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A method is defined for simultaneous atmospheric density calibration and satellite orbit 

determination for a satellite constellation, and a linearized observability analysis is 

performed to evaluate the feasibility of the approach.  Such an estimation scheme will 

provide data-based estimates of upper atmosphere density that improve on existing models, 

e.g. the Jacchia models, along with enhanced accuracy of the associated satellites’ orbits.  A 

new spline-based atmospheric density parameterization is developed that meshes well with 

the structure of the orbit determination problem and can be initialized so as to match the 

outputs of a traditional model.  While conceptually similar to previous atmospheric 

calibration efforts, the proposed constellation approach restricts its global density estimates 

to the relevant satellite altitude range and thus reduces the complexity of the estimation 

problem.  Measurements include dual-one-way-ranging between pairs of adjacent satellites 

in the same orbital plane, and carrier phase and pseudorange measurements between 

ground stations and satellites.  Equations for a linearized observability analysis are derived 

and shown to be equivalent to the covariance calculations of an extended square-root 

information filter.  In addition to the system observability evaluation, the impact of 

incorporating some a priori density information is explored. The results show that 

atmospheric density can be observed, but a reasonable amount of a priori information is 

necessary to obtain useful estimates.  Degree of observability depends on the constellation 

configuration and dynamic model parameter values. 

 

I.  Introduction 

RBIT determination is the process by which satellite trajectories are estimated.  The available measurements 

are combined to yield a history of the satellite’s position and velocity.  Accuracy of orbit estimates is limited by 

the quality, quantity, and types of available measurements, and by the accuracy of the dynamic model assumed for 

the satellite’s motion.  Thus if an application requires high precision, one normally needs high quality measurements 

and models.   

For many satellites in low earth orbit (LEO), the largest dynamic model uncertainty stems from atmospheric 

drag
1
. Acceleration due to atmospheric drag    is related to atmospheric density   by the equation 
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where    is a drag coefficient,       is the cross-sectional area of the satellite in the direction of travel,     is the 

total spacecraft mass,    is the velocity magnitude relative to the ambient atmosphere, and    is a unit vector in the 

relative velocity direction.  Uncertainty enters this equation in three ways.  First, the scalar product    
 

  
 , known 

as the inverse ballistic coefficient, is generally uncertain and may be time-varying.  Second, the relative velocity 

may be uncertain, either because it has not yet been estimated accurately or because the local wind does not rotate 

perfectly with the Earth.  Finally, atmospheric density is very difficult to determine.  Three basic paradigms exist for 

dealing with drag uncertainty: It can be modeled, measured directly or indirectly, or estimated in conjunction with 

satellite orbits. 
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Models of atmospheric density have been developed and studied widely in the past 50 years.  The Jacchia series 

of models assumes a temperature profile, and integrates the barometric and diffusion differential equations upwards 

to the desired altitude.  A number of empirical corrections are also applied based on satellite orbit data 
2,3,4,5

.  The 

Mass Spectrometer and Incoherent Scatter (MSIS) series of models has been derived based on data from science 

instruments.  This series simultaneously computes temperature and density by evaluating a complicated set of 

functions involving hundreds or thousands of coefficients 
6,7,8

.  While these two series of density models are the 

most common, many others have been developed by various researchers.  All of them, however, retain fairly large 

levels of uncertainty even after decades of development. Typical model standard deviations start at 10-20% under 

normal conditions and can be much greater at times of unusually high or low solar and geomagnetic activity 
9,10,11

. 

Much of this inaccuracy comes from the inadequacy of currently available metrics of solar activity, which do not 

fully capture the effects of the sun on the atmosphere 
12,13

.  Most models take as inputs the 10.7 cm solar flux       

and the 3-hourly geomagnetic index    (or its equivalent   ), which are reasonable but incomplete metrics.  

Furthermore, there is still a great deal to be learned about the complex dynamics of the atmosphere, and good 

measurements are a limiting factor.   It is unlikely that modeling efforts will improve significantly in the near future. 

The second approach to the atmospheric density problem depends on highly accurate measurements or targeted 

sensors to remove the effects of atmospheric drag from the orbit solution.  For instance, satellite missions like 

CHAMP and GRACE carry high-quality accelerometers to estimate non-gravitational perturbations 
14

.  Special 

sensors on Dynamics Explorer 2 made in situ measurements of temperature and atmospheric composition, which 

were later used to develop the MSIS models 
15

.  Increasingly, new satellite missions carry GPS receivers, which 

support tracking of satellite motion to within centimeters and thus reduce or eliminate the need for accurate models 

of dynamic perturbations 
16

.  There are even a few missions, such as Gravity Probe B, which eliminate drag 

perturbations entirely by flying a proof mass in a vacuum chamber and actively steering the spacecraft to follow its 

drag-free motion 
17

.  While all of these techniques are effective, they can be implemented only with expensive, 

dedicated, space-born instrumentation. 

When atmospheric models are not sufficiently accurate and special flight instruments are not an option, one can 

attempt to estimate satellite drag or density parameters along with the orbits.  In particular, atmospheric calibration 

efforts attempt to estimate global density parameters or density corrections on the basis of some form of satellite 

data.  The density estimates can then be applied to the orbits of other spacecraft as well.  Several calibration projects 

have recently demonstrated improved density knowledge and orbit determination performance in comparison with 

standard models.  For example, some approaches take as their measurements the two-line elements (TLE’s) of 

tracked space objects, which are made available by NORAD, and employ long histories of these measurements to 

calculate corrections to a density model 
18,19,20,21

.  Another method’s calibration strategy aims to reduce the standard 

deviation of many months’ worth of multi-day batch fits of a satellite’s inverse ballistic coefficient 
12,13

.  The Air 

Force Space Battlelab has developed the High Accuracy Satellite Density Model (HASDM), which incorporates 

Space Surveillance Network (SSN) data from a set of frequently tracked calibration satellites to both estimate and 

predict global atmospheric density 
22,23

.  All of these methods have shown promise in reducing orbit determination 

fit errors for satellites not included in the calibration set. 

This paper proposes a new form of atmospheric calibration to support precision orbit determination for a satellite 

constellation.  Its approach attempts to simultaneously estimate the satellite orbits along with the density profile for 

the altitude region spanned by the constellation. It employs the preexisting radiocommunication signals of the 

constellation as its measurements, rather than dedicated tracking data.  Significantly, none of the signals were 

designed for navigation, yet the information in the data set exceeds what has typically been available for density 

estimation. 

The candidate constellation would have 50-100 satellites arranged in several evenly spaced orbital planes, with 

nearly circular, low-earth orbits.  Each satellite in an orbital plane would encounter similar density variations to 

those experienced by the others in that plane, thus providing a multiplicity of measurements for a given density 

feature.  Adjacent satellite pairs would be joined by crosslink range signals, and additional signals would measure 

ranges between the satellites and a set of ground stations.  For the envisioned system, sub-meter orbit accuracy is 

desired throughout the orbit, so the density must be parameterized in a way that provides sufficient spatial and 

temporal resolution 
24

.  A spline-based density parameterization method has been developed for this purpose. 

The goal of this paper is to study the proposed atmospheric calibration/orbit-determination scheme, particularly 

with respect to observability.  Specifically, it seeks to answer the question, “Is the available data sufficient to 

simultaneously estimate the orbits of all satellites in the constellation, as well as the atmospheric density spline 

parameters?”  One would not expect the system to be fully observable, due to the large number of parameters to be 

estimated and due to coupling of certain parameters’ effects.  However, this estimation scheme can be used in a 

recursive (Kalman) filtering context, where a priori estimates are available from physics or past efforts.  In such a 
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scenario, an observability analysis can still yield information about which parts of the a priori estimate can be 

improved with new data and which quantities should be more carefully modeled because the measurements add no 

further knowledge.   

This paper offers three main contributions.  First, it develops a spline-based density parameterization method 

which is well-suited to the constellation estimation context.  Second, it defines and elaborates the problem of 

performing atmospheric calibration using a constellation of satellites.  Finally, a linearized observability analysis is 

performed to determine the feasibility of the proposed approach and to identify potential areas of weakness. 

The rest of this paper is organized as follows: Section II gives an overview of the spline-based density 

parameterization technique and some of the issues related to representation of density.  In Section III, the proposed 

estimation problem is formulated, and important assumptions about the dynamics and measurements of the system 

are clarified.  Section IV considers the issue of observability, and derives the equations for the linearized 

observability analysis.  Results of the observability analysis are given in Section V along with some suggested 

alternative tests and their results.  Section VI presents the paper’s conclusions and suggests areas for future study.  

