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ABSTRACT

A combined phase-locked loop/delay-locked loop has
been developed for tracking weak GPS C/A signals.  This
work enables the use of the weak side-lobe signals that
are available at geosynchronous altitudes.  The tracking
algorithm is an extended Kalman filter (EKF) that
estimates code phase, carrier phase, Doppler shift, rate
of change of Doppler shift, carrier amplitude and data bit
sign.  It forms a likelihood function that depends on the
errors between accumulations and their predicted values.
It recursively minimizes this likelihood function in order
to track the signal.  It deals with data bit uncertainty using
a Bayesian analysis that determines a posteriori
probabilities for each bit sign.  A second filter is used to
initialize the EKF.  This batch filter starts with coarse
carrier frequency and code phase estimates and refines
them using maximum likelihood techniques while
estimating the carrier phase and the first PRN code
period of a navigation data bit.  The resulting system can
acquire and maintain lock on a signal as weak as 15 dB
Hz if the receiver clock is an ovenized crystal oscillator
and if the line-of-sight acceleration variations are as mild
as those seen by a geostationary user vehicle.

I. INTRODUCTION

Tracking algorithms allow a GPS receiver to maintain
lock on the Doppler shift and the pseudo-random number
(PRN) spreading code of a received signal so that the
receiver can determine navigation observables and
decode the navigation data message.  One necessary
tracking algorithm is a delay-locked loop (DLL), which
maintains phase alignment between the received PRN
code and a replica in the receiver.  A receiver uses either
a frequency-locked loop (FLL) or a phase-locked loop to
align a replica of the carrier signal with the received
carrier.  Various designs exist for these tracking loops,
e.g., see Refs. 1 and 2.

The goal of the present work is to design a combined
DLL/PLL code and carrier tracking loop that is effective
at tracking GPS L1 Coarse/Acquisition signals (C/A) for
very low carrier-to-noise ratios.  This is to be
accomplished without prior knowledge of the navigation
data bits.  These tracking loops will be developed using
optimal estimation techniques.  Standard DLLs and PLLs,
while robust, are not optimal.  PLLs lose lock at low
carrier-to-noise ratios because of the nonlinearities in
their discriminators and because of dynamic variations of
the signal's phase 2.  Uncertainty about the navigation data
bits greatly exacerbates the problems of PLLs at low
carrier-to-noise ratios because bit error rates become
large and lead to a destabilizing feedback effect.  The
goal of using optimal techniques is to deal with these
problems in the best possible way and thereby lower the
carrier-to-noise threshold at which loss of lock occurs
for a given level of signal phase dynamics.

The motivation for this work comes from a desire to use
GPS for high-altitude spacecraft navigation, above the
constellation.  Typical off-the-shelf receivers can track
signals down to a carrier-to-noise density, C/N0, of about
35 dB Hz, which is marginally sufficient for tracking
main-lobe signals at geosynchronous altitudes using a
patch antenna.  Simulation studies of high-altitude
navigation performance predict that significant gains can
be made if signals can be used effectively down to 28 dB
Hz 3,4.  This present work aims to track signals in the 12-
29 dB Hz range.  This will enable the use of side-lobe
signals received at geosynchronous altitudes using a
patch antenna 5.  Additional motivation for this work
comes from a desire to track transient weak signals that
occur terrestrially during ionospheric scintillations 6.
Such an ability would enable physicists to extract a



greater amount of information from GPS soundings of
the disturbed ionosphere.

The present work makes three main contributions.  First,
it develops a new fine acquisition algorithm.  This
procedure is needed in order to provide the tracking
algorithm with accurate initial estimates of the carrier
frequency, carrier Doppler shift, code phase, and carrier
amplitude.  It starts with coarse estimates of the carrier
Doppler shift and the code phase and uses a batch
nonlinear filter to refine these estimates while solving
for initial carrier phase and carrier amplitude.  The
paper’s second contribution is the development of a
combined carrier- and code-tracking nonlinear Kalman
filter.  A Kalman filter is an optimal algorithm that is
efficient for real-time implementation because of its
iterative-in-time nature.  The third contribution is a
Bayesian adaptation of nonlinear Kalman filtering
techniques that deals effectively with the uncertain
navigation data bits when the carrier-to-noise density is
low.  The new fine acquisition and tracking algorithms
are tested using a high-fidelity simulation of the weak
GPS signal that exits a receiver’s RF front end.

Some of these algorithms require a special receiver
architecture.  The coarse and fine acquisitions must take
place in a software receiver environment because the
available algorithms for coarse acquisition of weak
signals 7 and the new algorithm for fine acquisition are
batch algorithms.  The new tracking algorithm operates in
an iterative causal manner using standard accumulations.
It can be implemented in a software receiver or in a
standard real-time receiver that uses a hardware
correlator.  This paper envisions a system that acquires
an initial batch of data for coarse and fine acquisition.
While it is processing this data, it continues to record a
stream of intermediate frequency data from its RF front
end for later use in tracking.  After it has finished its
coarse and fine acquisition calculations, it initiates the
new weak signal tracking algorithm.  It starts out tracking
stored data and operates faster than real-time in order to
“catch up”.  Afterwards it continues to track a given
signal in real time.  Systems that lack sufficient power to
do batch-mode acquisition, interim RF bit storage, and
“catch-up” tracking still could use the new tracking
algorithm.  Its weak signal capabilities would be useful
for a signal that suffered a power fade subsequent to
having been acquired by standard techniques.

The remainder of this paper includes 4 main sections
followed by conclusions.  Section II presents models of
the correlation measurements and the signal.  Section III
describes the fine acquisition algorithm.  Section IV
explains the Kalman filter-based tracking algorithm.
Section V presents simulation results for these
algorithms.  Section VI gives the conclusions.
II. MODELS OF THE CORRELATION MEASURE-
MENTS AND THE SIGNAL DYNAMICS

The batch fine-acquisition algorithm and the signal
tracking Kalman filter operate using dynamic models of
carrier phase, code phase, and carrier amplitude and
measurement models that give the relationship between
these signal quantities and the correlations that the
receiver uses to sense the signal.  These models assume
that the sampled signal coming out of the receiver’s RF
front end takes the form

yj = A(τj)d[τj–ts(τj)] C[τj–ts(τj)] cos[ωIFτj-φ(τj)] + nj (1)
where yj is the measured RF front-end output at sample
time τj, A(τ) is the carrier amplitude, d(τ) is the 50 Hz
navigation data bit stream of ±1 values, C(τ) is the 1.023
MHz C/A PRN bit stream of ±1 values, ts(τ) is the PRN
code phase expressed as a relative code start time, ωIF is
the RF front-end’s intermediate image of the nominal
GPS L1 carrier frequency, φ(τ) is the carrier phase that
results from accumulated delta range, and nj is an
element of a zero-mean discrete-time Gaussian white
noise sequence with a variance of σn

2.  The carrier-to-
noise density of this sampled signal is C/N0 =
A2/(4σn

2δτ), where δτ = τj+1 - τj.

Accumulation Measurement Models. The receiver
accumulates correlations between the yj data stream and
replicas of the code and carrier signals that it produces.
These accumulations take the usual forms
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where Ik(∆) and Qk(∆) are, respectively, the in-phase and
quadrature accumulations with an “early” offset of ∆,
which will be a late offset if ∆ < 0.  The function CNCO(τ)
is the receiver's reproduction of the tracked PRN code.
The subscript NCO is used because this function
simulates a code numerically controlled oscillator.  The
time tNCOk is both the NCO's prompt code start time and
the start time of the accumulation interval.  The initial
sample jk+1 is the minimum value that respects the bound
tNCOk ≤ τjk+1.  Each accumulation spans one PRN code
period; therefore, the number of samples Nk is the
maximum value that respects the limit τjk+Nk < tNCOk+1.  The
function φNCO(τ) is the receiver's reproduction of the
signal’s carrier phase.  The negative sign in front of it
presumes high-side mixing during one of the RF front-
end’s down conversion stages.

