
A Multipurpose Consider Covariance Analysis for

Square-Root Information Smoothers

Joanna C. Hinks∗ and Mark L. Psiaki†

Cornell University, Ithaca, NY, 14853-7501

A new form of consider covariance analysis for studying incorrectly-modeled square-
root information smoothers is presented and demonstrated. The value of this technique
is its ability to compute the true estimation error covariance when the smoother has an
incorrect dynamics model, an incorrect measurement model, or an incorrect statistical
model. The new smoother analysis casts systems with a wide range of possible modeling
errors into a special form and exploits square-root techniques to provide both generality
and compactness. A consider covariance analysis can improve smoother design or charac-
terize an existing smoother’s true accuracy. Areas of application include incorrect initial
state covariance, colored or correlated noise statistics, unestimated disturbance states, and
erroneous system matrices. Several simple examples are developed to illustrate the appli-
cation of the consider smoother analysis to models with a variety of error types, and these
examples are independently validated by Monte Carlo simulation.

I. Introduction

Dynamic estimation methods compute two main outputs: Estimates of a system state vector and some
metric of uncertainty associated with those estimates. This general statement holds for Kalman filters,

square-root information filters (SRIFs), unscented filters, and particle filters, among other filter varieties.
Most commonly, estimation error covariance is the chosen uncertainty metric. Filters typically form estimates
and estimation error covariances recursively as measurements arrive, and thus they only use measurements up
to and including the sample time at which the estimate applies. Conversely, smoothers employ measurements
from both past and future times to compute better estimates and reduce estimation error covariance by
“smoothing out” the uncertainty in the system. In particular, fixed-interval smoothers form estimates over
an interval based on all the measurements obtained during that interval. When a filter or smoother is based
on an incorrect system model, both the estimates and the estimation error covariance may be affected. The
estimates may be degraded in some way, and the estimator will report an estimation error covariance that
does not correspond to the true level of error.

One approach to the problem of estimators with incorrect models is consider covariance analysis. The
name “consider covariance analysis” stems from the analysis’ ability to “consider” the effects of various
kinds of modeling errors on filter and smoother behavior. The analysis does this by computing the “true”
estimation error covariance of the mismodeled estimator. Note that the resulting estimation error covariance
is true relative to a particular mismodeled estimator and a particular assumed “truth” model. It is not the
true covariance in an absolute sense unless the “truth” model perfectly describes the real system. Many
of this paper’s references give the name “covariance analysis” to any analysis that investigates covariances,
whether or not the filter or smoother is based on an incorrect system model. Others use the name “sensitivity
analysis”, because comparison of the optimal and actual estimation error covariances provides a metric of
the sensitivity of the system to modeling error. This paper uses the phrase “consider covariance analysis”
for all such analyses.

Filter and smoother model errors may result from intentional simplifications, or they may be unavoidable
due to poor understanding of the system dynamics or measurements. When simplifications have been made,
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such as model order reduction or decoupling of dynamics, consider covariance analysis is valuable as a
design tool. For each candidate simplified estimator, a consider analysis can indicate its expected estimation
accuracy. In other situations where the true system characteristics are not well-known, even the most detailed
filter or smoother is likely to deviate from the true system significantly. A simpler estimator design, while
suboptimal, may be more robust and less sensitive to the potential errors. One can explore these trade-offs by
an iterative consider analysis process, evaluating multiple combinations of proposed filters and hypothetical
“truth” models. Consider covariance analysis may even be helpful in determining whether to implement a
filter only or a filter/smoother for a given system. In the presence of model mismatch, smoothing may not
improve estimation accuracy as much as it otherwise would. Alternatively, depending on the system and
type of error, smoothing may eliminate most of the error effects and restore much of the performance of the
optimal system.

As defined here, consider covariance analysis can be used to study the effects of many different classes
of model errors. One of the most commonly addressed error classes is that of unmodeled constant biases
in the dynamics or measurements.1–3 Another function of consider analysis is to investigate systems with
incorrect a priori state estimate covariance, incorrect process noise, or incorrect measurement noise.4–7 This
includes the situation where the noise is colored rather than white. One may also study systems that have
unestimated dynamic states.8–11 Finally, some analyses examine the situation where some or all of the
state-space system matrices used by the estimator have errors.9–16 Some methods for consider covariance
analysis are narrow algorithms that focus on a single class of filter errors; others are general approaches that
can analyze all of these filter error types simultaneously.

Another paper by the authors, Ref. 17, presents a new square-root information form of consider covariance
analysis. This method treats all of the discussed error classes within a single framework. The present
paper extends the consider covariance analysis of Ref. 17 to analyze a discrete, fixed-interval square-root
information smoother (SRIS). In keeping with common smoother practice, this paper’s consider smoother
analysis operates on a Rauch-Tung-Striebel (RTS) square-root information smoother.18 That is, the analysis
requires that there is first a forward filtering pass using SRIF techniques, followed by a backward smoothing
pass also using square-root techniques. The consider smoother analysis uses the same architecture: a forward-
pass consider analysis of the SRIF, followed by a backward-pass consider analysis of the SRIS. The forward
filtering pass is analyzed via the algorithms of Ref. 17. The present paper develops the backward-pass
consider covariance analysis using data generated during the forward pass, in the spirit of the RTS method.

Several of the previous consider covariance analyses have investigated the smoother problem. Reference 9
analyzes a continuous-time RTS smoother and allows general model errors, but it does not present an
equivalent discrete-time analysis. Both 16 and 19 operate on different non-standard two-filter smoothers
rather than RTS-style smoothers. To the authors’ knowledge, the only general consider analysis of a discrete-
time RTS smoother is given in Refs. 14, 15. The derivation, which is performed in the covariance domain,
is given only in Ref. 14, and the provided algorithms in both sources are very complicated with many
intermediate calculations. While neither of Refs. 14,15 explicitly allows for unestimated state vector elements
or mutually-correlated process and measurement noise, the provided algorithms could be modified by an
experienced analyst to accommodate these cases.

All of the above consider smoother algorithms operate in the covariance domain. In the information
domain, Refs. 3, 4 analyze RTS square-root information smoothers, but only for systems with unestimated
random biases. These sources do not address smoothers with other types of model error, such as unestimated
dynamic disturbances, incorrect noise covariances, or erroneous system matrices.

This paper makes two main contributions. First, the new consider covariance analysis of Ref. 17 is
extended to analyze fixed-interval smoothers with incorrect system models. The resulting smoother analysis
is the only generalized consider covariance analysis for discrete RTS square-root information smoothers.
The analysis derivation, which is analogous to the derivation of the SRIS equations, is believed to be more
understandable than that of Ref. 14, and the final form is simpler and more compact. Second, this paper
provides several simple, concrete numerical examples beyond those of Ref. 17. These examples demonstrate
how the smoother analysis procedure can be applied to common modeling error situations. Some of these
types of errors, such as non-independent process and measurement noise, cannot be handled by the algorithms
of Refs. 14,15 without significant pre-processing/model augmentation. Monte Carlo techniques validate the
consider analyses of these examples.

Implementation of this paper’s algorithms requires two building blocks. The first building block is the
consider filter analysis of Ref. 17, which is used for the forward-filtering-pass stage of the present paper’s
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analysis. The second building block is the basic method of square-root information smoothing. Readers
unfamiliar with SRIS techniques are encouraged to refer to Refs. 4, 20 for more background on the subject.