 

 

II. Spline-Based Density Parameterization 

In order to estimate an atmospheric density distribution, one must first decide how to represent it.  This choice 

will guide the development of the estimation scheme.  Some past efforts have used altitude-dependent corrections to 

the outputs of a Jacchia model 
19

. Another parameterization makes corrections to the model inputs, for instance by 

specifying the coefficients of a spherical harmonic expansion for exospheric temperature 
22

 above.  The chosen 

method must be capable of representing a complex density distribution and be appropriate for the specific purposes 

in mind. 

The chosen parameterization takes the form 

 

                              
       

              
  (2) 

 

In this equation, the inputs are latitude  , longitude in a sun-fixed frame   (essential the angular form of local solar 

time), altitude  , and a parameter vector   , with   and   defined relative to an ellipsoid.  For each latitude and 

longitude, density has a value    at a nominal altitude   , and above and below this nominal altitude it varies 

exponentially according to the scale height       .  Both    and        are splined functions of latitude and 

longitude. The parameter vector     stores the values (and spatial derivatives) of    and        at particular grid 

points, and cubic spline interpolation is used to ensure smooth variation between these points.  Given a suitable 

number of grid points, this parameterization will be comparable to a spherical harmonic representation.  It has been 

chosen because of the ease with which various of its partial derivatives can be calculated. A detailed description and 

equations of the spline interpolation, as well as other aspects of this parameterization, are given in the appendix at 

the end of this paper.  

It is widely recognized that Earth’s atmosphere is only approximately exponential in density. This exponential 

assumption is valid, however, over a small range of altitudes.  For the nearly-circular orbits of a candidate satellite 

constellation, the altitudes encountered fall well within the acceptable range.  This has been verified by determining 

altitude variations resulting from both actual satellite orbit eccentricities and the effects of Earth’s ellipsoidal shape.  

Within the determined range, evaluations of standard atmospheric models such as NRLMSISE-00 
8
 show density 

variations that are practically indistinguishable from the exponential form.  Because this parameterization is 

specifically intended for a satellite constellation application, it does not need to represent densities of the full 

atmosphere; a thin shell at the right altitude is adequate.  The nominal altitude       falls approximately in the 

center of this shell, and its latitude dependence adjusts for the curvature of the WGS-84 ellipsoid relative to the 

nominal constellation altitude. 

A natural way to visualize the spline-based density parameterization is as a two-dimensional Cartesian grid of 

points in the variables      , with a surface stretched between them.  As countless historical mapmakers can attest, 

a number of mathematical difficulties arise from the representation of a sphere as a rectangular grid.  For instance, 

the mapping is not one-to-one; when one reaches the far “eastern” edge of the grid, where       , this is really 

the same location as the corresponding point on the “western” edge, where        .  At the poles, the situation is 

further complicated because, regardless of the longitude, every point with       represents the “North pole”, and 
every point with        represents the “South pole”.  These singularities give rise to a number of constraints on 
the valid node point values of the spline parameterization.  Other constraints are entailed by the physical 
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requirement that the density vary “smoothly” over the globe, including at the poles.  This second group of 

constraints influences the spatial derivative values that are also stored as part of the parameterization.  The appendix 

contains further details of the constraints and their implementation. 

All the density information at the constellation altitude can be captured by the values in the parameter vector    , 

along with the spline algorithms that extract         and             from   .  As described above, the 

information stored in this vector is a list of density and scale height values at certain       points, and also the first 

partial derivatives of those values with respect to latitude and longitude and the cross-partial-derivative with respect 

to both latitude and longitude.  Thus, there are eight scalar pieces of information for each distinct       point: Four 

associated with density,     
   

  
 

   

  
 

    

    
  , and four associated with scale height,          

       

  
 

       

  
 

        

    
 .    These values are all stacked together to form the vector    .  Although the order of the elements might 

change, a segment of this vector would look like 

 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
         

   

  
       

   

  
       

    

    
       

             
       

  
       

       

  
       

        

    
       

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3) 

 

for a general grid point         that is not at one of the poles.  

The length of the parameter vector is determined by the number of latitude and longitude grid points, that is, the 

desired resolution of the estimated density field.  Typically, there are 150 to 300 scalar parameters to be estimated.  

While this number may seem high, it is manageable.  A satellite constellation may have close to 1000 values to be 

estimated just for the satellite orbital states and a few satellite-specific parameters. Therefore, an extra 200 

atmospheric density parameters may be reasonable.   

A second concern for a large number of atmospheric parameters, and the main topic of this paper, is that of their 

observability.  Even with incomplete observability an operational filter could still function well.   A recursive 

estimator would start with some a priori information on density and improve on that initial guess. It would leave 

unobservable parameter combinations at their a priori values. 

While the preceding description explains how a global density field can be stored, it provides no connection, 

theoretical or empirical, to the physics of the atmosphere.  Even if the estimation technique does not require an 

initial guess, one desires some reassurance that results are realistic.  Furthermore, nonlinear problems require a 

sufficiently close initial estimate in order for linearization to be valid.  These needs are met by an initialization 

procedure that accepts any set of density “truth” data and outputs a corresponding vector   .  “Truth” data can come 

from standard atmospheric models, or from satellite-carried sensors or any other source, as long as the density data 

points are globally distributed.  In order to estimate scale heights, some altitude diversity within the range of interest 

is necessary.  After one chooses the desired latitude and longitude resolution, the initialization procedure performs a 

least-squares fit to find the    values that most nearly cause the interpolated spline to match the data points.  This 

strategy has been found to fit “standard” density models closely with surprisingly few latitude and longitude 

divisions.   
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For instance, Figure 1 shows a fit 

of a splined parameterization with 

five latitude points and six longitude 

points. The fit is to the NRLMSISE-

00 model, during average solar and 

geomagnetic conditions.  The 

surface is the cubic-spline-

interpolated manifold corresponding 

to the solved-for     parameters, and 

the points are the model’s “data”.  

For this particular fit, the mean 

density relative error between the 

data and the splined 

parameterization was 0.51%, and the 

maximum relative error was 4.22%. 

This fit involves only 156 

parameters and fits 3000 data points. 

Note: Figure 1 depicts the splined 

density only at the nominal altitude. 

Its displayed data points are 

artificially mapped to that altitude 

by means of the splined scale height. 

In order to use a particular 

density parameterization for 

estimation, one must be able to 

derive its partial derivatives with respect to the elements of the filter’s estimated state.  The partial derivatives 

provide information about the way small changes in one quantity affect some other quantity of interest.  For this 

scenario, estimation requires the partial derivatives of density with respect to the inertial position vector       (x, y, z 

position, not  ,  ,   position) and with respect to the parameter vector   .  Derivatives of the spline-parameterized 

quantities    and        with respect to  ,  , and the elements of   can be computed using minor modifications of 

the interpolation algorithm.  Thus the quantities 
   

  
,  

       

  
,  

   

  
,  

       

  
,  

   

   
, and  

       

   
 are readily available.  

The desired partial derivatives 
  

      
 and  

  

   
 are then computed by some simple calculations and repeated 

application of the chain rule.  The appendix elaborates further on this topic for the interested reader. 

 

 

III. Formulation of the Estimation Problem 

The problem of determining satellite orbits and atmospheric density parameters from noisy data falls within the 

scope of estimation theory.  Estimation is the process by which one extracts desired information from measurements 

in some optimal fashion.  To employ standard estimation algorithms, two sets of mathematical models must be 

created.  First, there are differential or difference equations that model the dynamic process of interest.   These 

equations describe the evolution of the system state vector, where the states are the quantities to be estimated, such 

as position, velocity, or time-varying parameters.  Second, estimation methods need mathematical models of the 

measurements, and specifically of the functional relationship between the state vector and the measurements.  A 

final requirement is a statistical description of all uncertainties in the system.  The dynamics models include a 

stochastic contribution from process noise, and the measurements models typically have additive noise 

representative of sensor errors.  Any correlations between process and measurement noise must be accurately 

described. 

A. State vector and dynamics models 

The state vector for this estimation scheme contains many components.  First, there are ten states associated with 

each satellite. For the     satellite, they are contained in the vector   
 
, which will be discussed in more detail below.  