Equations (2a) and (2b) give a recipe for how the



receiver calculates its accumulations, but the fine
acquisition algorithm and the Kalman filter need a model
of how these accumulations are related to the actual
signal parameters in eq. (1).  This model takes the form:
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where kA  is the average carrier amplitude over the
accumulation interval, dm is the navigation data bit, ∆φk is
the interval average of the carrier phase error
φ(t)–φNCO(t), ∆tk = ts(tmidk)-tmidk is the code phase error at the
interval mid-point tmidk = (tNCOk+tNCOk+1)/2, R(t) is the
autocorrelation function of the PRN code, and nIk and nQk

are samples of zero-mean, uncorrelated Gaussian
discrete-time white noise sequences, both with variance
equal to Nkσn

2/2.  The model of R(t) that gets used has the
slope discontinuities of its triangular peak rounded off by
cubic splines.  These cause d2R/dt2 to be continuous,
which avoids problems in the gradient-based numerical
optimizations that are part of the fine acquisition
algorithm and the Kalman filter.  This modification of
R(t) is reasonable because the limited bandwidth of the
RF front end rounds off the actual correlation’s sharp
corners.

The Kalman filter make use of prompt and early-minus-
late accumulations that are summed over entire
navigation data bit periods.  These form the 4×1
measurement vector
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where m is the index of the navigation data bit interval, Nm

= (Nkm +Nkm+1 + …+ Nkm+19) is the number of RF front-end
samples in the data bit interval, km is the index of the first
PRN code period of the data bit interval, ∆eml is the time
offset between the early and late versions of the
receiver’s PRN code reconstruction, and ηeml =
2[1-R(∆eml)] is a constant.  Equation (4) gives a recipe for
how to compute ym from receiver data, but the Kalman
filter also requires a model of how ym is related to signal
parameters.  It takes the form:
ym
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where mA  is the average carrier amplitude over the bit
interval, ∆φm is the average carrier phase error over the
bit interval, ∆tm = ts(tmidm)-tmidm is the code phase error at
the mid-point of the bit interval tmidm = (tNCOkm+tNCOkm+20)/2,
Reml(∆t) = R(∆t+∆eml/2)-R(∆t-∆eml/2) is the early-minus-
late correlation function, and nym is a sample from a zero-
mean, uncorrelated Gaussian discrete-time white noise
vector sequence with covariance equal to the 4×4 identity
matrix.  Equations (4) has been specifically designed in
order to achieve this normalization of the nym

measurement error covariance.

When performing optimal estimation it is best to model
the raw measurements and their errors statistically and to
use those models directly in the design of the estimator.
One should avoid ad-hoc processing of measured data
prior to statistical analysis, which is why discriminators
are not used here.  This paper’s approach, however, is in
slight violation of this principle.  The rawest form of the
measurements is given in eq. (1).  The new algorithms do
not work directly with eq. (1) because their optimization-
based techniques would require many re-calculations of
correlations, which would be inefficient.  Also, the PRN
code function C(t) is not everywhere differentiable,
which would cause problems for these gradient-based
optimization procedures.  This "impure" approach does
not cause significant loss of performance because of the
following facts:  The measurements in eqs. (2a), (2b),
and (4) capture almost all of the important information
about the signal, the measurement models in eqs. (3a),
(3b), and (5) are faithful, and the noise in these
measurements remains Gaussian.

Carrier Phase, Code Phase, and Carrier Amplitude
Dynamic Models.  The carrier phase dynamics model
takes the form of a discrete-time triple integrator driven
by discrete-time white noise:
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where xφk = φ(tNCOk) – φNCO(tNCOk) is the difference between
the true carrier phase and the receiver NCO’s carrier
phase at the start of an accumulation interval, xωk is the
true carrier Doppler shift at the start of the interval, xαk is
the rate of change of the carrier Doppler shift at the start
of the interval, ωNCOk is the receiver NCO’s reconstructed
carrier Doppler shift for the interval, δtk = tNCOk+1 - tNCOk is
the length of the interval, and wφk is a member of a zero-
mean, discrete time Gaussian white-noise vector
sequence.  The states of this model can be used to deduce
the average carrier phase error over the accumulation
interval:

∆φk  = 
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This quantity is needed in eqs. (3a) and (3b).  A similar
carrier phase model applies when accumulations get
summed over bit intervals, as in eq. (4).  In this case, the
k index of the PRN code period in eqs. (6) and (7)
changes to the m index of the data bit period, and the
nominal accumulation interval increases from δtk =
0.001 sec to δtm = 0.020 sec.

The covariance of the wφk white-noise sequence is a
combination of three terms.  One models a random walk
acceleration of the line-of-sight (LOS) vector to the GPS
satellite, as in Ref. 8, and the other two model the effects
of receiver clock phase random walk and frequency
random walk, as in Ref. 9.  The wφk covariance takes the
form:

Pwφwφk = E{ T
kk ww φφ } =

qLOS
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The quantity qLOS is the intensity of the acceleration
random walk.  Sg and Sf are the receiver clock's frequency
and phase random walk intensities, respectively 9, and ωL1

is the nominal L1 carrier frequency.
The dynamic model of the PRN code phase propagates
the code start time from the beginning of one code
period to the next:
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where tsk and tsk+1 are the true start and stop times of the
PRN code period in question.  This model includes
carrier aiding via the second term on the right-hand side
of eq. (9).  The time increment δtnom is the nominal code
period, 0.001 sec.  The scalar wtsk is a white-noise
sequence that effectively models code-carrier
divergence as a random walk.  Its variance is E{wtsk

2} =
δtkqts, where qts is the random walk intensity.  The PRN
code start/stop times in eq. (9) can be used to calculate
the code phase error ∆tk that is used in eq. (3a) and (3b):

∆tk = (tsk+1 + tsk)/2  -  tmidk

= 
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A model similar to eqs. (9) and (10) applies for
propagation of the navigation data bit start/stop times
from one bit to the next.  In this case, the time index k
gets replaced by the time index m, and the interval δtnom

increases to 0.020 sec.

A random walk is used to model the dynamics of the
carrier amplitude:

Akk1k wAA +=+ (11)

Ak and Ak+1 are the carrier amplitudes at the times tNCOk and
tNCOk+1.  The scalar wAk is the zero-mean, white-noise
Gaussian sequence that drives the random walk.  Its
variance is E{wAk

2} = δtkqA, where qA is the random walk
intensity.  The amplitudes in eq. (11) can be used to
compute the average amplitude that is needed in eqs. (3a)
and (3b):

2)( /AAA k1kk += +   =  Akw5.0Ak + (12)

Equations (11) and (12) can be modified to propagate the
carrier amplitude from one navigation data bit start time
to the next.  The only necessary change is to switch from
the PRN code period index k to the data bit index m.

III. BATCH FINE ACQUISITION ALGORITHM

The Kalman filter tracking algorithm of this paper needs
an accurate initialization in order to function properly in
a weak signal environment.  The initialization procedure
starts with the usual search in code-phase/carrier-
Doppler space.  For purposes of the present paper, this
search is called the coarse acquisition.  A suitable batch
coarse acquisition algorithm that works well in a weak
signal environment is described in Ref. 7.  This algorithm
gives Doppler shift to an accuracy of about ± 6 Hz and
code phase to an accuracy of ± 0.1 chips.