The remainder of this paper is organized as follows: Section II summarizes some of the results of Ref. 17
that are needed for this paper’s analysis. In Section III, the algorithms for the consider covariance analysis
of a smoother backward pass are developed and explained. Section IV discusses several interesting example
problems and validates their consider analyses using Monte Carlo simulations. Conclusions are drawn in
Section V.

II. Background: Consider System Model & Forward-Pass Filter Analysis

A number of key ideas and results from Ref. 17 are necessary for the development of this paper’s smoothing
algorithms. These concepts are briefly reviewed in this section. Section A describes a special “consider form”
of the system equations. Select equations from the forward-pass filter analysis are presented in Section B.

A. Consider Form

The consider analysis developed in this paper and in Ref. 17 begins by casting each problem into a special,
pre-defined consider form. The algorithms of Section III operate directly on matrices and equations in this
special form without regard to how the problem statement was originally framed. As a result, a wide variety
of model errors can be studied without modifying the core algorithms.

The philosophy of the consider form is simple. For each set of filter/smoother modeling errors, one
can write both the estimator’s assumed model equations and the “truth” model equations. All but one
consider form equation is just a version of the corresponding “truth” equation, rewritten as the filter/
smoother equation with modified noise terms or an additive perturbation. The equation pairs are all listed
for convenience in Table 1, which shows the parallel structure of the two model formulations. The filter/

Table 1. Consider system model summary.

Equation Filter/Smoother Version Consider Version

State dynamics xk+1 = Φfkxk + Γfkwk ⇒ xk+1 = Φfkxk + Γfkwk + Γxckxck + bxk

Measurement yk = Hfkxk + νk ⇒ yk = Hfkxk +Hckxck + byk

Consider dynamics xck+1 = Φckxck + Γcckwck

Process noise information Rfwwkwk = −νwk ⇒ Rfwwkwk = −Swckxck − bwk

Initial state information R̄fxx0x0 = z̄0 − ν̄x0 ⇒ R̄fxx0x0 = z̄0 − S̄xc0xc0 − b̄c0

smoother equations in the center column of Table 1 are those of a standard square-root information filter/
smoother (SRIF/S). In the dynamics equation, the state vector xk evolves as dictated by the smoother’s state
transition matrix Φfk and process noise influence matrix Γfk. The dynamics are driven by the stochastic
process noise vector wk. Likewise, the smoother’s assumed measurement sensitivity matrix Hfk is standard.
Here and throughout this paper, the subscript “f ” designates the versions of the given quantities assumed
by the filter/smoother, and symbols without this subscript represent the corresponding “truth” quantities.
This notation is chosen to be consistent with that of Ref. 17. Without loss of generality, the smoother’s
measurement equation is assumed to have been normalized so that the filter models νk as a zero-mean,
identity-covariance, white, Gaussian random vector, which is uncorrelated with the process noise. The
smoother’s assumed statistics for the process noise wk are captured in the third equation of the center
column, the process noise information equation. Its matrixRfwwk is the inverse-square-root of the smoother’s
assumed process noise covariance matrix Qfk. Because the process noise is also assumed to be Gaussian
and white with zero mean, the process noise error term νwk has zero mean and identity covariance. Finally,
the fourth equation in the center column of Table 1 parameterizes the filter/smoother’s initial estimation
uncertainty. The vector z̄0 is the a priori information state at sample k = 0, and R̄fxx0 is the a priori
inverse-square-root of the assumed initial estimation error covariance P fxx0. By construction, the state
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information error ν̄x0 is assumed to be zero-mean, identity-covariance, and Gaussian.
The consider dynamics equation, the third equation in the right-hand column, is unique to the new

consider system form; it has no filter/smoother counterpart in the center column of Table 1. It describes the
behavior of the “consider state” xck using its own state transition matrix Φck, process noise influence matrix
Γcck, and consider process noise wck. The consider vector xck captures in one quantity all the sources of
randomness and uncertainty contained within the “truth” system. This typically includes the “truth” process
and measurement noise, as well as the “truth” initial state uncertainty at sample k = 0. Also included in
the consider vector are stochastic quantities that are not modeled by the filter/smoother, such as unmodeled
zero-mean stochastic biases and unmodeled dynamic states that influence the “truth” system dynamics. It
is possible to model quantities such as biases or white noise sequences using the consider dynamics equation
by including rows of zeros in Γcck or in Φck. The consider state transition matrix Φck need not be invertible
or even square, and this flexibility allows for rows of zeros or a changing number of consider state elements.
Without loss of generality, the consider process noise wck is constrained to be zero-mean, identity-covariance,
white, and Gaussian. The consider analysis algorithms require, again without loss of generality, that the
initial consider vector xc0 be zero-mean, identity-covariance, Gaussian, and uncorrelated with the wck noise
sequence.

Each of the remaining four consider equations in the right-hand column of Table 1 differs from the
corresponding filter/smoother version by its last two terms. These terms have the same structure in all
equations: a zero-mean stochastic part plus a deterministic, possibly-time-varying bias part. In this context,
the term “bias” is used in its statistical sense, as a known value that perturbs the mean from zero. It
is not necessarily a dynamical bias in the sense of being a constant independent of k. To make matters
even more confusing, elements of xck sometimes represent constant biases that are sampled from zero-mean
distributions, as will be apparent in one of the examples.

Each zero-mean stochastic component in the consider model is written as a coefficient matrix multiply-
ing the consider state vector xck. As previously stated, xck contains all the sources of randomness and
uncertainty in the “truth” system. The coefficient matrices Γxck, Hck, Swck, and S̄xc0 have two roles. They
select those portions of xck relating to a particular equation’s noise terms, and they weight the stochastic
perturbation appropriately so that the “truth” noise or error enters the equation in place of the assumed
uncertainty. The deterministic biases bxk, byk, bwk, and b̄c0 do not depend on a particular noise or state
estimate history, and can be precomputed. Among other roles, they allow the user to consider non-zero-mean
noise.

An intuitive understanding of the consider form and the consider state vector is most easily gained by
studying the examples in Section IV and Ref. 17. These examples demonstrate how specific filter/smoother
error classes can be represented using the equations of Table 1. In particular, one of the examples in Ref. 17
shows how to handle the case where the “truth” system matrices Φk, Γk, and Hk differ from those assumed
by the filter/smoother. This analysis is possible even though the consider form equations explicitly contain
only the assumed system matrices Φfk, Γfk, and Hfk.

B. Needed Outputs from Forward-Pass Consider Filter Analysis

In a traditional RTS smoother, select quantities computed during the forward filter pass must be stored for
later use in the backward smoother pass. The consider smoother analysis likewise requires some matrices and
vectors from the forward consider filter analysis to complete its algorithm. Specifically, two sets of quantities
are required: There is a set of quantities related to the consider state vector xck and the way it propagates
through the consider analysis, and a set that is the consider-analysis analog of the quantities stored for a
traditional SRIF/S. The matrices Φfk, Γfk, and Γxck and the vector bias bxk from the consider-form state
dynamics equation of Table 1 are also needed.