In addition to states relating to individual satellites, the state vector includes the atmospheric density parameter 

vector   , which will also be estimated.  The last part of the state vector contains a set of “nuisance states” that must 

 
Figure 1. Density initialization data from NRLMSISE-00 and the 

corresponding best-fit splined surface 
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be estimated but are not actually of interest.  These are unknown real-valued biases on accumulated delta range 

phase measurements, and include two distinct sets of biases:     and    .  The vector     contains biases on 

crosslink measurements between satellites, and     contains biases on measurements between ground stations and 

satellites.  These measurement quantities are explained in more depth later in Section III.  When all these states are 

stacked, the dynamic state vector becomes 

 

   

 
 
 
 
 
 
 
 
  

 

  
 

 
  

 

  

   

    
 
 
 
 
 
 
 

 (4) 

 

where   is the full system state and   is the number of satellites in the constellation. In its general form, the 

nonlinear dynamics differential equation for this state vector can be written as 

 

                       (5) 

 

where   defines the time evolution of all the states, and      is the system process noise vector.  The discretized 

version of this function can be written as 

 

                 (6) 

 

where    is the state at the     sample time   , and    parameterizes      during the interval from    to     .  The 

function            is computed in practice via numerical integration of differential Eq. (5), starting from the 

initial condition         .  The general function   given in Eq. (5) can be broken down into specific functions for 

the distinct components of the state vector.  

 Each individual satellite j has a set of states of the form 

 

   
 

 

 
 
 
 
 
 
 
   

 

  
 

   
 

   
 

  
 

  
 

 
 
 
 
 
 
 
 

 (7) 

 

where   
 
 is the satellite Cartesian position vector in an inertial frame,   

 
 is the corresponding velocity vector,    

 
 

and    
 
 are the satellite clock error and rate error, respectively, and   

 
 and   

 
 are the inverse ballistic coefficient 

and the solar radiation pressure coefficient for that particular satellite.   

Dynamic behavior for each satellite’s position and velocity is governed by Newton’s second law: acceleration is 

proportional to force divided by mass.  This leads to the equation 

 

  
   

 
   

   
 
   

    
  

 
   

       
 
   

 
      

 
   

 
 
  (8)  

 

Note that no process noise enters the satellite dynamics directly. This analysis assumes that the dominant errors in 

the dynamic model enter it through   .  The total force    consists of summed contributions from Earth’s gravity, 

the gravitational attractions of the Sun and Moon, atmospheric drag, and solar radiation pressure. A simplified Earth 

gravity model with only a small number of terms will be used for this analysis.    While additional forces and more 

complicated force models would certainly be included in an actual orbit determination run, neglecting them here will 

not significantly degrade the results of the observability analysis 
25

.   
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In addition to its position and velocity dynamics, each satellite has dynamic models associated with its clock.  A 

standard clock error model is used 
26

.  It takes the form 

 

  
   

     

   
     

    
  
  

  
   

 
   

   
 
   

   
  

 
   

  
 
   

    (9) 

 

where   
 
 and   

 
 are phase and frequency process noise that drive the clock error. The statistical properties of the 

process noise are chosen based on the particular type of clock carried by the satellite.   These clock errors affect the 

phases of the transmitted crosslink and downlink signals, and the crosslink receiver’s measured phase outputs. 

Accelerations due to atmospheric drag and solar radiation pressure depend not only on environmental variables 

but also on the shape, surface properties, and mass distribution of specific satellites.  Generally, these effects are 

captured by proportionality constants that multiply the relevant vector quantities.  Both inverse ballistic coefficient 

  
 
 and solar radiation pressure coefficient   

 
  have dimensions of area divided by mass: 

 

  
  

 

  
 
   

  
   

  

  
   

  

    (10) 

 

where     and     are the average projected areas perpendicular, respectively, to the velocity and sun directions. 

The total spacecraft mass is   , and    and    are nondimensional scalars. In situations where the projected areas 

vary rapidly, a priori models of these variations,       and       , can be incorporated into the force models in    

via the ratios           and          . Such models preserve the nearly constant nature of    
 
 and   

 
  Due to the 

remaining uncertainty, the states   
 
 and   

 
 are modeled as either constants or slowly-varying random walks: 

 

  
  

 
 

  
 
 
   

  
 

  
 
  (11) 

 

 

where   
 
 and   

 
 are continuous time white noise for a random walk, or zero for constants. The joint observability 

of these states and the atmospheric density states is a subject of investigation 
27

. 

After ten states for every satellite in the constellation, the system state vector contains a sub-vector    of density 

parameters.  As the spline-based atmospheric density parameterization does not incorporate any physics, it is 

difficult to say how its dynamics should be modeled.  Empirically, the diurnal variation is the primary effect, but this 

component has been removed by specifying the spline’s longitude grid relative to local solar time.  Some diurnal 

effects remain, however, due to rotation of the Earth-fixed magnetic field.  Other well-documented variations 

include effects of the 11-year solar cycle and the 27-day solar rotation period, variations due to specific solar 

activity, variations caused by geomagnetic activity, a semiannual variation, and what are known as seasonal-

latitudinal variations 
3
.  With the exception of the solar and geomagnetic activity effects, all of these components act 

on much longer time scales than those envisioned for the estimation problem, and thus enter the problem mostly as 

biases that would be included in the initialization procedure.  One goal of this observability analysis is to determine 

if the available data are sufficient to estimate the remaining short-term variations due to solar activity, geomagnetic 

activity, and other random fluctuations.   

In the absence of a reliable physics-based model for these effects, the dynamics of the density parameter vector 

   is modeled as a first-order Markov process, where each element evolves according to 

 

        
 

   
               (12) 

 

where     is the Markov time constant,      is an a priori estimate of the     element    , and     is the continuous 

time process noise.  Typically      is the initial value determined from a fit to a standard model as in Figure 1.  

Proper tuning of     and the process noise intensity will prevent     from reverting to the a priori standard model if 

the data dictate otherwise. 
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Time constants for the process have been determined empirically from one of the standard models such as 

Jacchia 71 or NRLMSISE-00.   This was done by assuming different input histories to the model, representative of 

mild, moderate, and severe solar and geomagnetic disturbances.  For each set of inputs, the initialization procedure 

yielded the corresponding   , and the way in which the values in    change with time was leveraged to select 

appropriate process time constants and reasonable process noise intensities. Situations are considered where time 

constants and process noise intensities can change over time in response to changes in geomagnetic or solar activity, 

as described in Ref. 28.   

In a typical batch observability analysis, process noise is neglected altogether in dynamic models, although its 

effects may be characterized by studying the results of different batch interval lengths.  If a relatively short batch 

interval gives good observability, a higher level of process noise is acceptable.   This paper incorporates process 

noise directly, as will be explained in Section IV.  The inclusion of process noise does not change the theoretical 

observability of a system; rather, it provides a more realistic relative observability of the states.  

The final part of the state vector contains all the measurement biases.  Although their particular values are not 

important, measurement biases must be estimated as part of the state vector in order to make optimal use of the 

available accumulated delta range measurements.  They are modeled as constants by the equation 

 

  
    

    

   
 
 
   (13) 

 

The chief difficulty arising from the biases is their number.  For every pair of adjacent satellites with dual one-

way ranging, there are two crosslink signals and distinct biases for each crosslink.  Every time a satellite comes 

within view of a ground station, a new bias from the resulting measurement gets added to the state vector.  This bias 

is constant for the entire pass of the satellite over that ground station, but if the ground station stops tracking the 

satellite and then resumes tracking on another pass, a new bias applies to the measurement.  Any satellite might pass 

over any ground station any number of times, so the “obsolete” states in    must be removed to keep the size 

manageable.   

B. Measurement Models 

Estimation problems also require mathematical models of the way in which the system state affects the 

measurements.  These are necessary in order to optimally extract information about the system states from 

measurements which are indirectly related to those states, noisy, or biased.  Three types of measurements are 

available for the proposed constellation orbit determination scheme.  First, there are dual-one-way-ranging 

measurements between the adjacent satellites in an orbital plane, called crosslinks.  Each satellite of a pair measures 

a phase-based accumulated delta range relative to the other satellite, with a unique unknown bias in each direction.  

Next, there is an accumulated delta range between each ground station and every satellite it tracks at a given time.  

This delta range also includes an unknown bias.  Finally, there are GPS-like pseudorange measurements between the 

ground stations and satellites.  Although the pseudoranges are not biased, they are much noisier than the 

corresponding accumulated delta ranges. 