The Kalman filter tracker needs the initial Doppler shift
to an accuracy about 0.25/τPLL Hz, where τPLL is the
characteristic settling time of the filter.  This time can be
on the order of 1 sec when tracking a weak signal with
slow dynamics.  In addition, the Kalman filter needs to
know the PRN code period that corresponds to the start
time of a navigation data bit, it needs an initial carrier
phase estimate that is accurate to within ± 45o, and it
needs initial estimates of the carrier amplitude and the
rate of change of Doppler shift.  The Kalman filter also
needs a covariance matrix for the initial estimation
errors in its 5 states.

A sequence of fine acquisition calculations is used to
determine suitable values for the Kalman filter
initialization.  The first calculation determines the
navigation data bit start time.  The second calculation
estimates initial values for the three carrier phase states,
xφ, xω, and xα, and it uses these estimates to get a first
estimate of the carrier amplitude, A.  The final
calculation refines the estimates of these 4 quantities
along with the estimate of the initial code phase, ts.

Open-Loop Accumulation Data Used in Fine Acquisition
Calculations.  The first step in the fine acquisition is to
calculate an “open-loop” time history of 1000 Hz
accumulations.  This computation uses the Doppler shift
and code phase estimates from the coarse acquisition,
ωNCO and tNCO0, to specify an “open-loop” carrier phase
time history via the formula φNCO(t) = ωNCOt and an “open-
loop” code phase time history via iteration of the
difference equation tNCOk+1 = tNCOk + 0.001ωL1/(ωL1+ωNCO).
These phase time histories are used to generate in-phase
and quadrature prompt and early-minus-late
accumulations using the formulas in eqs. (2a) and (2b).
Let the prompt accumulations be Ipk = Ik(0) and
Qpk = Qk(0), and let the early-minus-late accumulations
be Iemlk = Ik(∆eml/2) - Ik(-∆eml/2) and Qemlk = Qk(∆eml/2) -
Qk(-∆eml/2).  These quantities constitute the data that get
used throughout the remainder of the fine acquisition
calculations.  They are calculated for k = 0, …, Nacq.  Nacq

is normally chosen to equal the number of PRN code
periods used during the coarse acquisition.

Determination of the Start Time of a Navigation Data Bit.
The objective of the bit start time calculation is to
determine the value of k0, the PRN code period index
whose start time is also the start time of the first
navigation data bit.  The true value k0 is an element of the
set {0,1,2,…,19}.  It can be determined by an integer
optimization 1.

The merit function that gets optimized is the signal
power after summing over a pre-detection interval of 1
navigation data bit:
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where M is the maximum integer that respects the bound
M ≤ (Nacq-38)/20.  M+1 is the number of full data bit
intervals.  The integer Nm is the total number of RF front-
end samples during a proposed navigation data bit
interval, as in eq. (4).  It normalizes the different
summations.

The bit start-stop determination is a brute-force
optimization of J(k0).  All 20 possible values of k0 are
tried, and the value that yields the largest J(k0) gets
chosen as the correct bit start/stop index.  If M is large
enough, then this method is very likely to yield the
correct data bit start/stop time.  If M is not very large,
then one can increase M after the acquisition by using the
accumulations from the subsequent tracking interval.
This approach further increases the likelihood of getting
the correct value of k0, which is needed to calculate code
pseudorange.

Batch Fine Acquisition Cost Functions.  The batch
acquisition calculations make use of several different
cost functions that are related to the joint probability
density function of the noise terms in eqs. (3a) and (3b)
or (5).  The ultimate cost function that the initial
estimates xφ0, xω0, xα0, A0, and ts0 must minimize is
Ja(xφ0,xω0,xα0,A0,ts0)  =
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This cost function is a negative log likelihood function.
In other words, Cexp[-Ja(xφ0,xω0, xα0,A0,ts0)] is the joint
probability density function for the four accumulation
time histories Ipk, Qpk, Iemlk, and Qemlk for k = k0 to
(k0+20M+19) conditioned on the 5 unknown parameters
xφ0, xω0, xα0, A0, and ts0, where C is a normalizing constant.
The ln[2cosh()] terms are the results of probability
summations over the uncertain data bits dm under the



assumption that the +1 and –1 values are equally likely.
The dependence of Ja on xφ0, xω0, and xα0 comes partly
through the carrier phase model in eq. (6), but with wφk

set to 0 because the batch filter does not consider
process noise.  This yields the model ∆φk(xφ0,xω0,xα0)  =
[xφ0 +xω0(tmidk-tNCOk0) +0.5xα0(tmidk-tNCOk0)2 -ωNCOtmidk].  The
dependence of Ja on ts0 comes through the ∆tk terms.
They can be computed as functions of xω0, xα0, and ts0 by
iterating eq. (9) with wφk and wtsk both set zero.  This
iteration generates the time series tsk(xω0,xα0,ts0) for k = k0

to  (k0+20M+19), and eq. (10) yields ∆tk(xω0,xα0,ts0) =
[tsk+1(xω0,xα0,ts0)+tsk(xω0,xα0,ts0)]/2 - tmidk.

An approximation to the cost function in eq. (14) is
useful for estimating the carrier phase parameters xφ0, xω0,
and xα0 and the carrier amplitude A0.  It presumes that the
code phase is correct, which implies that ∆tk = 0, Reml(∆tk)
= 0, and R(∆tk) = 1.  This approximation makes the last
two summations of Ja constant, and therefore irrelevant
to any optimization.  An additional approximation
substitutes the absolute value function for the ln[2cosh()]
function.  Use of the absolute value function amounts to
“hard” bit estimation, in which the bit sign is set equal to
the sum over the data bit interval of Ipkcos(∆φk) –
Qpksin(∆φk).  The cost function approximation is
Jb(xφ0, xω0, xα0, A0)  =

∑
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The above cost function is quadratic in A0.  It can be
minimized by first minimizing the following cost
function
Jc(xφ0, xω0, xα0)  =
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with respect to xφ0, xω0, and xα0.  One then computes A0 =
-2Jcmin/Ntot to optimize Jb in eq. (15), where Ntot = Nk0 +
Nk0+1 +…+ Nk0+20M+19.

Yet another cost function needs to be defined in order to
deal with the fact that the cost function in eq. (16) has
many local minima.  A search on a grid has to be
performed in order to find the global minimum, and an
alternate cost function allows a reduction from a 3-
dimensional grid to a 2-dimensional grid.  The alternate
cost function is
Jd(xφ0, xω0, xα0)  =
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This cost function is a weighted sum of the norm squared
of the projection of the first two elements of the
measurement error vector nym of eq. (5) perpendicular to
the signal direction.  The importance of this cost
function is that it can be minimized with respect to xφ0

analytically, which reduces the dimensionality of the
search grid over which one must seek the global
minimum.  In order to minimize Jd with respect to xφ0,
define
Irm(xω0, xα0)  =
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Qrm(xω0, xα0)  =
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where the r subscript of the accumulations stands for
"rotated".  Neither of these accumulations depends on xφ0

because ∆φk-xφ0 is independent of xφ0, and the value of xφ0

that minimizes Jd for given values of xω0 and xα0 is
xφ0opt(xω0, xα0)  =
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A Sequence of Fine Acquisition Optimizations.  The first
step in the fine acquisition algorithm is an approximate
global minimization of Jc(xφ0,xω0,xα0).  This procedure
searches for the minimum on a grid in (xω0,xα0) space and
computes xφ0 at each grid point by using eq. (19).  Figure
1 explains why the phase xφ0 that minimizes Jd will be a
good approximation to the phase that minimizes Jc.  The
figure plots the rotated accumulations Ipsin(∆φ)
+Qpcos(∆φ) on the vertical axis versus Ipcos(∆φ)-
Qpsin(∆φ) on the horizontal axis for a case in which xω0

and xα0 are nearly correct.  The minimization of Jc with
respect to xφ0 performs an additional rotation in order to
maximize the spread of these points along the horizontal
axis, which would tend to align the solid line with the
horizontal axis.  The minimization Jd, rotates xφ0 in order
to minimize the spread of these points along the vertical
axis, which would tend to align the dash-dotted line with
the vertical axis.  Thus, these two minimizations tend to
produce nearly the same optimal xφ0 rotation, which is
why the eq. (19) value of xφ0 can be used to approximately
optimize Jc(xφ0, xω0, xα0).