During the forward filter pass, the consider analysis must store matrices related to the consider state

vector xck. Within the filter analysis, xck is replaced by a new vector
[
αT
k βT

k

]T
, which satisfies the

relationship:

xck =
[
Lαk Lβk

][αk
βk

]
= Lαkαk + Lβkβk (1)

The coefficient matrices Lαk and Lβk are computed recursively at each filter sample k, and are required as
inputs for this paper’s smoother analysis algorithms. The vectors αk and βk are never explicitly computed.
Rather, they are mathematical constructs with certain useful properties. Equation (1) gives the consider
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vector xck as a linear combination of the two vectors αk and βk, but the relationship cannot be inverted.
The quantities αk and βk do not depend on xck alone, but rather on the entire consider state history up
to sample k: xc0,xc1, . . . ,xck. The vector αk can be thought of as the part of the consider state history
that has an effect on the estimate of the state xk at sample k. Conversely, the vector βk is the part of the
consider state history that has no effect on the estimate of xk at sample k, while having the potential to
affect the filter’s estimates at later sample times.

An advantage of this representation is compactness. By construction, the vector αk has at most nx

elements, the number of elements in the state vector xk. Similarly, the combined vector
[
αT
k βT

k

]T
has at

most nx + nxck elements, where nxck is the number of elements in xck. Thus, αk and βk parameterize the
error effects of the consider state history without requiring an increasing number of storage elements at every
new sample.

One other significant feature makes αk and βk the preferred consider analysis variables: The composite
vector formed from these quantities and the consider process noisewck has zero mean and identity covariance. αkβk

wck

 ∼ N (0, I) (2)

The composite vector in Eq. (2) is propagated according to:αk+1

βk+1

γk+1

 = Ck+1

 αkβk
wck

 (3)

where the matrix Ck+1 is orthonormal, and is used extensively in the smoother algorithms. The vector γk+1

is not needed in further calculations. This propagation equation is derived in the filter analysis from the
a posteriori state information equation and from the dynamics of the consider vector xck.

The second set of stored filter analysis quantities is analogous to the set of quantities stored by a standard
SRIF/S. Fixed-interval RTS square-root information smoothing algorithms run backwards from k = N , the
final sample, to k = 0. This backward recursion relies on the post-dynamic-propagation version of the process
noise information equation. This paper’s consider smoother derivations require the consider version of this
propagated process noise information equation at every sample k. It takes the form:

R̄wwkwk + R̄wxk+1xk+1 = z̄wk −
[
S̄wαk S̄wβk

][αk
βk

]
− b̄wk (4)

This equation contains information about the process noise wk that can be inferred from the estimate of the
state vector xk+1. In the consider smoother analysis, the matrix coefficients S̄wαk and S̄wβk and the bias
vector b̄wk also convey information. They are used to smooth the calculations of the consider error effects
in the smoothed state information equations.

The consider smoother analysis requires one additional equation from the forward-pass consider filter
analysis: the terminal-sample consider form of the a posteriori state information equation. It is described
in the next section in the context of the backward smoothing pass initialization.

III. Consider Smoother Analysis Algorithms

The consider smoother analysis is based on a modification of a standard SRIF/S. This type of modification
already has been portrayed in the second, fourth, and fifth rows of Table 1. In the center column, the noise
terms νk, νwk, and ν̄x0 are each simple, zero-mean, identity-covariance Gaussian random vectors. Each of
these simple noise terms is replaced in the right-hand column by its consider-analysis counterpart, which
can have non-zero mean and non-identity covariance. This generalization to arbitrary noise means and
covariances flows through the entire consider smoother analysis.

The consider analysis derivations for the smoother proceed in a manner that resembles mathematical
induction. That is, one begins by defining a particular form for the smoother state information equation at
generic sample k + 1 and by showing that this form holds for some specific value of k + 1. Next, one shows
how to derive the smoother state information equation at preceding sample k by processing the equation at
sample k + 1. This backward transition step also employs the consider-form model equations and various
stored matrix and vector quantities from the forward-pass filter analysis.
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A. Initial Definitions and Setup

At each sample k+ 1, the consider smoother analysis is assumed to have a state information equation of the
generic form:

R∗xxk+1xk+1 = z∗k+1 −
[
S∗xαk+1 S∗xβk+1 S∗xψk+1

]αk+1

βk+1

ψk+1

− b∗ck+1 (5)

Furthermore, the error effects vector,
[
αT
k+1 βT

k+1 ψT
k+1

]T
, is assumed to have zero mean and identity

covariance at sample k + 1. The task of the consider smoother analysis derivation is to show how one can

obtain a sample-k version of Eq. (5). This sample-k version must have an error effects vector
[
αT
k βT

k ψT
k

]T
with zero mean and identity covariance.

The form of Eq. (5) is non-obvious and merits some discussion. The consider version of the filter’s
a posteriori state information equation for sample k + 1, as given in Ref. 17, takes the form:

R̂xxk+1xk+1 = ẑk+1 − Sxαk+1αk+1 − b̂ck+1 (6)

This state information equation resembles the consider form of the initial state information equation in
Table 1, except that the stochastic part of its error has been written in terms of αk+1 rather than xck+1.
Recall that the vector αk+1 captures the estimation error effects of the entire consider state history up to and
including sample k+1, i.e., the effects of xc0,xc1, . . . ,xck+1. Thus, Eq. (6) is adequate for the forward filter
stage of the consider analysis. The principles of smoothing, however, dictate that the smoothed estimate
of xk+1 may be degraded by the uncertainty contained in the consider state history over the entire interval
xc0,xc1, . . . ,xcN . This includes the effects up to sample k + 1 represented by βk+1. It also includes the
uncertainty introduced by the consider process noise vector at later samples, i.e., wck+1,wck+2, . . . ,wcN−1.
By construction, the new vector ψk+1 parameterizes the uncertainty contained in this consider process noise
sequence at samples after k.

Before propagating Eq. (5) from k + 1 back to sample k, it is necessary to initialize the induction by
showing that the equation is satisfied for some specific k+1. With suitable definitions, the k+1 = N version
of Eq. (6) provides the initialization for Eq. (5). Thus, the consider filter analysis results at the terminal
sample serve to initialize the consider smoother analysis. This choice for the initialization of the backward-
smoother consider pass should not be surprising. In a traditional RTS SRIS, the backward-smoother pass
starts from the final a posteriori state information equation that is produced by the filter. At the final
sample k + 1 = N , the filter has processed all of the measurements and the filter’s estimate is identical to
the smoothed estimate.

To show the equivalence of consider smoother analysis Eq. (5) and consider filter analysis Eq. (6) at
sample k + 1 = N , one must first equate the square-root information matrices, information state vectors,
and deterministic bias vectors at this final sample time. One must also equate the coefficient matrix for the
vector αN :

R∗xxN = R̂xxN , z∗N = ẑN , b∗cN = b̂cN , S∗xαN = SxαN (7)

where the notation “( )∗ ” designates a smoother-analysis matrix or vector. The resulting version of Eq. (5)
still has terms containing βN and ψN that have no counterpart in filter-analysis Eq. (6). To complete the
initialization, one sets the coefficient matrix S∗xβN to zero. The new vector ψN is defined as an empty vector
for this terminal sample, and its coefficient matrix S∗xψN is defined as an empty matrix:

S∗xβN = 0, ,ψN = [ ] , S∗xψN = [ ] (8)

The definition of ψN as an empty vector also satisfies the identity-covariance requirement for k + 1 = N .

