constraints. Special nonlinear optimization techniques are employed to ensure that this initial cal-
culation determines the true global minimum of its optimal estimation problem. This rough initial
estimate provides a starting point for developing a refined probabilistic characterization of the state.
This refined characterization is based on a projection of the admissible region onto the maximally
uncertain 2-dimensional subspace of position/velocity space. The relative uncertainties of subspaces
are assessed based only on the information in the bearing measurements. For a 1-station observation
and a very short data arc, this uncertain subspace translates roughly into range and range-rate. The
bearings-only likelihood function in this subspace is modified by re-setting its probability to zero
outside the admissible region projection. Next, a 2-dimensional Gaussian mixture is optimally fit to
the modified likelihood function. Finally, a Gaussian mixture in the full position/velocity space is
developed by forming the product of this 2-dimensional Gaussian mixture with a projection of the
bearings-only Gaussian likelihood function onto the complimentary least-uncertain 4-dimensional
subspace.

This paper’s Gaussian mixture initial orbit determination algorithm has been encoded and tested
on an example problem. In one test case, a 13-mixand probability distribution forms a good approx-
imation of the initial admissible-region-based distribution. The Gaussian mixture comes close to
the mesa-like structure of the true admissible-region-constrained distribution: nearly vertical sides
and a gently sloping top.

Future efforts on this algorithm are planned. One effort will refine the Gaussian mixture approx-
imation algorithm’s method for generating first guess mixtures. Another effort will evaluate the
efficacy of the generated mixtures for seeding a Gaussian mixture orbit determination filter.
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