The extent and spacing of the search grid in (xω0,xα0) space
must be chosen carefully in order to get a good solution.



The xω0 grid should be centered at the coarse acquisition
Doppler shift estimate, and it should extend in either
direction as far as the possible uncertainty in the coarse
Doppler shift.  A good rule of thumb is to extend for
±25% of the pre-detection bandwidth of the coarse
acquisition or ±100% of the Doppler grid spacing of the
coarse acquisition, whichever is greater.  For most of the
examples of this paper a range of ±12.5 Hz has been
used.  The xα0 grid should be centered at zero.  Recall that
xα0 models acceleration.  The extent of this grid should be
chosen to reflect the range of possible LOS
accelerations.  For a geosynchronous receiver, the LOS
acceleration comes mainly from gravitation and ranges
up to 0.081 g, which translates into xα0 = 26.3 rad/sec2

(4.2 Hz/sec).  The actual search should expand to include
a factor of safety which ensures that the global minimum
does not fall outside of the grid.  A range of ±33.6
rad/sec2 (±5.3 Hz/sec) has been used in the present study.

Fig. 1. Relationship of in-phase and quadrature
accumulations to cost functions Jc and Jd, an
18 dB Hz example.

The required xω0 and xα0 grid spacings vary inversely with
the length of the batch interval, Tfine = 0.020(M+1).  The
limits ∆xω0 ≤ π/(2Tfine) and ∆xα0 ≤ π/(Tfine

2) ensure that the
worst-case error between the true optimum and the
closest (xω0,xα0) grid value yields no more than a quarter
cycle of erroneous I/Q rotation over the data batch.  This
bound on the erroneous rotation prevents the
accumulations shown in Fig. 1 from being spun into a
circular distribution that washes out the two distinct I/Q
clouds whose detection is of central importance to phase
estimation.  For a typical batch duration of 3 seconds,
these limits translate into a grid of 300 frequency points
by 200 frequency-rate points, or 60,000 total points.

The second step of the fine acquisition algorithm
computes the exact global minimum of Jc(xφ0,xω0,xα0).  It
does this using Newton's method.  It starts with the 10
lowest isolated minima of Jc[xφ0opt(xω0,xα0), xω0, xα0] at the
grid points of the previous calculation and performs an
iterative Newton search from each point in order to
optimize Jc with respect to xφ0, xω0, and xα0.  The guarded
Newton search includes precautions that ensure global
convergence to a local minimum, such as modification of
the cost Hessian and adaptation of the search step size 10.
The point that achieves the lowest minimum using
Newton's method yields fine estimates for the carrier
phase, xφ0, the Doppler shift, xω0, and the Doppler shift
rate, xα0.  Ten different initial guesses are used in order to
increase the likelihood that one of the first guesses will
reach the true global minimum of Jc.

Results from the first two steps of a typical fine
acquisition are shown in Fig. 2.  It depicts a contour of
Jb(xφ0,xω0,xα0,A0) at grid points in (xω0,xα0) space with xφ0

given by eq. (19) and A0 given by the optimal formula that
appears just after eq. (16).  The cost Jb(xφ0,xω0,xα0,A0),
when optimized with respect to A0, is monotonically
related to Jc(xφ0,xω0,xα0); so, the Jb contour on Fig. 2 is also
indicative of the behavior of Jc.  The figure clearly shows
many distinct local minima of the Jb contour.  Their
minimum costs decrease as they approach the true
optimum.  The final true optimum in the figure, shown as
an asterisk, has been computed using Newton's method.
It does not lie exactly at a grid point, and its cost is lower
than that of the best grid point.

Fig. 2. Contour of Jb cost values and the true
optimum as generated by the first 2 steps of
the fine acquisition algorithm.

The third step of the fine acquisition makes additional
improvements to the estimates of xφ0, xω0, xα0, A0, and ts0

and computes an approximation of the Cramer-Rao lower
bound on the estimation error covariance.  The final
estimates are determined by performing a guarded
Newton search for the minimum of Ja(xφ0,xω0,xα0,A0,ts0)
from eq. (14).  The first guesses are the outputs of the
second step of the fine acquisition, except that the ts0



guess is taken from the coarse acquisition.  This search
converges rapidly, normally in 3-10 iterations.  The
approximate Cramer-Rao estimation error covariance is
the inverse of the Hessian of the Ja cost function at the
final optimum, Pxx0 =  [∂2Ja/∂x2]-1, where x is the 5x1
vector [xφ0,xω0,xα0,A0,ts0]T .

Mid-Point Calculations for Kalman Filter Initialization.
The fine acquisition algorithm's carrier phase and
Doppler shift estimates have their highest accuracy at the
mid-point of the acquisition batch interval.  Therefore,
the estimates at the mid point are used to initialize the
tracking Kalman filter.  The value mc = round(M/2) is the
index of the navigation bit whose start time is nearest to
the midpoint of the fine acquisition batch interval.  The
start time of this bit is tNCOk0+20mc, and ∆tc = tNCOk0+20mc - tNCOk0 is
the time offset of the midpoint from the start of the fine
acquisition batch interval.  The Kalman filter initializes at
time tk0+20mc using the initial state estimate
[(xφ0+∆tcxω0+0.5∆tc

2xα0),(xω0+∆tcxα0), xα0,A0,tsc]T , where tsc is
the estimated start time of the mid-point navigation data
bit as determined by iteration of eq. (9) with zero
process noise.  The covariance gets propagated to this
time point using the following formula:

Pxxc  =  TPxx0TT , where T  =  























10000
01000
00100
0010
0021 2

c

cc

t
tt
∆

∆∆

 (20)

This propagation neglects the effects of xω0 and xα0

uncertainty on tsc, which is reasonable because of their
small magnitude.

IV. AN EXTENDED KALMAN FILTER FOR
CARRIER AND CODE TRACKING

The extended Kalman filter tracking algorithm is a
straight-forward implementation of Kalman filtering
principles, except for two points.  First, it uses a
Bayesian integration process to deal with the uncertain
data bits.  Second, it uses nonlinear iteration in a
somewhat unconventional way during its measurement
update.  The first part of this section describes how the
Kalman filter operates when the navigation data bit sign
is assumed to be known.  The second part explains how a
Bayesian analysis deals with data bit uncertainty by
mixing the different estimates that result from different
assumptions about data bit signs.