The composite vector has the correct initial distribution because
[
αT
N βT

N ψT
N

]T
=
[
αT
N βT

N

]T
, and αk

and βk were previously defined by the filter analysis to be uncorrelated with identity covariances for all
samples k.
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B. Backwards Propagation

The backwards propagation of Eq. (5) from sample k+1 to sample k smoothes the estimates by incorporating
the process noise information of Eq. (4). Both are repeated here for convenience:

R∗xxk+1xk+1 = z∗k+1 −
[
S∗xαk+1 S∗xβk+1 S∗xψk+1

]αk+1

βk+1

ψk+1

− b∗ck+1 (9a)

R̄wwkwk + R̄wxk+1xk+1 = z̄wk −
[
S̄wαk S̄wβk

][αk
βk

]
− b̄wk (9b)

All vectors with index k + 1 must be eliminated in these two equations in favor of their sample-k versions.
In particular, αk+1, βk+1, ψk+1, and xk+1 must be replaced.

The zero-mean, identity covariance αk and βk have been propagated between samples by means of
Eq. (3). This equation also involves the consider process noise vector wck. In greater detail with individual
blocks of the orthonormal propagation matrix Ck+1 shown, the equation is:αk+1

βk+1

γk+1

 = Ck+1

 αkβk
wck

 =

Cααk+1 Cαβk+1 Cαwck+1

Cβαk+1 Cββk+1 Cβwck+1

Cγαk+1 Cγβk+1 Cγwck+1

 αkβk
wck

 (10)

In order to eliminate αk+1 and βk+1 from Eq. (9a), only the first two rows of Eq. (10) are required:

[
αk+1

βk+1

]
=

[
Cααk+1 Cαβk+1 Cαwck+1

Cβαk+1 Cββk+1 Cβwck+1

] αkβk
wck

 (11)

Substitution of Eq. (11) into Eq. (9a) involves the multiplication of two large block matrices and the resulting
block matrix is complicated. For the sake of compactness, it helps to first define an intermediate expression:[

S̃∗xαk S̃∗xβk S̃∗xwck

]
≡
[
S∗xαk+1 S∗xβk+1

][
Cααk+1 Cαβk+1 Cαwck+1

Cβαk+1 Cββk+1 Cβwck+1

]
(12)

With this notation, Eq. (9a) can be written without reference to αk+1 or βk+1:

R∗xxk+1xk+1 = z∗k+1 −
[
S̃∗xαk S̃∗xβk S̃∗xwck S∗xψk+1

]
αk
βk
wck

ψk+1

− b∗ck+1 (13)

Next, the state xk+1 can be written in terms of quantities referenced to sample k by means of the consider
version of the state dynamics equation in Table 1. In order to make the substitution, the consider state xck

must first be replaced in this dynamics equation by αk and βk using the relationship defined in Eq. (1). The
resulting state dynamics equation is:

xk+1 = Φfkxk + Γfkwk + Γxck
[
Lαk Lβk

][αk
βk

]
+ bxk (14)

After substituting Eq. (14) into Eqs. (13) and (9b), rearranging terms, and stacking the results, one obtains:[(
R̄wwk + R̄wxk+1Γfk

)
R̄wxk+1Φfk

R∗xxk+1Γfk R∗xxk+1Φfk

][
wk

xk

]
=

[
z̄wk
z∗k+1

]

−

[(
S̄wαk + R̄wxk+1ΓxckLαk

) (
S̄wβk + R̄wxk+1ΓxckLβk

)
0 0(

S̃∗xαk +R∗xxk+1ΓxckLαk

) (
S̃∗xβk +R∗xxk+1ΓxckLβk

)
S̃∗xwck S∗xψk+1

]
αk
βk
wck

ψk+1


−
[
b̄wk + R̄wxk+1bxk
b∗ck+1 +R∗xxk+1bxk

]
(15)

7 of 19

American Institute of Aeronautics and Astronautics



In Eq. (15), the left-hand side and the first term on the right-hand side are exactly the terms formed
by a standard RTS SRIS prior to completing a backwards propagation step. The remaining terms take the
place of a zero-mean, identity-covariance information error vector. They describe the combined effects of all
of the filter/smoother model errors on the smoother’s estimation error.

To complete the backwards propagation, one next uses standard orthonormal/upper-triangular (QR)
factorization to compute an orthonormal matrix T ∗k such that the following relationship is satisfied:

T ∗k

[(
R̄wwk + R̄wxk+1Γfk

)
R̄wxk+1Φfk

R∗xxk+1Γfk R∗xxk+1Φfk

]
=

[
R∗wwk R∗wxk

0 R∗xxk

]
(16)

In Eq. (16), the block matrix on the left-hand side is the input to the factorization, and T ∗k is the transpose
of the orthonormal matrix output. The upper-triangular matrices R∗wwk and R∗xxk and the general matrix
R∗wxk are additional QR-factorization outputs. Every term in Eq. (15) is multiplied by the transformation
T ∗k , and the resulting matrices and vectors are named to yield:

[
R∗wwk R∗wxk

0 R∗xxk

][
wk

xk

]
=

[
z∗wk
z∗k

]
−

[
S∗wαk S∗wβk S∗wwck S∗wψk+1

S∗xαk S∗xβk S̄∗xwck S̄∗xψk+1

]
αk
βk
wck

ψk+1

− [b∗wkb∗ck
]

(17)

In this equation, the transformed matrix and vector terms appear in exactly the same order as the corre-
sponding original terms from Eq. (15).

Neglecting the top row of Eq. (17), which is no longer needed, the bottom row is:

R∗xxkxk = z∗k −
[
S∗xαk S∗xβk S̄∗xwck S̄∗xψk+1

]
αk
βk
wck

ψk+1

− b∗ck (18)

This information equation is almost in the desired form, which is identical to Eq. (9a) except that it is
written in terms of quantities at sample k rather than sample k + 1. The current form differs from the
desired equation by the presence of the two vectors wck and ψk+1 rather than the single vector ψk. To
complete the recursion step, it is necessary to define a ψk and to compute a matrix S∗xψk such that the
following relationship holds:

S∗xψkψk =
[
S̄∗xwck S̄∗xψk+1

][
wck

ψk+1

]
(19)

There is more than one possible
(
ψk, S

∗
xψk

)
pair that satisfies Eq. (19). For any sensible choice, however,

the vector ψk should not have more elements than necessary. To capture the estimation error effects of the
consider process noise vector wcj at all samples j ≥ k, ψk requires at most nx elements. Thus there are two
cases to handle.

In the first and simplest case, the composite vector
[
wc

T
k ψT

k+1

]T
already has dimension less than or

equal to the maximum dimension nx. This is more likely to occur near the beginning of a smoothing pass
since ψN is initialized as an empty vector. In this situation, the recursion can be completed by defining the
composite vector and computing its matrix coefficient according to:

ψk =

[
wck

ψk+1

]
, S∗xψk =

[
S̄∗xwck S̄∗xψk+1

]
(20)

It is further possible to verify that the resulting composite error effects vector
[
αT
k βT

k ψT
k

]T
has the

desired identity covariance. The new ψk has identity covariance because ψk+1 and wck individually have
identity covariance, and because ψk+1 depends only on the history of the consider process noise at future
samples and so is uncorrelated with wck. As αk and βk depend on the history of the consider state vector
xck up to and including sample k, they are uncorrelated with this ψk which depends only on consider process
noise at samples greater than or equal to k.
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The second case is slightly more complicated. If
[
wc

T
k ψT

k+1

]T
has dimension greater than nx, then the

error effects contained in the composite vector can be compressed into a vector of dimension nx by means
of lower-triangular/orthonormal (LQ) factorization. This factorization procedure is somewhat less common
than QR factorization, but is closely related. It is described in more detail in the Appendix of Ref. 17. In
this situation, the LQ factorization computes an orthonormal transformation C∗k that satisfies:[