The crosslink measurements are formed as a beat phase: when a signal arrives from an adjacent satellite, its 

phase is compared to the phase of the receiver satellite’s onboard oscillator.  In this way it forms a biased range 

measurement between the transmitting satellite’s position at the true time of transmission,       , and the receiving 

satellite’s position at the true time of reception,      .  Thus the equation for the crosslink accumulated delta range 

between transmitting satellite   and receiving satellite   is given by 

 

         
            

          
 
   

            
                   

             
                     

  (14) 

 

where      is the accumulated delta range, converted to distance by the wavelength  ,   
         is the position 

vector of the receiving satellite at the true time of measurement,   
          is the position vector of the transmitting 

satellite at the true time of transmission,    
 
 and    

  are the receiving and transmitting clock errors, respectively, 

     is the bias converted to an equivalent distance, and     is noise.  Delays due to neutral atmosphere are 

nonexistent at satellite altitudes, and ionospheric effects are small.   
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While the physical measurement model is formed based on the positions at the true times of transmission and 

reception, the receiver reports only the reception time according to its own internal clock,   
 
, and the transmitter 

reports no time. This leaves the estimation algorithm the following challenge: It needs to use       and        as part 

of the measurement model by which it estimates the state. These two times, however, must be inferred from state 

vector elements.  This inference is carried out by solving implicit constraint equations. Thus, there is a seeming 

paradox of having to know the state in order to estimate it. One starts to resolve this paradox by considering the 

implicit equations for       and       : 

 

                                
 

           
 
                          (15a) 

                                                   
 

 
  

  
                               (15b) 

 

where   
  

is the scalar range between the vectors   
                         and   

                         , as in 

the first term on the right hand side of Eq. (14).  The first equation, Eq. (15a), is an implicit statement that receiver 

clock time   
 
 equals true measurement time       plus the correction    

 
 that applies at      .  The second 

equation constrains the reception time       to equal        plus the light travel time between satellite   and satellite 

 . 

Note that the functions    
 
                       ,    

                        , and 

  
                          are not standard components of a typical discrete-time estimation algorithm.  They 

assume that the estimation algorithm explicitly computes estimates of the states at sample times    and     .  Recall 

that these states are denoted by    and     .  These non-standard functions are needed to interpolate the state 

elements    
 
,   

 
, and   

  to the times       and       , because they normally differ from    and     . Any 

reasonable interpolation algorithm should suffice. 

The pair of constraints in Eqs. (15a)-(15b) can be solved iteratively for the true times       and        by means 

of a Newton-Raphson approach.  The effect is that       and        are implicit functions of    and     .  

Substitution of these implicit functions into the right hand side of Eq. (14) yields a measurement model that 

effectively depends only on    and     : 

 

       
                                                    

       
                                       

                                         

     

  (16) 

 

Extra care must be taken not to confuse   
  

with    
  

,      with    , and so forth. Although they apply to the 

same pair of satellites, the roles of receiver and transmitter are not interchangeable in these equations. 

The beat carrier phase measurement on the downlink from a satellite to a ground station is  very similar to the 

crosslink measurement in many respects.  The measurements have the same general structure, and are biased in the 

same way.  Ground station clocks, however, are assumed to be disciplined by GPS, so that the clock error is 

negligible.  The resulting beat carrier phase between ground station   and satellite   is  

 

 

   
                  

                          
 
               

                                         

     
                              

    
  

  (17) 

 

in which most of the quantities are defined in ways analogous to those in Eq. (14).             is the known ground 

station location, which depends on time because it is given in inertial coordinates. While the true time of reception 

      is known here, the transmission time once again is not.  A version of the second implicit constraint in Eq. 

(15b) must be employed to resolve this problem: 

 

                             
 

 
  

                          (18) 
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where   
                          is the range that appears as the first term on the right hand side of Eq. (17). 

Pseudoranges at the ground stations measure ranges to the same satellites as the corresponding beat carrier phase 

measurements.  They do not have any unknown bias, but their noise covariance is generally much higher than the 

phase ranges.  The pseudorange measurement equation takes the form 

  

  
                  

                          
 
               

                          

     
                            

  

  (19) 

 

Once again the implicit constraint of Eq. (18) must be solved iteratively to determine the true time of 

transmission of the signal. The problem of implicit measurement times is common to techniques that measure ranges 

by calculating transmission delay.  Readers interested in this topic are encouraged to refer to 
29

.   

No terms are included for the ionosphere or neutral atmosphere in the carrier phase and pseudorange 

measurement models, and this omission is intentional.  It is assumed that these components can be modeled well 

enough to be corrected and removed from the ground-based measurements.  Work is ongoing in this area. It includes 

efforts to use dual-frequency GPS measurements of TEC, available at ground stations, to create a local model of the 

ionosphere 
30

. 

Each of the three measurement models takes the generic form 

 

                        (20) 

 

where      is the scalar error for this measurement. This equation presumes solution for the implicitly defined times 

      and        and substitution of these solutions into the measurement models as in Eq. (16) for the crosslinks 

case. A carrier phase version of Eq. (16) can be developed from Eq. (17) and a pseudorange version from Eq. (19). 

Typically, multiple measurements will occur in the sample interval            .  That is,               and 

               for each such measurement. (The rare measurements that overlap two sample intervals can be 

discarded for the sake of simplicity.)  All these measurements and their corresponding model functions can be 

stacked to form the vector measurement equation 

 

                        (21) 

 

This is the general, but non-standard, form that will be used in this paper’s observability analysis. 

 

 

IV. Derivation of the Observability Analysis Equations 

Conceptually, a system is observable when it is possible to uniquely determine the initial state of the system 

from some finite number of measurements.  In the field of estimation, it is often useful to know whether a given 

system is observable before making a possibly futile attempt to estimate its state.  That is the main idea behind this 

paper: to study whether it is theoretically possible to determine atmospheric density and the orbits of a satellite 

constellation, given the proposed measurements.  A closely related concept is constructability, which asks whether 

the measurements are sufficient to uniquely determine the final state, as opposed to initial state.  The conditions are 

mathematically equivalent in cases, including the current case, where the system dynamics are invertible.  For this 

reason this paper will continue to use the terminology observability analysis, although technically it performs a 

constructability analysis due to constructability’s closer connection with the standard filtering problem.   

If a system is linear, then it either is or is not observable.  For nonlinear systems, however, it may not be possible 

to make such a clear distinction.  Asking whether a system is observable is equivalent to asking whether a cost 

function based on measurement error residuals has a global minimum.  Many nonlinear systems have a distinct 

global minimum, but may also have additional distinct local minima. This paper examines the local uniqueness, i.e. 

the isolation, of the global minimum at the true state. It does not address the question of whether other distinct local 

minima exist. Local uniqueness is analyzed via linearization about the true state in a manner analogous to an 

extended Kalman filter (EKF). This type of analysis is called a linearized observability analysis. 
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The observability analysis linearizes the dynamics and measurement models of Eqs. (6) and (21) in Section III 

about a nominal state time history              . The nominal process noise is zero, since    is modeled as a 

zero-mean random process.  The linearized dynamics and measurement models are 

 

                    (22) 

 

                                 (23) 

 

where      
  

  
 
      

 and       
  

  
 
      

 in the dynamics equation.  Likewise,       
  

   
 
           

 and        

  
  

     
 
           

in the measurement equation.  The quantity     is the state perturbation from the nominal 

linearizing value   , and       is the difference between      and   evaluated at the linearizing values    and 

    .   

To gain insight into the observability analysis, consider the simple linear case 

 

      (24) 

 

The well-known least squares solution for   in this equation is given by 

 

              (25) 

 

In this equation, the requirement to be able to determine   uniquely is that the matrix     be invertible.  For that to 

hold,   must have at least as many rows as columns (i.e. enough measurements) and it must be full-rank.  

Transferring these ideas to a typical linear dynamic system, the system dynamics can be used to express the state at 

any time k as a linear function of the state at any other time, if one assumes zero process noise.  Using the dynamics 

in this way, a whole sequence of measurements at different times can all be referred to the initial or final state, and 

this batch of measurements can be stacked together to form a linearized measurement model that looks like Eq. (24).  