Iterated Extended Kalman Filter with Assumed Bit Signs.
The iterated extended Kalman filter performs a single
measurement update and state propagation over a single
data bit interval by solving the following weighted least
squares problem:
find: xm, xm+1, and wm (21a)
to minimize:

J  =  2
1 [ )( mmxxm x~xR~ − ]T[ )( mmxxm x~xR~ − ]

+ )()( T
2
1

mwwmmwwm wRwR

+ )],(-[)],(-[ T
2
1

mmmmmmmmmm wxhdywxhdy

(21b)
subject to:

xm+1  =  fm(xm,wm) (21c)
where the unknown solution vectors are the state xm =
[xφm,xωm,xαm,Am,tsm]T  and the process noise wm =
[wφm

T ,wtsm,wAm]T .  The known data bit value is dm.  The
measurement function hm(xm,wm) is effectively defined by
eq. (5) with eqs. (7), (10), and (12) used to substitute for
∆φm, ∆tm, and mA in terms of xm and wm.  The discrete-time
dynamics function fm(xm,wm) is effectively defined by eqs.
(6), (9), and (11).  It is linear except for the carrier aiding
term in the tsm iteration, eq. (9), and the nonlinear term in
that equation can be well approximated by a linear model
because ωL1 is much larger than the Doppler shift.

The vector mx~  is the a priori estimate of xm based on all
of the accumulations up through data bit interval m-1, the
matrix xxmR~  is the corresponding a priori estimation
error square root information matrix, and the matrix

wwmR  is the a priori process noise square root
information matrix.  The corresponding a priori
covariances are related to these matrices as follows: Pxxm

= T1 −−
xxmxxmR

~
R
~

 and Pwwm = T1 −−
wwmwwmRR , where the notation

()-T  refers to the inverse transpose of the matrix in
question.  Note that mx~  and xxmR~  correspond to the
batch fine acquisition algorithm's mid-interval estimate
for m = 0, and they are determined by the previous
iteration of the Kalman filter for m > 0.  wwmR  is
determined from Pwwm, which is defined by the various
process noise covariances already given in eq. (8) and in
the text sections that follow eqs. (9) and (11) and by the
fact that wφm, wtsm, and wAm are uncorrelated.

The Kalman filter solution procedure first minimizes the
cost function in eq. (21b) with respect to xm and wm, and
then it uses eq. (21c) to propagate the solution to xm+1.
The minimization in eq. (21b) is an iterative Newton
minimization that is guarded in order to ensure
convergence.  This differs from a conventional iterative
Kalman filter because it uses step-size adaptation to
ensure convergence to a local minimum of a weighted
least-squares cost function.

The Hessian matrix of the cost function in eq. (21b),
which is required for Newton's method and for
calculation of 1xxmR~ + , is computed and stored in square



root form.  This procedure first computes the upper-
triangular square root of the Gauss-Newton
approximation of the Hessian, RG.  This calculation is
performed using QR factorization:
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Next, the procedure calculates the exact Hessian in the
factored form RG

TDRG, where the symmetric D matrix
differs from the identity by a term that involves the
second derivatives of hm with respect to xm and wm.  The
procedure next attempts to Cholesky factorize D into the
form RD

TRD = D.  If this factorization fails because D is
not positive definite, then the Hessian square root RH gets
approximated as RH = RG.  Otherwise, the Hessian square
root is computed exactly as RH = RDRG.  Standard Newton
techniques then use RH and the gradient of the cost
function to compute updates to xm and wm.

The last operation of the Kalman filter is the propagation
to determine 1mx~ +  and 1xxmR~ +  so that the algorithm can
operate recursively starting at the next data bit interval.
The solution to the optimization problem in eq. (21b),
the cost Hessian evaluated at the solution, and eq. (21c)
are used to do the propagation.  Suppose that the
estimates mx̂  and mŵ  minimize the cost in eq. (21b) and
suppose that the square root of the Hessian is
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Suppose, also, that the Jacobian of the dynamics function
in eq. (21c) is
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Then 1mx~ +  is determined by evaluation of eq. (21c) at
the current best estimate, i.e., 1mx~ +  = fm( mx̂ , mŵ ), and

1xxmR~ +  is computed via the following QR factori-
zation 11,12:
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where Qm is an orthonormal matrix and wwmR~  and

1xxmR~ +  are square, non-singular, upper-triangular
matrices.

The square-root Kalman filter form used in these
developments is important to successful implementation
of this tracking algorithm.  In theory, it would be possible
to develop a non-square root filter, but experience with
this particular problem has shown that non-square root
filters can diverge due to the build-up of numerical
round-off errors.  Square root filters are specifically
tailored to alleviate such problems 11.

Bayesian Treatment of Unknown Navigation Data Bits.
The Kalman filter of the preceding sub-section, which
assumes that the data bit sign is known, can be used as
part of a Bayesian analysis when the bit sign is unknown.
The Bayesian approach executes the filter calculations
twice, once for each possible navigation data bit sign.

Suppose that the results are )(+
+1mx~  and )(+

+1xxmR~  for the

assumption that dm = +1 and )(−
+1mx~  and )(−

+1xxmR~  for

dm = -1.  Suppose, also, that the eq. (21b) optimal costs

for these two different solutions are, respectively, )(+
mJ

and )(−
mJ  and suppose that the a priori probabilities of +1

and –1 bit values are )(+
mp  = )(−

mp  = 0.5.  Then it can be
shown that the a posterior probabilities of the +1 and –1
bit values are
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The derivation of these formulas uses the conditional
probability density function for xm given the
measurements and the bit sign assumption.  This
probability density equals Cexp(-J), where C is a
normalizing constant and J is the cost from eq. (21b).
The derivation approximates J by a quadratic expansion
about its minimum.  The leading term in the exponential

argument in eqs. (27a) and (27b), ][ )()( −+
mm J,Jmin , is not

needed in theory, but it is useful in practice as a means of
avoiding computer overflow or underflow problems.

One can see from eqs. (26)-(27b) that the optimal cost is
the important factor in determining the a posteriori
probabilities of the two bit signs.  All other things being
equal, the bit sign assumption that produces the smallest
optimal cost in eq. (21b) will have the highest a
posteriori probability.  This makes intuitive sense
because it gives preference to the bit sign whose
corresponding a priori expected measurement is closest



to the actual measurement.

The probabilities in eq. (26) can be used to "mix" the two
estimates and their square-root information matrices to
produce the expected state and the covariance of the
estimation error in the expected state.  This mixing
presumes that the estimation error distributions for the
two bit sign assumptions are Gaussian.  The mixed values
are:

1mx~ +   =  )(+
+1mp~ )(+

+1mx~  + )(−
+1mp~ )(−

+1mx~ (28a)
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+1mx~ - 1mx~ + )T]

(28b)
Thus, the mixed state estimate is a simple weighted sum
of the two state estimates.  The mixed covariance
estimate includes a weighted sum of the two covariances,
but it also includes terms that increase the covariance in
the directions from the mixed estimate to the estimates
that apply if one or the other bit sign assumption is
correct.  This makes sense because one or the other of
these estimates would be the best one if the bit sign were
known, which increases the uncertainty in these
directions.  Of course, if one of the a posteriori
probabilities is very near 1, then the mixed state estimate
and covariance are very nearly equal to the state estimate
and the covariance for that bit sign assumption

A square-root information version of eq. (28b) has been
developed.  The square root mixing method uses QR
factorization to calculate the square, non-singular, upper-
triangular matrix Rmix and the orthonormal matrix Qmix that
satisfy the following relationship:
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The following formula then gives the mixed square-root
information matrix:

1xxmR~ +   =  )(11
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1xxmmix
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(30)

The preceding calculations presume that )(+
+1mp~  ≥ )(−

+1mp~ .

If )(+
+1mp~  < )(−

+1mp~ , then eqs. (29) and (30) get modified

by interchanging the (+) and (-) superscripts.