S∗xψk 0
]
C∗k =

[
S̄∗xwck S̄∗xψk+1

]
(21)

The block sensitivity matrix on the right-hand side is the input to the LQ factorization. In addition to
the orthonormal C∗k , the block lower-triangular matrix on the left-hand side is an output. The matrix

S∗xψk is thus square and lower-triangular, with dimension nx. When the composite vector
[
wc

T
k ψT

k+1

]T
is

transformed by C∗k , the result is defined as: [
ψk
ζk

]
= C∗k

[
wck

ψk+1

]
(22)

The resulting ψk has the desired dimension nx. The transformation given by Eqs. (21) and (22) can be
shown to satisfy Eq. (19):[

S̄∗xwck S̄∗xψk+1

][
wck

ψk+1

]
=
[
S∗xψk 0

]
C∗k

[
wck

ψk+1

]
=
[
S∗xψk 0

][
ψk
ζk

]
= S∗xψkψk (23)

Furthermore, the orthonormality of the transformation C∗k preserves the identity covariance of ψk, and it
remains uncorrelated with αk and βk.

In either of the two cases represented by Eqs. (20)-(22), smoother state information Eq. 18 reduces to

R∗xxkxk = z∗k −
[
S∗xαk S∗xβk S∗xψk

]αkβk
ψk

− b∗ck (24)

which is just where the consider smoother analysis started, except indexed to k instead of k + 1. The RTS
process is thus complete, and the next iteration of the backward recursion may begin.

C. Smoothed Estimation Error Covariances

In a typical square-root information smoother, a smoothed state information equation is computed at each
step of the backward pass. It takes the form:

R∗xxkxk = z∗k − ν∗xk (25)

where R∗xxk is the inverse-square-root of the smoothed estimation error covariance, z∗k is the smoothed
information vector, and the error vector ν∗xk is assumed to have zero mean and identity covariance. The
smoothed estimate can be computed from Eq. (25) as:

x∗k = R∗−1
xxkz

∗
k (26)

and the smoothed estimation error is
x∗k − xk = R∗−1

xxkν
∗
xk (27)

The smoothed estimation error covariance is therefore:

P ∗fxxk = E
[(
R∗−1
xxkν

∗
xk

) (
R∗−1
xxkν

∗
xk

)T]
= R∗−1

xxkE
[
ν∗xkν

∗T
xk

]
R∗−T
xxk = R∗−1

xxkR
∗−T
xxk (28)

The consider analysis version of this calculation substitutes its own complicated error term in place of the
simplistic ν∗xk. It starts with the consider version of the smoothed information equation.

R∗xxkxk = z∗k − η∗k (29)
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where the error vector η∗k replaces ν∗xk of the standard smoother and is defined as

η∗k ≡
[
S∗xαk S∗xβk S∗xψk

]αkβk
ψk

+ b∗ck (30)

Equation (29) is just a more compact way of writing Eq. (24) from the end of the preceding subsection.
Substitution of η∗k and its statistics into the smoother covariance calculations of Eq. (28) yields:

P ∗xxk = E
[(
R∗−1
xxkη

∗
k

) (
R∗−1
xxkη

∗
k

)T]
= R∗−1

xxkE

[S∗xαk S∗xβk S∗xψk

]αkβk
ψk

+ b∗ck


×

[S∗xαk S∗xβk S∗xψk

]αkβk
ψk

+ b∗ck

T
R∗−T

xxk

= R∗−1
xxk

[
S∗xαk S∗xβk S∗xψk

]
E


αkβk
ψk

[αT
k βT

k ψT
k

]
S∗TxαkS∗Txβk
S∗Txψk

R∗−T
xxk

+R∗−1
xxkb

∗
ckb
∗T
ckR∗−T

xxk

= R∗−1
xxk

[
S∗xαk S∗xβk S∗xψk

]S∗TxαkS∗Txβk
S∗Txψk

R∗−T
xxk +R∗−1

xxkb
∗
ckb
∗T
ckR∗−T

xxk (31)

The resulting quantity, P ∗xxk, is the true matrix mean square error (MSE) for the smoother. It is equal
to the true smoothed estimation error covariance plus a rank-one term relating to the deterministic bias
b∗ck. The true covariance is thus the left-hand term of the last line of Eq. (31). Although the use of “Pxx ”
to represent matrix MSE rather than covariance is non-standard, it emphasizes the role of P ∗xxk in the
consider analysis. The matrix MSE P ∗xxk, in contrast to the estimation error covariance, contains the full
mismodeling effect from both random and deterministic errors. Consequently, it is the most appropriate
quantity for comparison with the smoother-assumed covariance P ∗fxxk of Eq. 28.

IV. Examples

In order to demonstrate the consider smoother analysis, several concrete examples have been developed.
These examples, while simple, illustrate several common classes of filter/smoother modeling errors. They
complement Ref. 17 by addressing some error varieties not investigated by that paper’s examples. The
examples in this section further clarify how one can pose consider analyses in the consider model form of
Section A.

For each example, the techniques of Section A have been employed to write the “truth” system equations
in the defined consider form. This procedure is often the most challenging part of the consider analysis.
Once in the correct form, the equations can be manipulated to perform a forward consider filter analysis
and a backward consider smoother analysis, as per the algorithms of Ref. 17 and Section III of the present
paper. The results of each consider smoother analysis have been independently validated by Monte Carlo
analysis.

The examples to be addressed are as follows: The first example investigates the effects of a biased initial
state estimate and incorrect initial covariance. The next example is a case with mutually correlated process
and measurement noise, both with incorrect covariances. A third example examines a system that has
dynamics perturbed by unmodeled colored process noise with a sinusoidal influence matrix. This case also
has an unmodeled random bias in its measurements. All of these examples share the same incorrect filter/
smoother for easy comparison, but the nature of its errors varies.
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A. Filter/Smoother Assumed Model Description

The filter/smoother for all of the examples has assumed dynamics and measurement models given by[
rk+1

vk+1

]
=

[
1 ∆t

0 1

][
rk
vk

]
+

[
0

1

]
wk (32a)

yk =
[
1 1

][rk
vk

]
+ νk (32b)

This system can be thought of as describing some one-dimensional motion, with position state rk and
velocity state vk. The sample interval, ∆t, is assumed to be 0.5 s. The scalar yk is a measurement. The
filter/smoother’s assumed system matrices Φfk, Γfk, and Hfk can be directly extracted from these equations.

Scalar process noise wk and measurement noise νk are assumed to be zero-mean, Gaussian, and white,
with joint covariance given by:

E

{[
wk
νk

][
wk νk

]}
=

[
Qfk 0

0 Rfk

]
=

[
1 0

0 1

]
(33)

where Qfk and Rfk are the nominal process and measurement noise covariances, respectively. In other
words, Eq. (33) specifies that the noise processes are assumed to be uncorrelated, and both are assumed to
have unit variance. The filter/smoother’s assumed square-root information matrices for process noise and
measurement noise are the inverse square roots of the corresponding assumed covariances matrices. In the
general case, such matrix square roots can be computed by a standard method such as Cholesky factorization.
For this scalar case, however, they are just Rfwwk = 1/

√
1 = 1 and Rfννk = 1/

√
1 = 1. Note that the

assumed measurement model form in the center column of Table 1 requires, without loss of generality, that
Rfννk be the identity matrix in order to be consistent with standard SRIF/S practice.