 

  

  

  

 
  

   

  

  

 
  

   , or equivalently,              (26) 

 

where                     and where   is the block matrix in the middle expression of Eq. (26). By analogy 

with the simpler equation, the system is observable if the large batch matrix     is invertible.  Note that     is 

the constructability Gramian of the linearized system. This is the most basic form of batch observability analysis, 

which neglects the effects of process and measurement noise. It does not yet explicitly consider a measurement 

equation that depends on the previous state as well as the current state as in Eq. (23).  If the error in        has been 

normalized to have identity covariance, then estimation theory demonstrates that the matrix         is equivalent 

to the covariance matrix      for the state estimation error after N measurements.   

Another observability criterion is equivalent to the criterion that     be invertible: All diagonal elements of 

        must be finite. The numerical observability tests used in this paper are based on computing        .  If 

the inversion fails, then the system is not observable.  If it succeeds, the system may still be unobservable, in which 

case the successful inversion would be the result of round-off error. Alternatively, the system may be observable, 

but only weakly so. In either case, one or more of the diagonal elements of         will be very large, indicating 

a large estimation error variance for the corresponding state. In summary, this paper’s observability test requires that 

    be numerically invertible and that all diagonal elements of         be sufficiently small, as in Ref. 25. 
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After significant algebraic manipulation of Eqs. (22) and (23), an equivalent batch measurement equation for the 

associated Kalman filter can be shown to be 

 

 

   

   

 
   

    

 
 
 
 
 
        

           
  

        
           

  

 
            

       
 
 
 
 

       

  

 
 
 
 
 
        

             
           

               
           

       

         
              

           
       

    
               

       
 
 
 
 

 

  

  

 
    

   

  

  

 
  

                           (27) 

 

where the inverse state transition matrices      
   are defined recursively as follows: 

 

     
           

  
 

                            (28)  

 

The batch equation can be further simplified by defining some names for the large batch matrices and vectors: 

 

                                (29) 

 

where                        ,                      ,                    , and where   and   

are the two block matrices on the right hand side of Eq. (27).  As this equation shows, the quantity          
       , which contains both process and measurement noise, acts collectively as noise for the batch measurement 

equation.  If        is the covariance of the measurement noise time history        and        is the covariance of 

the process noise time history       , then, assuming they are uncorrelated, the combined covariance is given by 

 

                                                       (30) 

 

It is common in batch observability calculations to weight the measurement errors, or equivalently, to transform 

the batch measurements so that the transformed measurement error has identity covariance.  This practice has the 

effect of placing more importance on a measurement if it is known to be more accurate and disregarding to some 

extent those measurements that are very noisy.  Implementation via transformation results in a transformed   

matrix. Let it be called   .  The use of    in numerical observability calculations yields a covariance        
  

 that 

closely reflects the actual amount of measurement information about each state. The diagonal elements of 

       
  

 give reasonable measures of the relative observability of the corresponding states.   To perform this 

transformation, let 

 

        
         

                      (31)  

 

that is,         is the square-root information matrix for the random vector                 . Then define  

 

                                  
                          
             (32)  
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The transformed batch equation  

 

                          (33) 

 

has identity error covariance. The system is considered observable if       is invertible.  In fact, the observability of 

    in Eq. (29) is equivalent to its observability in Eq. (33) because         in the last line of Eq. (32) is invertible. 

Thus the inclusion of process and measurement noise in the batch observability analysis has no effect on the 

theoretical observability of the system.  It only influences the relative observability in a way that adds realism.   

The batch observability analysis presented in Eq. (33) above is equivalent to a properly formulated square root 

information filter (SRIF) that performs only the covariance part of the filtering calculations.  Rather than form the 

unwieldy batch matrix   , the recursive SRIF directly tracks the inverse square root of the state vector covariance 

and deals with process noise automatically.  It also more easily handles the changing length of the state vector 

introduced by the measurement bias states.   

For a linear system, it is possible to completely decouple the covariance portion of the SRIF from the state 

estimation.  This paper’s local observability analysis, however, requires linearization about accurate states.  The 

need to compute state estimates is avoided by linearizing about truth-model states. A local observability analysis 

only answers the question of solution uniqueness near the true states. Linearization about the true states rather than 

nearby estimates thus provides the proper measure of local observability. One must take care to choose realistic 

initial conditions for the truth model, and typically one considers observability under multiple scenarios as dictated 

by differing initial truth states. 

A traditional SRIF, like a Kalman filter, proceeds in two stages: dynamic propagation first, and then 

measurement update 
31

.  The two-stage filtering procedure is somewhat complicated by a measurement model like 

that in Eq. (23) that depends not only on the current state, but also on the previous state.  In this situation, it makes 

more sense to derive a form of the SRIF that performs the dynamic propagation and measurement update steps 

simultaneously, as in Ref. 32.   

The SRIF effectively stores both the state estimate and the state estimation error covariance in a square-root 

information equation of the form 

 

                       (34) 

 

where the hat (      ) mark in      designates the estimate of the state vector based on measurements up to and 

including time  , the matrix       is the square-root information matrix for the state, and the error between the 

estimate and the true state is characterized by the zero-mean, identity-covariance white noise sequence     .         is 

related to the state’s estimation error covariance matrix according to            
       

  .  For this form of the SRIF, 

the simultaneous dynamic propagation and measurement update is given by 

 

      
          

        

  

   

     

        
           

  

          
              

         

  (35) 

 

In this equation, the matrices   ,   ,    , and       are taken from the system’s linearized dynamics and 

measurement models given by Eqs. (22) and (23).  The matrices      and       are the inverse-square-roots of the 

covariances of the process noise    and measurement noise   , respectively.  The calculation proceeds by QR 

factorization of the matrix on the right. One of its outputs is the matrix        , which is the square-root information 

matrix for the error in the new state estimate       .  Note, however, that the new state estimate need never be 

formed, provided values for linearization are available from a truth model simulation.  Observability after N 

measurements is determined by the matrix      , which must be full-rank.  Equivalently,       must be numerically 

invertible and the covariance            
       

   must have finite values on its diagonal, signifying a finite amount of 

uncertainty in each of the state estimates. 

The matrix       is equivalent to        
  

 associated with Eq. (33) if and only if the SRIF calculations are 

initiated with        .  This is the condition of 0 a priori information, consistent with the question of system 

observability based on measurement data alone.   



14 

American Institute of Aeronautics and Astronautics 

 

If the system is unobservable, it may be reasonable to relax slightly the assumption that        . Typically, one 

has some a priori information, such as a bound on the physically realistic range of inverse ballistic coefficients. 

Such information can be incorporated into       and may make the system practically observable. 

 

 

V. Results 

The observability analysis was performed in several stages.  First, a truth model was used to generate several 

representative system state histories. Next, the dynamics and measurement models of Eqs. (6) and (21) were 

linearized around these “truth” states as in Eqs. (22)-(23). The SRIF covariance calculations yielded      , the 

square-root information matrix for the state after   measurements. Finally,       and the estimation error covariance 

      were examined to determine observability. 

A. Truth model cases 

The truth model for a representative case used for this paper’s analysis includes 66 satellites in 6 nearly polar 

orbital planes. Each satellite has a near-circular orbit, and the mean orbit altitude for all satellites is 790 km.  The 

satellites are modeled as each having approximately the same truth-cross-sectional area and mass, such that the 

mean ratios are   
   

  
        m

2
/kg and    

   

  
        m

2
/kg, and the inverse ballistic coefficient   

 
 and 

solar radiation pressure coefficient   
 
 are slowly-varying random walks that are essentially constants over the batch 

lengths considered in this paper.  The satellite clocks are assumed to have noise characterized by 

 

    
      

                            

    
      

                             

     
      

        (36) 

 

These process noise intensities correspond to an equivalent root Allan variance of           at a delay of 139 sec, 

typical of a good oven-controlled crystal oscillator (OCXO) 
26

 under benign conditions. 

The satellites are tracked by 12 ground 

reference stations. Each ground station also 

receives GPS signals that are used to 

discipline the ground station clocks.  The 

ground stations are located as shown in the 

map in Figure 2.  

Within each orbital plane, adjacent 

satellites are connected by crosslink 

measurements, and every ground station has 

phase and pseudorange downlink 

measurements from all satellites above an 

elevation of    .  For simplicity, all the 

crosslink and downlink measurements have 

sampling rates of 5 seconds. The crosslink 

accumulated delta range measurements are 

modeled as having measurement error 

standard deviations of 3.4 cm.  On the accumulated delta range downlink measurements, the measurement error 

standard deviations are 0.3 mm. In contrast, the unbiased but imprecise pseudoranges have measurement error 

standard deviations of 30 m.  Note: These accuracies assume averaging of less accurate, higher frequency data over 

5-second intervals. 