These Bayesian calculations are critical to the successful
operation of the tracking Kalman filter at low carrier-to-
noise densities.  It can become difficult to determine bit
signs exactly when the signal is weak.  Consider Fig. 1.
Bit signs in this example are estimated according to
which side of the dash-dotted line each (I,Q) point lies
on.  One can see that the signs of a number of bits will be
mis-identified because the two clouds of (I,Q) points
intersect.  This intersection is the defining characteristic
of the low carrier-to-noise density case.  If there is a
carrier phase error, then (I,Q) points near the separating
line tend to get mis-identified in a biased way that can
destabilize a PLL.  The Bayesian method de-weights such

(I,Q) combinations because their )(+
+1mp~  and )(−

+1mp~  values

tend to be nearly equal.  This de-weighting helps to
counteract the destabilizing effect of systematic bit mis-
identification.

There are other possible algorithms for dealing with the
uncertain navigation data bits.  A number of them were
tried before the Bayesian method was developed.  One
method chose dm based on which value gave the lowest
eq. (21b) cost at xm = mx~  and wm = 0.  Another method
made a "soft" bit sign decision by including an ln[2cosh()]
term in the measurement error part of eq. (21b).  Neither
of these methods performed as well as the Bayesian
method.  They all suffered from a propensity to make too
definite of a decision about the correct bit sign when the
(I,Q) point was near the sign boundary as determined
from the imperfect carrier phase estimate.

Explicit Multi-Bit Bayesian Analysis.  It is possible to
extend the analysis of the previous sub-section to deal
with multiple data bits in a Bayesian manner.  Suppose
that Nb is the total number of data bits whose signs are
explicitly allowed to vary in the Bayesian analysis.  Both
possibilities for the current navigation data bit sign are
considered along with both possibilities for the most
recent Nb-1 navigation data bits.  Each of the 2Nb-1

different possible combinations of these recent bits
gives rise to an a priori state estimate and an estimation

error information matrix, )(i
mx~  and )(i

xxmR
~

 for i = 1,…,
2Nb-1, and each of these estimates has an a priori

probability associated with it, )(i
mp~ .

The estimation procedure computes 2Nb Kalman filter
estimates and square-root information matrices along

with their probabilities, )( +
+
,i

1mx~ , )( +
+

,i
1xxmR~ and )( +

+
,i

1mp~  for i =

1,…, 2Nb-1, and )( −
+
,i

1mx~ , )( −
+

,i
1xxmR~ and )( −

+
,i

1mp~  for i = 1,…, 2Nb-1.

In this formulation )( j,i
1mx~ + , )( j,i

1xxmR~ + and )( j,i
1mp~ +  are the

Kalman filter state, the square-root information matrix,
and the associated a posteriori probability under the
assumptions that the correct a priori state variable

estimate is represented by [ )(i
mx~ , )(i

xxmR
~

] and that the
correct current bit sign is dm = j.  The a posteriori
probabilities of the different cases are calculated using



modified versions of eqs. (26)-(27b):  The sum in the
denominator of eq. (26) is taken over all 2Nb ρ values, the
formulas for ρ in eqs. (27a) and (27b) get multiplied by

)(i
mp~ , the term | )( xxmR~det | in eqs. (27a) and (27b)

changes to | )( )(i
xxmR

~
det |, and the minimal cost in the

exponentials in eqs. (27a) and (27b) is taken over all 2Nb

cases.  Equations (28a) and (28b) also change in the
multi-bit formulation.  They compute weighted sums
over all 2Nb cases, and there is a corresponding change to
the square-root information matrix update in eqs. (29)
and (30).

This approach requires an additional mixing operation in
order to eliminate explicit consideration of the oldest

data bit.  Suppose that )(i
mx~ , )(i

xxmR
~

, and )(i
mp~  correspond

to one particular set of assumptions about the previous

Nb-1 data bit signs, and that 1)( +i
mx~ , 1)( +i

xxmR
~

, and 1)( +i
mp~

corresponds to identical assumptions except that the sign
of the oldest data bit is reversed.  Then the pair of

solutions [ )( +
+
,i

1mx~ , )( +
+

,i
1xxmR~ , )( +

+
,i

1mp~ ] and [ )1( ++
+

,i
1mx~ ,

)1( ++
+
,i
1xxmR~ , )1( ++

+
,i

1mp~ ] needs to get combined in order to

keep the number of solutions from growing.  This must
be done for all pairs whose only difference of bit sign
assumption is in the oldest bit.  Each such pair gets
mixed using eqs. (28a) and (29), except the mixing
probabilities used in those equations are

)( +
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1mp~ /[ )( +
+
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1mp~ + )1( ++
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,i
1mp~ ] and )1( ++

+
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1mp~ /[ )( +
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+

,i
1mp~ ].

The final probability that gets assigned to the mixed state
estimate and the mixed square-root information matrix is

)( +
+
,i

1mp~ + )1( ++
+

,i
1mp~ .

The advantage of the multi-bit method is that it makes
fewer approximations.  Use of the mixed state vector
estimate from eq. (28a) and the mixed square root
information matrix from eq. (29) in the next iteration of
the filter represents an approximation.  This
approximation does not account for uncertainty about
past bit signs as accurately as does the multi-bit method.
Thus, there is hope that the multi-bit method may be
better able to avoid carrier cycle slips and loss of PLL
lock.  The possibility of increased performance comes at
a cost.  The amount of computation grows as 2Nb, which is
the number of parallel Kalman filters that must be run
simultaneously.  Therefore, it is unlikely that Nb > 5 or 6
could be used practically, and it would be preferable if
the original 1-bit algorithm would suffice.

PLL and DLL Feedback Control Laws.  Ad hoc feedback
control laws are needed in order to complete the DLL
and PLL designs 8.  These feed the Kalman filter's state
estimates back to drive the carrier and code NCOs.
Suitable feedback control laws take the form:
tNCOm+3  =  1smt~ + +
1m1m1L
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ωNCOm+2  =  {(1-γ 2) 1mx~ +φ  + [δtm+1(1-2γ)+δtm+2] 1mx~ +ω

+ 0.5[(δtm+1+δtm+2)2 -2γδtm+1
2] 1mx~ +α

-  δtm+1(1-2γ) ωNCOm+1}/δtm+2 (31b)

where eq. (31a) is the DLL feedback and eq. (31b) is the
PLL.  The parameter γ is a PLL tuning parameter that
must be in the range 0 ≤ γ < 1.  Values near 1 give a slow
response and are preferred in the weak signal case.  The
performance of the Kalman filter is insensitive to this
tuning parameter so long as it is neither too small, which
could produce jerky response and possible aliasing
problems, nor too near 1, which could allow the NCO
Doppler errors to become large enough to adversely
affect signal strength.  γ = 0.9798 has been used
successfully in many of the cases that are discussed in
Section V.

These algorithms are completely causal.  They can be
implemented on-line given sufficient processor power.
The accumulations up through navigation bit interval m
are used to estimate the carrier phase, carrier amplitude,
and code phase states at time tNCOm+1, which is the end
point of the bit interval.  These estimates, in turn, are
used to derive NCO frequencies for the DLL and the PLL
for the navigation data bit interval that starts at time
tNCOm+2.  The Kalman filter computations and the feedback
calculations can be performed during the data bit interval
that starts at time tNCOm+1 and that ends at time tNCOm+2

because the necessary inputs are available at the start of
this interval, and the outputs are not needed until after it
ends.

V. SIMULATION TESTS OF FINE ACQUISITION
AND KALMAN FILTER TRACKING ALGORITHMS

Off-Line Signal Simulation.  The fine acquisition and
Kalman filter tracking algorithms have been tested using
a high-fidelity simulation of the outputs from an RF
front-end.  The simulated data have been generated off-
line in MATLAB along with truth values of the signal
parameters of interest.  The simulation includes the
effects of receiver thermal noise, receiver clock drift, 2-
bit digitization with automatic gain control, delay and
code distortion caused by the RF front-end's band-pass
filter, random-walk LOS acceleration, random-walk
code-carrier divergence, random-walk carrier amplitude
variations, and interfering GPS signals.  The reported
C/N0 values for these simulations are computed at the
input to the digitizer, and 1 dB is subtracted from the
result in order to account for loss during optimal 2-bit
digitization 2.