The initial state estimate and initial state error covariance are assumed to be:

x̄0 =

[
r̄0

v̄0

]
=

[
3

1

]
, P fxx0 =

[
σ2
r0 σrv0

σrv0 σ2
v0

]
=

[
10 0

0 5

]
(34)

The initial estimation error is further assumed to be uncorrelated with process or measurement noise at any
sample time. From Eq. (34), the assumed initial state square-root information matrix R̄fxx0 and the initial
information state z̄0 can be computed. They are:

R̄fxx0 =

[
1/
√

10 0

0 1/
√

5

]
, z̄0 =

[
3/
√

10

1/
√

5

]
(35)

The filter/smoother operates on measurements available once per sample interval ∆t for a total of 50 s (100
discrete-time samples). Note that all of the filter/smoother equations conform to the assumed forms in
Table 1 of Section A.

B. Example: Incorrect Initialization

The first example has error only in its initialization. Its dynamics and measurement models are assumed to
be correctly given by the filter/smoother’s models of Eqs. (32a) and (32b). Likewise, the Gaussian process
and measurement noise are assumed to be correctly modeled as zero-mean, white, and uncorrelated, with
unit variance. Process and measurement noise are uncorrelated with the initial estimation error.

Two kinds of error enter the initialization: An incorrect initial covariance and a deterministic estimation
bias. The filter/smoother assumes that the initial estimation error has zero mean and covariance P fxx0. This
example’s “truth” system instead has an initial estimate that relates to the “truth” initial state according
to:

x̄0 = x0 + x̃0 + xb0 (36)

where x̃0 is the zero-mean random component of the error in the initial estimate, and xb0 is a deterministic
non-zero bias error. The covariance of the random error x̃0 and the value of the bias xb0 are given by:

P xx0 = E
[
x̃0x̃

T
0

]
=

[
16 0

0 9

]
, xb0 =

[
−20

30

]
(37)
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Note that the covariance of x̃0 is the “truth” initial state error covariance P xx0, which in this case is not equal
to the filter/smoother’s initial state error covariance P fxx0. The corresponding “truth” initial square-root
information matrix for the state is

R̄xx0 =

[
1/4 0

0 1/3

]
(38)

To write this example’s system in consider form, one must first choose an appropriate consider state vector
xck. It must contain all the random uncertainty that enters via the initial estimate, the process noise, and
the measurement noise. One such definition is:

xck ≡



 R̄xx0x̃0

Rww0w0

Rνν0ν0

 k = 0

[
wk
νk

]
k > 0

(39)

Note how only the stochastic part of the initial estimation error enters this definition. Premultiplication by
the various square-root information matrices at sample k = 0 is required to ensure that xc0 has identity
covariance.

The “truth” system matrices Φk, Γk, and Hk are identical to those of the filter, as are the “truth” noise
square-root information matrices Rwwk and Rννk. There is no dynamics bias or measurement bias, i.e.,
bxk = 0 and byk = 0. Because there are no unmodeled disturbances to the system dynamics, the matrix Γxck
is an appropriately-sized matrix of zeros for all samples k.

Next, one can define the dynamics of the consider state xck. The first component at k = 0, R̄xx0x̃0,
exists only at this sample and thus has no true dynamics. Likewise, the noise components wk and νk are
both white, and therefore they do not depend on noise at previous samples. Consequently, the consider state
transition matrix Φck is also an appropriately-sized matrix of zeros for all samples k. In the special case of
k = 0, the matrix Φc0 is rectangular, with fewer rows than columns in order to omit the initial uncertainty
component at the next sample. The consider process noise influence matrix Γcck gives wk and νk their proper
statistics. Specifically,

Γcck =

[
R−1
wwk+1 0

0 R−1
ννk+1

]
=

[
1 0

0 1

]
∀ k (40)

The process noise information equation models the way the “truth” process noise statistics enter the
system. Because the process noise is unbiased, bwk is zero. As per the consider-form process noise information
equation of Table 1, the matrix Swck is given by

Swck =


[
0 −Rfww0R−1

ww0 0
]

=
[
0 0 −1 0

]
k = 0[

−Rfwwk 0
]

=
[
−1 0

]
k > 0

(41)

which picks out the properly weighted process noise component of xck. Note that the 0 on the top line
of Eq. (41) indicates a matrix of zeros with appropriate dimensions in all of this paper’s examples. The
previous sections did not use this convention because no dimensional ambiguities arose for 0 matrices. In a
similar manner to Swck, Hck extracts the properly weighted measurement noise component of xck:

Hck =


[
0 0 R−1

νν0

]
=
[
0 0 0 1

]
k = 0[

0 1
]

k > 0

(42)

The remaining and most difficult part of the consider form setup for this example relates to the initial
state information equation, where the only considered model errors enter. It is necessary to place the “truth”
initial information equation into its consider form, repeated here for convenience:

R̄fxx0x0 = z̄0 − S̄xc0xc0 − b̄c0 (43)

In order to determine the correct S̄xc0 and b̄c0, one multiplies Eq. (36) by the filter/smoother’s presumed
initial square root information matrix R̄fxx0, and one rearranges the result into something similar to Eq. (43).

R̄fxx0x0 = R̄fxx0x̄0 − R̄fxx0x̃0 − R̄fxx0xb0 (44)
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The first term on the right-hand side of Eq. (44) is by definition equal to the filter/smoother’s initial a priori
information state z̄0. The second term is zero-mean and stochastic, so by comparison of Eqs. (43) and (44),
S̄xc0 must be chosen such that S̄xc0xc0 = R̄fxx0x̃0. Consistent with the first line of Eq. (39), this is
accomplished by the definition:

S̄xc0 =
[(
R̄fxx0R̄−1

xx0

)
0 0

]
=

[
4√
10

0 0 0

0 3√
5

0 0

]
(45)

Likewise, the final terms in Eqs. (43) and (44) are both deterministic initial information biases. Setting them
equal yields:

b̄c0 = R̄fxx0xb0 =

[
− 20√

10
30√

5

]
(46)

At this point, all the consider form quantities have been defined, and the filter/smoother consider analysis
algorithms of Ref. 17 and the present paper’s Section III can be implemented.

In addition to implementation of the analytical consider algorithms, numerical Monte Carlo simulations
have been used to independently verify the computed smoothed matrix mean square errors. This technique
forms a large number of simulated estimation errors by comparing “truth” state vectors to estimated states
produced by the mismodeled filter/smoother. Each simulated estimation error history is a sample of a
random process, and sample means and matrix MSEs can be computed. As the number of trials increases,
the estimated matrix MSE or covariance approaches the true value. For each of this paper’s examples 5000
trials have been used.

To implement the Monte Carlo simulations, a “truth” model is created for the given example based on
the defined “truth” system matrices and “truth” noise covariances. The “truth” model takes as inputs the
initial state and histories of the measurement and process noise, which are constrained to have the “truth”
statistical properties as specified in the example. It outputs a “truth” history of the state vector and a series
of noisy measurements. The noisy measurements from the “truth” model are next used as the inputs to the
filter/smoother described in Section A, and it outputs histories of state estimates. Estimation error histories
are computed as the difference of these estimates and the states from the “truth” model.

Note that the “truth” model implementation does not use the special consider form defined in Section A.
This independence from the consider model form is an important feature of the Monte Carlo tests. Close
correspondence between the Monte Carlo and consider analysis results is unlikely unless the consider analysis
algorithms and the consider model form both have been implemented correctly.