The “truth” splined atmospheric density distribution is initialized by fitting to the outputs of the NRLMSISE-00 

model evaluated for January 21 at 08:03:20 UTC, with       = 150, the 81-day average      
       = 150, and    = 4.  The 

spline has 6 longitude nodes and 5 latitude nodes, including the poles. Markov time constants of     = 3 hours were 

selected based on the maximum available time resolution of the geomagnetic and solar indices, which in turn limits 

 
Figure 2. Map of ground reference stations 
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the resolution of standard models that use these indices as inputs.  The intensity of the driving process noise     is 

known to be related to the steady-state variance of     according to 

 

                 
 

   
   

        (37) 

 

where    
 , the steady-state variance of    , is chosen to yield an equivalent density steady-state standard deviation of 

approximately 70%. For simplicity, the elements     and     are assumed to be uncorrelated for    . 

The truth model simulation was performed for a batch length of 12 hours.  The samples all had equal lengths of 5 

seconds.   

Other truth model cases for which observability has been analyzed are similar to this representative case in many 

respects. They attempt to isolate the effects on observability of certain types of changes. For instance, one doubles 

the batch length to 24 hours. Another alternate case uses the lower constellation altitude of 500 km.   

Of course one could think of many other interesting cases. These might include changes of atmospheric Markov 

time constants     or process noise intensities to explore performance under conditions of high solar activity, 

changes of measurement precision, changes in the set of ground reference stations, or changes to the constellation 

configuration. For the sake of brevity, a total of only three cases are considered here. 

B. Representative observability results 

The observability analysis results 

presented here are for the representative 

case described in the previous 

subsection. In this instance, the square-

root information matrix       was full-

rank, as demonstrated by the success of 

the numerical inversion      
       

  .  The 

system was still deemed unobservable, 

however, because the diagonal elements 

of       corresponding to the 

atmospheric parameter vector    all 

had very large values, orders of 

magnitude above the parameter values 

themselves.  Closer examination 

revealed that these standard deviations 

were decreasing and had not yet 

reached a steady state at the end of the 

12 hour batch, as shown in Figure 3.  

For this representative case, the square-

root information matrix       contained 

no a priori information about the 

atmospheric density parameters or the 

inverse ballistic coefficients, so effectively the initial covariance was infinite.  The finite standard deviations shown 

in Figure 3 mean that the crosslink and downlink measurements did improve the estimates of those parameters.  The 

measurements were not sufficient, however, to achieve trustworthy estimates within a reasonable amount of time, 

and so this particular case can be considered practically unobservable.  

Despite the large remaining uncertainties associated with   , the satellite orbit accuracies were reasonable for 

this representative case, as were those of the inverse ballistic coefficient, solar radiation pressure coefficient, and 

other satellite-specific states.  Figure 4 shows the estimation error standard deviations for one satellite in the 

altitude/along-track/cross-track directions, and Figure 5 likewise gives the estimation error standard deviations for 

the same satellite’s drag and solar pressure coefficients. The high level of orbital position accuracy in Figure 4 is 

somewhat surprising, given the poor accuracy of the atmospheric parameters. These results suggest that this is a 

data-rich orbit estimation problem, in which the final accuracy is insensitive to significant levels of dynamic model 

error. It is conjectured that the crosslinks are the key to this data richness. 

 
Figure 3. Estimation error standard deviations for the elements of   , 

representative case 
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In an attempt to overcome the original unobservability of 

the system, a priori knowledge was incorporated by setting 

some of the elements in       to non-zero values.  To begin 

with, the elements corresponding to inverse ballistic 

coefficients   
 
 were adjusted to reflect a physically realistic 

level of initial uncertainty about these values for well-

characterized satellites.  Most notably, this had the effect of 

reducing the uncertainty about inverse ballistic coefficients 

throughout the entire 12-hour batch, as illustrated for one 

satellite in Figure 6.  The diagonal elements of        

corresponding to the satellite orbit states and the atmospheric 

parameters initially decreased more quickly, but after three or 

four hours the standard deviations returned to those of the first 

representative case.  This transient effect is shown in Figure 7 

and Figure 8.  Such behavior suggests that errors in the 

estimates of inverse ballistic coefficients are not a major 

contributor to errors in    estimates, at least in the long term.  

           

 
Figure 8. Comparison of atmospheric parameters 

estimation error standard deviations, showing 

transient behavior 

 

 

 
Figure 7. Comparison of position estimation error 

standard deviations for one satellite, showing 

transient behavior 

 

 
Figure 5. Estimation error standard deviations for one 

satellite's inverse ballistic coefficient and solar 

radiation pressure coefficient 

 

 

 

 
Figure 4. Estimation error standard deviations for one 

satellite’s position (in the altitude/along-track/cross-

track directions) 

 

 

 

 

 
Figure 6. Comparison of inverse ballistic 

coefficient estimation error standard deviations, 

with and without a priori knowledge included 
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Of course, changes in the Markov time constants of the atmospheric states could affect this lack of coupling, 

especially if the time constants increased dramatically.  Such an increase would yield a random-walk-like model. 

Further observability improvements were attempted by incorporating some reasonable a priori information about 

the atmospheric density parameter vector   , consistent with the amount of knowledge available from existing 

atmospheric density models.  This was accomplished by setting the corresponding diagonal elements of       to the 

inverse of the chosen Markov process standard deviations.  At steady state with no incoming measurements, this is 

the amount of uncertainty that would be expected in    with the given dynamic model.  Consequently, any 

reduction in the diagonal elements of       indicates that the atmospheric parameters are observable and the 

measurements are reducing the uncertainty associated with the density estimates. 

The uncertainty in the elements of    does indeed decrease from its initial level over the batch interval, as shown 

in Figure 9.  Several things can be observed in this figure.  First, the elements of the parameter vector   span 

several orders of magnitude and are not all measured in the same units, so they cannot all be clearly visualized on 

one plot.  The horizontal lines in the lower part of the Figure 9 are actually decreasing standard deviations 

corresponding to lower-magnitude elements, but the scale obscures the reduction in uncertainty.  Next, while some 

standard deviations on this plot decrease rapidly, others are only mildly observable and the reduction is slight.  One 

significant difference between Figure 9 and Figure 3 from the baseline representative case, other than the plot scale, 

is the way in which many of the standard 

deviations in this figure appear to reach a 

steady-state value before the end of the 

interval.  These steady-state standard 

deviations suggest that additional 

measurements beyond this batch will not 

greatly improve the density estimates.  A 

final interesting feature of this plot is the 

high-frequency oscillation evident in many of 

the standard deviation elements at 

equilibrium.  Its period of about 8-10 minutes 

suggests that it may be related to the time 

interval between flybys of two consecutive 

satellites at a given location; the passage of a 

satellite could temporarily improve local 

density information. 

Interpreting the results of a plot like 

Figure 9 is clearly challenging, particularly 

with so many different units and orders of 

magnitude represented in    .  After all, the 

real quantity of interest is density itself, and 

not some set of spline parameters with 

limited physical meaning.  To this end, a 

method is desired to calculate the standard deviation of the density estimation error for an arbitrary position in the 

constellation.  Such a method is readily available by using the partial derivative 
  

   
 to transform the covariance of 

the    estimates into standard deviations of density  .  The transformation takes the form 

  

       
  

   
      

 
  

   
 

 

 (38) 

 

where    is the density estimation error standard deviation for the location at which the derivative 
  

   
 was 

evaluated, and      
 is the block of the covariance matrix      corresponding to the elements of   .  Equation (38) 

has been applied to a number of random globally distributed points to determine the overall effect of the 

measurements on the density estimates when a priori information about    has been employed.  Averaged over 

1000 points in the constellation region, the normalized standard deviation      at the beginning of the batch interval 

was 0.71.  At the end of 12 hours, the average      was 0.44, indicating a significant uncertainty reduction.  For a 

better visualization of this overall drop in uncertainty, see Figure 10 and Figure 11, which have been plotted on the 

same scale for easy comparison. 