Two receiver clock models have been used in these
simulations.  One models a temperature-compensated
crystal oscillator (TXCO) and has worse performance
than the other.  Referring to eq. (8), its characteristics
are defined by the parameters Sf = 5×10-21 sec and Sg =
5.9×10-20/sec, which gives it a minimum root Allan
variance of 1.4×10-10 at τmin = 0.5 sec 9.  The other clock
model represents an ovenized crystal oscillator (OXO)
that is known to have flown in a space-qualified receiver.
Its characteristics are Sf = 5×10-23 sec and Sg =
1.5×10-22/sec, which yield a minimum root Allan
variance = 1.0×10-11 at τmin = 1.0 sec.

Two different values of the LOS acceleration random
walk intensity have been used.  One model uses qLOS =
0.005 rad2/sec5.  This is somewhat representative of the
LOS acceleration variations that occur at GEO due to
orbital motion of the GPS satellites.  It exaggerates the
effects of LOS dynamics for time scales shorter than
1,200 sec, and it under-estimates their effects over
longer time scales.  The important time scale to consider
is the response time of the Kalman filter tracker, which
is on the order of 1 sec.  Thus, 0.005 rad2/sec5 is a
conservative value for qLOS.  Another value that has been
used is qLOS = 0.5 rad2/sec5, which is very conservative.  It
provides an extreme test condition for the tracking
Kalman filter.

Fine Acquisition Results.  Consider the typical fine
acquisition case whose carrier phase error time history is
shown in Fig. 3.  This case corresponds to C/N0 = 18 dB
Hz.  It uses the poorer receiver clock and the larger of
the two qLOS acceleration random walk intensities.  The
batch interval is 3 seconds long.  The horizontal time axis
of the plot is measured from the center of the fine
acquisition data batch and covers the entire batch interval.
The two dash-dotted sigma curves plot the ± 1 σ
estimation error limits as determined by the batch filter.

Figure 3 is representative of all the fine acquisition
results.  The solid carrier phase error curve is roughly
cubic.  Its peak errors occur near the end points of the
batch interval, and its magnitude is relatively small near
the center of the interval.  The mid-point error is 14o; so,
it provides a very good phase initialization for the
Kalman filter tracking algorithm.  The batch filter's
predicted σ underestimates the actual error standard
deviation, which makes sense when one recalls that the
batch filter does not include a process noise model.  The
corresponding carrier frequency error, not shown, has a
maximum value of 0.6 Hz near the beginning of the batch
interval, but it is only 0.2 Hz at the mid point, where the
Kalman filter initializes.  The mid-point code-phase and
carrier-amplitude errors are, respectively, 0.022 chips
and 0.6 dB.  This fine acquisition's mid-point estimates
provide an excellent initialization for the Kalman filter
tracking algorithm.

Fig. 3. Carrier phase error time history for a fine
acquisition plotted over the acquisition
interval, TCXO receiver clock & 18 dB Hz
C/N0.

Batch fine acquisitions have been tested for C/N0 values
ranging from 15 to 24 dB Hz.  A batch interval of 6
seconds has been used for the 15 dB Hz cases, and
intervals of 3 seconds have been used for most of the
other cases.  Of 14 cases that have been tried, only 3
showed any anomalies, and only 1 showed a serious
anomaly.  Each anomaly took the form of a single half-
cycle slip of the carrier phase error during the fine
acquisition batch interval.  In two of these cases, the slips
occurred near an end of the fine acquisition interval, and
the mid-point estimates were accurate for all quantities
of interest.  Thus, these cycle slips posed no apparent
risk to the integrity of the acquisition.  These 2 cases
occurred at C/N0 values of 20 and 22 dB Hz and used the
poorer TCXO receiver clock.  The one problematic case
occurred at C/N0 = 15 dB Hz when using the TCXO.  The
half-cycle slip occurred near the mid-point of the batch
acquisition interval in this case, which made the
calculation unreliable.

The fine acquisition results can be summarized as
follows.  This summary excludes the one anomalous case
with a half-cycle slip near its mid-point.  The maximum
mid-point errors were 15o for carrier phase, 0.2 Hz for
carrier Doppler shift, 0.053 chips for code phase, and 0.8
dB for carrier amplitude.  The carrier phase, carrier
frequency, and code phase errors tend to be smaller when
the better clock, the OXO, is used.  For long batch
intervals, on the order of 6 seconds, a lower LOS
acceleration random walk intensity also improves the
accuracy of the phase and frequency estimation results.
The most important result of all is that each fine



acquisition successfully initialized the Kalman filter
tracker, as demonstrated by the fact that the tracker
maintained lock for a significant interval following the
initialization.

Kalman Filter Tracking Results.  The Kalman filter's
performance is illustrated by the results of 2 typical
cases.  Figure 4 presents the carrier phase error for these
two cases.  Both cases use the poorer receiver clock, the
TCXO, the high-dynamics assumption for the LOS
acceleration random-walk intensity, and C/N0 = 18 dB
Hz.  In fact, both cases track exactly the same RF front-
end data.  The only difference is that the top plot
explicitly considers data bit sign uncertainty only for the
current bit (Nb = 1), whereas the bottom plot explicitly
considers the 6 most recent data bit signs (Nb = 6).  The
Nb = 1 case maintains Doppler shift and code lock, but it
experiences numerous carrier cycle slips, 1 two-cycle
slip, 2 one-cycle slips, and 3 half-cycle slips, all in just
150 seconds of operation.  The Nb = 6 case, on the other
hand, experiences just 1 half-cycle slip in 150 seconds
with a few near slips as well.  The Doppler shift errors
show similar benefits from an increase in Nb.  The
Doppler shift errors are 2.05 Hz max and 0.33 Hz RMS
for the Nb = 1 case, but they diminish to 1.11 Hz max and
0.27 Hz RMS when Nb = 6.  Thus, the explicit
consideration of more than 1 data bit sign makes the
tracker more robust when operating on weak signals.

Fig. 4. EKF carrier phase tracking error time
histories for two cases, TCXO receiver clock
& 18 dB Hz C/N0.

The Kalman filter's computed estimation error standard
deviation indicates when there are possible cycle slip
problems.  The filter's standard deviation is derived by
using the xxmR~  square-root information matrix to
compute the estimation error covariance matrix.  The
dotted curves on Fig. 4 are plus and minus plots of the
filter's computed carrier phase estimation error standard
deviation.  These curves show spikes of about ¼ cycle at
the time of every cycle slip except for the last slip on the
top plot.  On the bottom plot, the standard deviation
curves show periods with elevated uncertainty whenever
the actual estimation error is experiencing some sort of
anomaly.  Thus, the filter's statistical model of its
performance is reasonable and informative, especially
when Nb is greater than 1.