Figure 1 plots representative results from the Monte Carlo and consider analyses for the incorrect initial-
ization example. It displays three versions of the smoothed root mean square (RMS) position error, which is
the square root of the diagonal element of the matrix MSE corresponding to position. The dashed line is the

0 5 10 15
0

2

4

6

8

10

12

14

16

Simulation Time, s

R
M

S 
Po

si
tio

n 
E

rr
or

, m

 

 

Monte Carlo
Consider Analysis
Incorrect Smoother

Figure 1. RMS smoother position errors for incorrect initialization example.

smoothed RMS error reported by the mismodeled filter/smoother, and the solid line is the true RMS error
for the smoother as computed by the consider analysis. The circles are the smoothed RMS errors computed
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from the Monte Carlo simulations. Note that only the first 15 s of the 50 s simulation time are shown in
Fig. 1. Where the consider and nominal smoother errors diverge, the Monte Carlo results follow the consider
analysis closely. The biased initial estimate and incorrect initial covariance only affect estimation uncertainty
for a relatively short time. After this initial transient behavior, the true filter/smoother accuracy returns to
the same level that it would have had with no model errors. The other filtering and smoothing results for
this example are qualitatively similar to those of Fig. 1.

In addition to true matrix MSE, the distributions of estimation error from the Monte Carlo simulations
have been used to compute 99% confidence bounds on the results. Such confidence bounds can indicate
whether a sufficiently large number of Monte Carlo trials has been used, so as to achieve a desired level of
accuracy. For the present example, the Monte Carlo and consider analysis results generally agree to well
within the confidence bounds. The confidence bounds are not shown in Fig. 1 in order to reduce clutter.

C. Example: Correlated Noise

The second numerical example is that of correlated process and measurement noise. In this example, the
“truth” system’s dynamics and measurements are still described by the models of Eqs. (32a) and (32b).
Also, the filter/smoother’s initial estimate and initial state error covariance are accurate, and the initial
estimation error is uncorrelated with process or measurement noise. The process and measurement noise,
however, both have much larger covariances than the assumed values, and they are correlated. Specifically,

E

{[
wk
νk

][
wk νk

]}
=

[
Qk Pwνk
Pwνk Rk

]
=

[
10 −3

−3 8

]
(47)

This case can be handled by defining the composite noise vector µk = [wk νk]
T
. With this definition, the

composite noise covariance matrix Pµµk is just the rightmost matrix of Eq. (47). Its inverse square root,
Rµµk, is found by Cholesky factorization of P−1

µµk to be approximately:

Rµµk =

[
0.3357 0.1259

0 0.3536

]
(48)

While one could compute the individual square-root information matrices for process and measurement
noise, Rwwk and Rννk, they are less meaningful in this example than the joint square-root information
matrix Rµµk.

To describe this system in consider form, the consider state vector xck must contain the “true”, correlated
process and measurement noise. It must also capture the initial estimation error at sample k = 0. A suitable
definition is:

xck ≡


[
ν̄x0

Rµµ0µ0

]
k = 0

[
µk
]

k > 0

(49)

where ν̄x0 is the initial information state error vector. It appears in the filter/smoother version of the initial
information equation in Table 1, and in this scenario is unchanged in the “truth” system. The vector µk
is the previously defined composite noise vector containing wk and νk. At sample k = 0, premultiplication
of µ0 by Rµµ0 causes the consider state vector xc0 to have identity covariance, as required by the consider
model form.

As in the previous example, the “truth” system matrices Φk, Γk, and Hk are the same as those used by
the filter/smoother. Also, there is no dynamics disturbance so Γxck is an appropriately-dimensioned matrix
of zeros. There are no non-zero deterministic biases for this example, so bxk, byk, bwk, and b̄c0 are all
zero-valued.

Based on the definition of the consider state in Eq. (49), the consider state dynamics equation can be
constructed. The noise contained in µk is white, and the initial information error ν̄x0 is only present at
sample k = 0, so Φck is a matrix of zeros for all samples k. At k = 0, Φc0 is rectangular with more columns
than rows in order to transition to the new version of the consider state vector with fewer components. The
matrix Γcck models the correlated statistics of wk and νk. Thus for all samples k it takes the form:

Γcck = R−1
µµk+1 =

[
2.9791 −1.0607

0 2.8284

]
(50)
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The matrix Swck models how the “true”, correlated process noise enters the filter/smoother. It extracts
the first component of the composite noise vector µk from xck and properly weights the result. In terms of
the defined quantities, it is:

Swck =

−Rfww0

[
1 0

][
0 R−1

µµ0

]
=
[
0 0 −2.9791 1.0607

]
k = 0

−Rfwwk
[
1 0

]
=
[
−1 0

]
k > 0

(51)

In the same manner, Hck selects the “true”, correlated measurement noise by extracting the second
component of µk from xck. The matrix that accomplishes this is:

Hck =


[
0 1

][
0 R−1

µµ0

]
=
[
0 0 0 2.8284

]
k = 0[

0 1
]

k > 0

(52)

Finally, the initial estimation error covariance assumed by the filter/smoother is correct. This is modeled
by S̄xc0, which selects the unweighted ν̄x0 that forms the first component of xc0:

S̄xc0 =
[
I 0

]
=

[
1 0 0 0
0 1 0 0

]
(53)

After applying the consider filter/smoother algorithms to this consider-form system, Monte Carlo simu-
lations have been used to demonstrate the correctness of the calculated true smoother covariances. Figures 2
and 3 display the filtered (a posteriori) and smoothed velocity error standard deviations, respectively. As in
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Figure 2. Standard deviations of filtered a posteriori
velocity error for correlated noise example.

0 10 20 30 40 50
0.5

1

1.5

2

2.5

3

Simulation Time, s

St
an

da
rd

 D
ev

ia
tio

n 
of

 V
el

oc
ity

, m
/s

 

 

Monte Carlo
Consider Analysis
Incorrect Smoother
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than filter here

Figure 3. Standard deviations of smoothed velocity
error for correlated noise example.

Fig. 1, the solid lines are the analytical results from the consider analysis and the circles are the numerical
results from the Monte Carlo simulations. The dashed lines show the incorrect standard deviations reported
by the original filter/smoother.

This example’s results demonstrate close agreement between the analytical and numerical techniques.
They further illustrate an important and counterintuitive feature of the consider analysis of a smoother. A
traditional linear filter/smoother has the property that its smoothed covariance is always less than its filtered
a posteriori covariance in a positive definite sense: P ∗fxxk ≤ Pfxxk. One can understand this property in
terms of the information used to form each estimate; information from future measurements always reduces
uncertainty rather than increasing it. This principle no longer holds for the consider analysis covariances:
P ∗xxk Q Pxxk. The smoothed velocity standard deviations of Fig. 3 are higher than the a posteriori standard
deviations of Fig. 2 near the beginning of the simulation. Although not shown, the same situation occurs for
this example’s position standard deviations. Not only does the smoother incorporate information from future
measurements into its estimates, but it also incorporates model errors that apply at future samples. For this
example, the additional model error effects added to the early estimates are greater than the uncertainty
eliminated by additional measurements. In other words, a smoother with the wrong kind of modeling error
may degrade rather than enhance estimation quality.
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D. Example: Unestimated Disturbances

As with the first two examples, the filter/smoother for the third example is the one described in Section A. In
this example, the deterministic biases bxk, byk, bwk, and b̄c0 are all zero. There are also no errors associated
with initialization or noise statistics. That is, P xx0 = P fxx0, Qk = Qfk, and Rk = Rfk. The noise elements
and initial estimation error are uncorrelated, and both the process noise and the measurement noise are
white and Gaussian.