 
Figure 9. Estimation error standard deviations for elements of   , 

with a priori density information 
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In these figures, normalized density standard deviation is plotted versus latitude and longitude.  The regular, bumpy 

pattern is closely aligned with the grid of points underlying the spline structure of the atmospheric density 

representation.  It is at least in part an artifact of non-optimal relative scaling of    , the chosen steady-state Markov 

process standard deviations of the individual elements of   .  It is difficult to scale the initial uncertainties of 

bicubic spline parameters in a way that would produce a perfectly flat plot in Figure 10. The figures nevertheless 

clearly show an overall reduction in uncertainty level over the course of the 12-hour batch interval. 

C. Other scenarios 

When the batch length was doubled relative to the representative case, it had only minor effects on the results.  

In general, the main difference was that some of the estimation error standard deviations that had not completely 

reached a steady state in 12 hours were able to do so in 24 hours.  For instance, Figure 12 shows the evolution of the 

position estimation error standard deviations for one satellite over the 24-hour batch.  The end of the 12-hour batch, 

marked with the dashed line, came just as the standard deviations were starting to level out more completely.  The 

leveling out of cross-track standard deviation at 12 hours may be due to the fact that 12 hours is the required time for 

each orbital plane to see every ground station. Likewise, Figure 13 is a zoomed plot showing just some of the 

atmospheric parameter standard deviations.   

 

    

 
Figure 13. Atmospheric parameter estimation error 

standard deviations over 24-hour batch 

 

 
Figure 12. Position estimation error standard 

deviations for one satellite over 24-hour batch 

 

 
Figure 11. Normalized standard deviation of density 

estimate after 12-hour batch interval 

 
Figure 10. Normalized standard deviation of density 

estimate before measurements 
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At the 12-hour mark, many of the uncertainties are still decreasing, but by about 20 hours they seem to reach 

equilibrium. Despite the extra time for the estimates to approach a steady state, the density estimate itself does not 

improve measurably with the doubled batch length. 

For the alternate case of a lower constellation altitude described in Subsection A above, the system was expected 

to be more observable. This is because the combination of greater density and greater satellite velocities results in a 

more significant influence on satellite orbits.  As Figure 14 illustrates, this was indeed the case. The standard 

deviations of the parameter state estimates decreased more quickly and reached lower values relative to the higher-

altitude case. Oscillations at both the orbital frequency and the satellite flyby frequency are clearly visible in this 

data set.  Figure 15 shows the mean normalized density standard deviations      at 3-hour intervals over the 12-

hour batch.  After only 3 hours, they reached a steady state of about 0.25, as opposed to only 0.44 for the case of 

higher constellation altitude.   

 

                
 

Although the density accuracy improved at 500 km altitude, 

Figure 16 shows that the satellite position accuracies got slightly 

worse.  Most likely this is because the greater influence of the 

higher density made the orbit accuracy more susceptible to model 

errors and atmospheric density uncertainty. Also, each satellite at 

this lower altitude is tracked by the 12 ground stations less 

frequently, and the duration of a given pass is shorter, leading to 

fewer total measurements. 

D. Computational load 

Although these observability calculations have been run 

offline, they give an indication of whether a corresponding 

recursive filter could run in real-time. This is an important 

question given the complexity of the system. The number of 

satellites in the constellation and the chosen resolution of the 

atmospheric density spline dictate that the state vector contains 

approximately 1170 elements. At any given time the number of state vector elements depends on the number of 

measurement biases. Numerical integration of the satellite states and associated linearized model matrices is costly. 

Also of concern are the QR factorization operations that implement the covariance propagation and update steps and 

the necessary inversions of very large matrices.  The dynamic propagation operations scale linearly as states are 

added, but QR factorization scales as the cube of the number of states. Calculations were performed in MATLAB on 

a computer with a 2.5 GHz Intel Q9300 quad core processor and 4 GB of RAM, operating with 64-bit Windows 

Vista Business.  For a typical observability analysis procedure, the dynamic propagation calculations ran for about 

1.1 seconds per 5-second sample.  The SRIF covariance computations took about 3.6 seconds per 5-second sample.  

 
Figure 15. Mean normalized density standard 

deviations during 12-hour batch for 500 km-altitude 

case 

 

 

 
Figure 14. Comparison of estimation error 

standard deviations for the elements of    at 790 

km and 500 km altitudes 

 

 

 

 
Figure 16. Comparison of one satellite's 

position accuracies at 790 km and 500 km 

altitudes 
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In combination and with some additional overhead, the analysis ran approximately in real time.  Note that the 

dynamic propagation calculations can be run in parallel for different satellites.  

E. Possible future studies 

This paper’s results suggest several related avenues for future research. One would be to use real data from a 

satellite constellation in a filter form of this paper’s algorithm.  Another useful effort would re-cast the treatment of 

implicitly defined transmission and reception times into the framework of Ref. 29.  Its framework deals with 

interpolation and process noise in a more rigorous manner.  

 

VI. Summary and Conclusions 

A new atmospheric density calibration scheme has been developed that focuses on estimating a density 

distribution based on data from a satellite constellation.  This strategy simultaneously improves the constellation 

orbit estimates.  It leverages a rich data set of radiocommunication signals and does not require any dedicated 

sensors for satellite motion tracking.  As part of the formulation of the estimation problem, this paper also introduces 

a new spline-based atmospheric density parameterization.  Compared with other density representation methods, this 

parameterization fits more naturally into the estimation context without reducing the resolution of the density 

distribution. 

A linearized observability analysis has been performed for the system that consists of the constellation, the radio 

signals, and the density distribution.  This analysis aims to discover not only whether the system is theoretically 

observable, but also what types of assumptions or a priori knowledge might be expected to improve observability.  

The results show that some a priori knowledge about density is necessary to reduce uncertainty in atmospheric 

density estimates.  Furthermore, knowledge about the satellite inverse ballistic coefficients is of limited use, because 

the difference in time constants tends to decouple the inverse ballistic coefficients and the density parameters if the 

batch is long enough.  Given a reasonable initial guess of the atmospheric density spline parameters, however, the 

measurements do contribute to greater density estimation accuracy.  Another interesting result is that the rich data 

set provided by the crosslink and downlink measurements makes satellite orbit accuracies relatively insensitive to 

some dynamic model errors.  A test case with a lower constellation altitude demonstrates the effects of higher 

density: Due to its greater influence on the satellite orbits, density becomes more observable while decreasing the 

orbital position accuracies.  The overall results suggest that further study of the proposed scheme for simultaneous 

atmospheric density calibration and constellation orbit determination would be worthwhile. 

 

Appendix 

Section II of this paper gives a conceptual overview of the spline-based atmospheric density parameterization, 

but it does not provide all of the details helpful for implementation.  Those details are contained in this appendix.  In 

particular, emphasis is placed on the derivation of necessary equations and on some practical implementation 

challenges. 

A. Spline equations 

As explained in Section II, the basic form of the splined parameterization is given by 

 

                              
       

              
  (A1) 

 

where the quantities    and        are parameterized by two-dimension cubic spline functions.  In what follows, 

equations are given in terms of the    spline, but are equally applicable to any spline-parameterized quantity.  The 

spline functions essentially work by interpolation.  The parameter vector     stores    and partial and cross-partial 

derivatives of    that apply at a rectangular grid of latitude and longitude points.  Values of    at any non-grid point 

are obtained by interpolating between the stored values.   
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Two-dimensional bicubic spline interpolation assumes that the desired 

values can be written as cubic functions of their two-dimensional position.  

Given a particular latitude   and longitude  , one can identify a 

normalized “grid cell” within which the point of interest lies, as in Figure 

A1.  In this figure, the normalized coordinates    and    vary from 0 to 1.  

          is given by a weighted sum of powers of these coordinates up 

to the cubic terms: 

 

 

                        
   

 
    (A2) 

 

The weights     are functions of the values of    and its derivatives at the four corners of the grid cell.  Suppose 

that the corner values are given by the vector  

 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

     

     

     

          

          

          

          

          

          

          

          

 
    

       
 

 

 
    

       
 

 

 
    

       
 

 

 
    

       
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (A3) 

 

 

 

Then the 16 weights     can be found as a vector    using the equation 

 

         (A4) 

 
Figure A1. Basic spline function grid 

notation 

 

Caption here (Figure A1) 
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where the matrix     is 

 

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                
                

                   
                 
                
                
                   
                 

                   
                   
                      

                          
                 
                 

                          
                       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (A5) 

 

and the vector    contains the stacked scalar weights   :  

 

                                                        (A6) 

 

If desired, spatial derivatives of    are easily obtained from Eq. (A2): 
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    (A7b) 

 
  

       
                             

   
 
    (A7c) 

 

Equations (A2) and (A7) can also be written in a matrix form, which may be convenient for certain computations. 