The EKF tracking algorithm has been tried on a number
of cases.  If the filter uses Nb = 1 bit and if the poorer
TCXO receiver clock is used, then the EKF maintains
full lock down to C/N0 = 22 dB Hz.  Below this threshold
cycle slips start to crop up.  The EKF maintains code
lock and Doppler lock,. but with cycle slips, down to
C/N0 = 18 dB Hz.  At 15 dB Hz it eventually suffers a
total loss of lock.  If Nb increases to 4, then the tracker
maintains total lock down to C/N0 = 20 dB Hz.  The
frequency and average size of the cycle slips get reduced
at 18 dB Hz when Nb = 4, but the EKF still suffers a total
loss of lock at 15 dB Hz.  These results are summarized
in Fig. 5, which plots the tracker's RMS carrier phase
error vs. the carrier-to-noise density, C/N0, when using
Nb = 1 and the TCXO receiver clock.  The dash-dotted
curve with the circle markers gives the filter's theoretical
carrier phase error standard deviation, the dotted curve
with the square markers gives the actual RMS carrier
phase errors, and the solid curve with the triangle
markers gives the actual RMS carrier phase errors after
the cycle slips have been artificially removed.  This
figure shows that the system maintains full lock down to
22 dB Hz and that its theoretical performance matches
its actual performance even down to 18 dB Hz once
cycle slips have been accounted for.  An additional result
is plotted at C/N0 = 20 dB Hz for the case of Nb = 4.
These points show that the filter maintains lock in this
case and that the actual and theoretical performance
closely match each other.  The Nb = 1 tracker maintains
lock to a threshold that is 3 dB Hz below the tracking
threshold for the PLL considered in Ref. 2, and the lock
threshold of the Nb = 4 tracker is 5 dB Hz below that of
Ref. 2's PLL.

If the random dynamic variations of the carrier phase get
reduced, then the situation improves markedly.  If the
better receiver clock, the OXO, gets used and if the LOS
acceleration random walk intensity is reduced to a
moderately conservative value for GEO, then the Nb = 1
tracking algorithm maintains full lock with no carrier
cycle slips down to C/N0 = 15 dB Hz and possibly even
below that.  This represents a significant performance
improvement over the 23 dB Hz threshold for loss of
PLL lock given in Ref. 2 for the case of a perfect
receiver clock.



Fig. 5. EKF carrier phase tracking error
performance as a function of C/N0, using Nb =
1 and the TCXO.

Bit Errors, Sub-Frame Lock, and Autonomous Bit Aiding.
When there are no cycle slips, the bit error rates for
these new tracking algorithms approach the theoretical
bit error rates that would exist with perfect carrier
tracking.  For example, when C/N0 = 15 dB Hz a perfect
tracker would experience a bit error rate of 13.0%.  The
new Kalman filter has a bit error rate of 14.1% when
tracking a 15 dB Hz signal that has the benign phase
dynamics of an OXO receiver clock and geosynchronous
LOS accelerations.

Bit recognition becomes more problematic when cycle
slips occur, but the decoded bits can be used to achieve
sub-frame lock even during times of significant cycle
slips.  Suppose that one correlates the known preamble,
time-of-week (TOW), and 2nd-word parity bits of each
sub-frame with the tracker's decoded bits.  Suppose, also,
that one adds up these correlations over a number of sub-
frames, but only after taking the absolute value of each
sub-frame's correlation in order to undo the effects of
possible half-cycle slips.  Then the resulting correlation
function will have a peak when the known true bits are
aligned correctly with the decoded bits.  Figure 6 shows
the results of such a calculation.  It corresponds to the
same case as the top plot on Fig. 4, the case with C/N0 =
18 dB Hz, Nb = 1, and a TCXO.  The absolute values of
the correlations have been summed over 23 sub-frames.
This correlation has an obvious peak at the correct
correlation time, which means that sub-frame lock is
achieved.

The ephemeris data bits can be determined in a
straightforward manner when there are no cycle slips.
This is done by voting the different values of the same bit
that get collected from different 30-second frames.
Suppose that the bit error rate probability is perr and
suppose that the bit sign is to be decided by a simple
majority of the votes of its value from 2n+1 30-second
frames.  Then the probability of getting the wrong result
for any given ephemeris bit is
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Suppose that 2n+1 = 21 frames, which equals 630
seconds of tracking data, and that the bit error rate is perr

= 0.14, as in the previously mentioned 15 dB Hz case.
Then the probability that 21 votes will yield a majority
for the wrong bit sign is perrn = 3.6×10-5, and the
probability that all of the bits in a 30-second frame will
be "elected" to the correct value is 0.95.  Thus, 630
seconds of data will be enough to correctly decode the
ephemeris in 19 out of 20 cases.

Fig. 6. Correlation of known sub-frame marker bits
with tracker's bit estimates, using Nb = 1, the
TCXO, and C/N0 = 18 dB Hz, and summing
absolute values over 23 sub-frames.

The Kalman filter tracking algorithm lends itself to
partial bit aiding.  If one knows some of the bits, then one
can assign the values 1 or 0 to the a priori probabilities

)(+
mp  and )(−

mp .  The sub-frame preamble, TOW, and
2nd-word parity bits are known once sub-frame lock has
occurred.  In addition, many of the almanac bits and the
high bits of the ephemeris data can be known ahead of
time because they do not change often.  The details of
how best to use such information remains to be worked
out, but the current tracking system should provide a
means for exploiting it.  The bottom plot of Fig. 4 shows
that the EKF is cognizant of the possibility of a half-
cycle slip whenever one occurs if it uses Nb = 4.  The
sign of the correlation with the sub-frame preamble, the
TOW, and the 2nd-word parity bits could be used to
determine whether a half-cycle slip had occurred, and
that information could be used to go back and re-filter
the data in order to correct the cycle slips.  Re-filtering



can be accomplished rapidly using stored values of the
50 Hz I and Q accumulations along with the carrier
NCO’s phase.

VI. SUMMARY AND CONCLUSIONS

Fine acquisition and tracking algorithms have been
developed for the carrier phase, the carrier amplitude and
the code phase of a weak GPS L1 C/A signal.  The fine
acquisition algorithm is needed in order to provide initial
signal phase and amplitude estimates with sufficient
accuracy to allow the extended Kalman filter tracking
algorithm to achieve lock.  The fine acquisition starts
with rough estimates of the carrier Doppler shift and the
code phase.  It refines them by solving a sequence of
batch maximum likelihood estimation problems that are
defined based on a time series of in-phase and quadrature
accumulations.  It also estimates carrier phase and the
initial PRN code period of a navigation data bit.  The
tracking algorithm implements a combined PLL/DLL by
using iterated extended Kalman filtering techniques.
These techniques recursively optimize a fit between
50 Hz I and Q accumulations and models of these
quantities that include sines and cosines of carrier phase
errors and correlation functions evaluated at code phase
errors.  The Kalman filter includes a third-order carrier
phase dynamic model that approximates the effects of
line-of-sight acceleration and receiver clock drift.  Its
code phase dynamic model includes carrier aiding and
random-walk code/carrier divergence.  The Kalman filter
uses a special Bayesian analysis of navigation data bit
signs that develops alternate signal state estimates for
different assumptions about a bit’s sign.  It estimates a
posteriori probabilities for each sign and uses these
probabilities to mix the different state estimates into an
optimal reconstruction of the signal.

The fine acquisition algorithm and the EKF tracking
algorithm can successfully acquire and track very weak
GPS signals.  Signals with carrier-to-noise densities as
low as 22 dB Hz can be tracked with full carrier and code
lock when the receiver clock is a temperature
compensated crystal oscillator. Carrier cycle slips
develop as C/N0 drops below 22 dB Hz, and code and
Doppler lock are lost at 15 dB Hz.  There are several
avenues by which improvements can be made in these
thresholds.  If the algorithm applies its Bayesian analysis
to the 4 most recent data bits, then the full-lock
threshold decreases to 20 dB Hz.  If the temperature
compensated crystal oscillator is replaced by an ovenized
crystal oscillator and if the dynamic motion of the user
vehicle is benign, as is the case in geostationary Earth
orbit, then full lock can be maintained at C/N0 = 15
dB Hz.
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