Although the “truth” system matrices are identical to those assumed by the filter/smoother, the “truth”
dynamics and measurement models are affected by additional unmodeled disturbances. The “truth” dynam-
ics equation is disturbed by unmodeled, colored process noise that has a sinusoidally time-varying influence
on the velocity state. The measurements contain a constant random bias. Neither of these effects is estimated
by the filter/smoother. The “truth” dynamics and measurement models are given by:[

rk+1

vk+1

]
=

[
1 ∆t

0 1

][
rk
vk

]
+

[
0

1

]
wk +

[
0

sin
(

2πk∆t
Tper

)] ak (54a)

yk =
[
1 1

][rk
vk

]
+ νk + bk (54b)

where the period of the sinusoidal disturbance influence is Tper = 11.15 s and where the colored disturbance
ak is a first-order Markov process. The bias bk = b0 is assumed to be drawn from a zero-mean random
distribution with standard deviation σb = 2/3, and the initial noise state a0 is drawn from a zero-mean

random distribution with standard deviation σa = 4. The dynamics of the joint disturbance vector [ak bk]
T

are [
ak+1

bk+1

]
=

[
e−

∆t
τa 0

0 1

][
ak
bk

]
+

[
γa
0

]
wak (55)

with Markov time constant τa = 16.725 s and parameter γa = σa
√

1− e−2∆t/τa (approximately γa = 0.9636).
The process noise wak that drives the Markov process has zero mean and unit variance. Note, the steady-state
standard deviation of ak equals the initial standard deviation σa by construction.

To write this system in consider form, the consider state vector must include not only the correctly-
modeled initial uncertainty, process noise, and measurement noise, but also the unestimated dynamically
varying ak and the random bias bk. A suitable definition is

xck ≡




ν̄x0

a0/σa
b0/σb
Rww0w0

Rνν0ν0

 k = 0


ak
bk
wk
νk

 k > 0

(56)

As before, the consider vector at sample k = 0 contains an additional component for initial estimate uncer-
tainty, and its elements are defined such that it has identity covariance. With this definition of xck, one can
write the matrices for the consider dynamics equation for k > 0:

Φck =


e−

∆t
τa 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 =


0.9705 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 (57a)

Γcck =


γa 0 0

0 0 0

0 R−1
wwk+1 0

0 0 R−1
ννk+1

 =


0.9636 0 0

0 0 0

0 1 0

0 0 1

 (57b)
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Note how the consider dynamics matrices capture both the dynamic behavior of ak and bk and the statistical
behavior of wk and νk. At k = 0, the Γcck matrix is unchanged, but Φck becomes

Φc0 =


0 σae−

∆t
τa 0 0 0

0 0 σb 0 0

0 0 0 0 0

0 0 0 0 0

 =


0 0 3.8822 0 0 0

0 0 0 2/3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 (58)

in order to transition from the original consider vector at k = 0 to its new form for k > 0.
In contrast to the previous two examples, Γxck is a non-zero matrix. It specifies how the unmodeled

disturbance affects the filter’s state. It is given by:

Γxck =



[
0 0 0 0 0

0 σa sin
(

2πk∆t
Tper

)
0 0 0

]
=

[
0 0 0 0 0 0

0 0 0 0 0 0

]
k = 0[

0 0 0 0

sin
(

2πk∆t
Tper

)
0 0 0

]
k > 0

(59)

In the measurement equation, Hck must select the component of xck corresponding to measurement noise
νk. For this example, it must additionally select the component corresponding to the random measurement
bias bk. Note that this analysis considers the effects of a zero-mean random measurement bias rather than a
non-zero deterministic one. In other words, it predicts the true covariance when a bias with a given statistical
distribution is present, rather than the matrix MSE resulting from a specific deterministic bias. The matrix
Hck that extracts the measurement noise and bias is given by:

Hck =


[
0 0 σb 0 R−1

νν0

]
=
[
0 0 0 2

3 0 1
]

k = 0[
0 1 0 1

]
k > 0

(60)

The matrix Swck selects the components of xck related to process noise and indicates that “truth” and
modeled process noise are identical for this scenario:

Swck =


[
0 0 0 −Rfww0R−1

ww0 0
]

=
[
0 0 0 0 −1 0

]
k = 0[

0 0 −Rfwwk 0
]

=
[
0 0 −1 0

]
k > 0

(61)

Finally, the matrix S̄xc0 specifies that the error term in the initial state information equation is statistically
correct.

S̄xc0 =
[
I 0 0 0 0

]
=

[
1 0 0 0 0 0

0 1 0 0 0 0

]
(62)

At this point, the system has been written in consider form, and the consider algorithms and Monte Carlo
analysis can proceed in standard fashion.

Figures 4 and 5 show the filtered and smoothed velocity estimation error standard deviations. They are
labeled in the same manner as the corresponding results in Figs. 2 and 3. In Fig. 4, it is clear that the
unestimated sinusoidal disturbance in the velocity state corresponds to an unpredicted, roughly sinusoidal
variation of the velocity error standard deviation. The oscillation frequency in this plot is approximately
twice that of the disturbance, however. Both peaks and valleys of the sinusoidal disturbance result in high
uncertainty, and the uncertainty drops to near its nominal value when the disturbance passes through zero.

Similar to the preceding correlated noise example, the smoothed standard deviations of Fig. 5 are mostly
lower than the filtered a posteriori standard deviations of Fig. 4, but not at the beginning of the interval. It
is significant that the sinusoidal variation in standard deviation is greatly reduced by the smoother. For this
example, the consider analyses show that the filter is very sensitive to the modeling error while the smoother
is not: Note in Fig. 5 how the consider analysis standard deviation is nearly equal to that of the incorrect
smoother except at the beginning of the interval. This reduced smoother sensitivity stands in sharp contrast
with the filter results of Fig. 4.
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Figure 4. Standard deviations of filtered a posteriori
velocity error for unestimated disturbances example.
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than filter here

Figure 5. Standard deviations of smoothed velocity
error for unestimated disturbances example.

V. Conclusions

This paper has developed a new form of consider covariance analysis that can be applied to Rauch-Tung-
Striebel discrete square-root information smoothers. Smoother analysis is accomplished by performing a
backward analysis pass after having performed a forward-pass consider filter analysis. The analysis computes
the smoother’s true estimation error covariance or matrix mean square error, whichever is most relevant.
It generalizes to a wide variety of possible model errors. This generalization capability is enabled by the
definition of a new standard system form. Once the system modeling errors have been written in this
standard form, the analysis algorithms can be applied in a straightforward manner. A special feature of the
consider smoother analysis is its ability to “consider” the effects of both past and future model errors on the
smoothed estimates.

Several concrete examples illustrate the power of the new method while clarifying its implementation.
They include a system model with a biased initial estimate and an incorrect initial covariance, a model
with cross-correlated process and measurement noise, and a model with dynamically-varying unestimated
disturbance states. The ability to model three distinct varieties of errors in the same framework is thus
demonstrated. Monte Carlo simulations provide independent verification of the smoother consider analysis
equations. Comparisons of the filter and smoother results for two of the examples show that the addition
of a smoothing pass sometimes mitigates the effects of filter/smoother modeling errors, but can exacerbate
model error effects in other instances.
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