To do this, create a vector of the coordinates raised to powers from 0 to 3:  

 

                                                                        (A8) 

 

Then Eq. (A2), along with the weight vector    of Eq. (A4), becomes  

 

                         (A9) 

 

One forms the equivalent expressions for the partial derivatives by taking derivatives of the vector    with respect 

to    and   .  Derivatives with respect to true latitude and longitude (rather than normalized latitude and longitude) 

require a conversion from normalized grid cell units to radians. 

B. Constraints 

Although the spline interpolation described above works well to describe density over a rectangular region, 

problems arise when one applies it to a sphere or ellipsoid. As described in Section II, certain constraints are 

required to maintain consistency and ensure a smooth variation of density over the entire globe. 

First, one must consider that longitudes of        and       correspond to the same physical location.  

Consequently,    should store only one set of values for    and its derivatives along this meridian, rather than two 

sets.  Any computer implementation must index into the    vector in such a way that it retrieves the same values for 

either nominal longitude. 

Second, a more complicated set of constraints arises at the two poles.  Only one value of    is stored in    for 

each of the poles, so that near the North pole, for instance, points   and  of Fig. A1 have the same value.  This 
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means that a single element of    is mapped to two elements of the vector  , which is in turn used to define the 

weights for the cubic function. 

Constraining the derivatives to ensure smooth variation of density over the polar regions requires careful 

thought.  While all longitudes may become equivalent at these singularities, the derivatives with respect to latitude 

will depend on the longitude from which the pole is approached.  The nature of the necessary constraints is not 

obvious, but the following analysis provides some clarity. 

First, assume that    is varies smoothly over the ellipsoidal surface parameterized by   and  .  It can be 

equivalently written as a function of Cartesian coordinates             , where  ,  , and   are related to   and   

by  

  
 
 
 
   

         
         

      
  (A10) 

 

The scalars   and   determine the size and shape of the ellipsoid. Cartesian coordinates have the advantage of 

having no singularities at the poles. 

As    is fully differentiable, one can take derivatives with respect to  ,  , and   and then use the chain rule to 

compute partial derivatives with respect to   and  .  Then one evaluates those derivatives at       .  The 

longitude derivatives are 

  

 
   

  
  

   

  

  

  
   

   

  

  

  
   

   

  

  

  
 (A11) 

 

After taking partial derivatives of the Cartesian variables according to (A10) and substituting those expressions into 

(A11), one obtains  
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At either pole,       , so 

 

   
   

  
 
    

   
   

  
 
    

   (A13) 

 

Next, follow the same procedure by taking latitude derivatives.  First,  

   

 
   

  
  

   

  

  

  
   

   

  

  

  
   

   

  

  

  
 (A14) 

 

Substituting the derivatives of Eq. (A10), (A14) becomes 

  

 
   

  
   

   

  
           

   

  
           

   

  
        (A15) 

 

When (A15) is evaluated at each pole, the result is 
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Finally, the same process is applied to calculate the cross-partial derivatives with respect to latitude and 

longitude.  After some algebra, and recalling that       , all the higher order derivatives with respect to the 

Cartesian variables vanish.  The remaining non-zero expressions are  
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      (A17b) 

 

It should be noted that Eqs. (A17) are very similar in form to Eqs. (A16).  This similarity can be stated more 

explicitly by defining some new variables: 
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After substituting Eqs. (A18) into Eqs. (A16) and (A17), one obtains 

  

   
   

  
 
    

     
        

     (A19a)  
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     (A19d) 

 

The key result, as expressed in Eqs. (A19), is that all the partial derivatives at the poles are completely specified 

by just two parameters per pole.  For a given longitude, the standard spline-form derivatives can be determined from 

these two parameters, which are thus the only quantities stored in the vector    to represent all the partial 

derivatives at each pole.  This result makes sense if one considers what it means for    to be differentiable at the 

poles: in a sufficiently small region surrounding each pole, one can think of    as locally looking like a flat plane, 

which is completely described by its tilt direction and angle.  

C.  Parameter transformation 

Although to this point the splined atmosphere representation has been described in terms of the quantities    and 

      , it is really only correct to say that the two sets of cubic spline values encode the information about these 

quantities.  In actual implementation, the vector    contains values of          and          and the derivatives of 

those quantities rather than    and        directly.  

There are several reasons for these nonlinear transformations. First, physical density can never be negative, but 

standard estimation procedures provide no easy way to prevent estimates from becoming negative if inaccurate 

measurements so indicate.  By calculating density as            , this situation is averted.  Second, the logarithmic 

transformation makes the two spline functions add together linearly, which aids computational ease significantly.  

To demonstrate this, take the natural logarithm of both sides of Eq. (A1): 
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While it is relatively easy to move between    and        , or between        and  
 

      
, the transformation of 

the derivatives is slightly more complicated.  By applying the chain rule, one can derive the relationships  
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for the derivatives of        , and 
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  (A22c) 

 

for the derivatives of         .   

One major challenge associated with this nonlinear transformation is the specification of appropriate time 

constants and Markov process standard deviations for the elements of the parameter vector   . For instance, it is 

relatively easy to determine a reasonable value for the standard deviation of   at a particular place or time.  It is 

much more difficult to determine the corresponding appropriate standard deviation for               that will yield 

the desired standard deviation for  . 

D. Initialization procedure 

The initialization procedure described in Section II is really just the inverse of the problem of density 

calculation.  The forward problem seeks the value of density at a given location as a function of the spline values at 

the grid cell corners; the inverse problem seeks the values of the spline function at the grid points that would most 

nearly cause the density to match a set of “measurements”.    If there are enough independent measurements of 

density, then many instances of Eq. (A9) can be stacked like a batch of measurements: 

 

  

  

  

 
  

    

 
 
 
 
  

 

  
 

 
  

  
 
 
 

     (A23) 

 

This expression can then be solved for   in a least-squares sense to obtain the grid point values that would yield the 

measured densities. 

 

    

 

 
 

 
 
 
 
  

 

  
 

 
  

  
 
 
 
 

 
 
 
 
  

 

  
 

 
  

  
 
 
 

 

 
 

  

 
 
 
 
  

 

  
 

 
  

  
 
 
 

 

  

  

 
  

  (A24) 

 

The initialization procedure obtains pseudo-measurements of density from an existing atmospheric model and 

solves for the vector   , which contains the spline corner values for not just one grid cell at a time but all of them at 

once.  The basic least-squares problem is the same as that of Eq. (24), but some careful indexing is required to refer 

each pseudo-measurement to the appropriate sub-vector of   .  Also, the actual initialization procedure works with 

the spline functions for          and         , but still follows the conceptual algorithm presented here. 
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E. Partial derivatives 

As discussed in Section II, the estimation problem requires the partial derivatives 
  

      
 and  

  

   
.  Equation (A7) 

readily provides  
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.  Differentiation of a modified form of Eq. (A23) gives 
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 .   The required derivatives can be computed from the available ones by repeated application of the chain 

rule. For 
  

   
, this is a relatively simple procedure involving some minor algebraic manipulation.  The final result is  

 

 
  

   
  

   

   

 

  
 

 

      
     

 

  
 

       

   
  (A25) 

 

In order to compute 
  

      
, the partial derivative of density with respect to inertial position, one first finds 

derivatives of density with respect to latitude, longitude, and altitude.  Starting with Eq. (A1) and after some 

straightforward differentiation and algebra, these expressions are  
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Note that the constellation nominal altitude    is a function of latitude because it depends on the local radius of the 

WGS-84 ellipsoid.  Its derivative  
   

  
 can be obtained by differentiating the ellipsoid equations. 

The next step involves the derivatives that transform from latitude, longitude, and altitude to an Earth-fixed 

position, and then from Earth-fixed coordinates to inertial coordinates. The resulting expression is 

  

 
  

      
     

  

  

  

      
    

  

  

  

      
    

  

  

  

      
        

     (A27) 

 

where 
  

      
   , 

  

      
   , and 

  

      
    are assumed to be available from the algorithm that converts latitude, longitude, and 

altitude to a Cartesian position vector, and         is the time-varying rotation matrix that transforms between the 

Earth-fixed and inertial coordinate systems. 
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