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ABSTRACT  

 

A combined PLL/DLL algorithm is developed for 

tracking GNSS carrier phase and code phase using the 

output from a large number of correlators.  This approach 

has advantages for limb-scanning applications, in which 

useful meteorological information, available only at the 

initial rising time of a GPS satellite, is desired.  The 

technique uses the bank of correlators to span wide ranges 

of uncertainty in code phase and carrier phase, thereby 

avoiding the need for a separate acquisition and the 

associated loss of an initial span of data.  A fusion of 

optimal estimation methods processes the output from 

these correlators.  A batch optimization of a signal 

model’s fit to the many accumulations provides the 

Kalman filter with “measurements” of the most likely 

signal parameters, and the Kalman filter utilizes a signal 

dynamics model to provide estimates that drive the PLL 

and DLL. 

 

The effectiveness of this algorithm is demonstrated by 

using a truth-model simulation of a limb scan.  With this 

method and 50 Hz accumulations, pull-ins of at minimum 

122 Hz and 5 C/A code chips, for the PLL and DLL 

respectively, are achieved.  Moreover, uncertainties and 

errors for all signal parameters are rapidly driven close to 

zero.  The rising signal is tracked successfully from 

approximately 0.03 s since emergence. 

 

I. INTRODUCTION 

 

GNSS receivers must achieve and maintain lock on 

carrier Doppler shift and the pseudo-random number 

(PRN) code phase in order to properly track a signal and 

ascertain navigation observables.  A standard GNSS 

receiver accomplishes this with two separate, consecutive 

operations: acquisition and tracking 
1
.  Acquisition 

searches for initial estimates of Doppler shift and PRN 

code phase.  The tracking algorithm then uses these 

estimates to initiate a delay-locked loop (DLL), and either 

a frequency-locked loop (FLL) or a phase-locked loop 

(PLL), to respectively keep the replicas of the code and 

carrier signal aligned with those of the received signal. 

 

The objective of this paper is to create a joint PLL/DLL 

algorithm that functions normally even with large 

tracking errors, and that does not require the usual 

transition from initial acquisition to tracking.  The 

primary motivation for such an algorithm is to equip a 

LEO satellite, acting as a GPS receiver, with the means to 

capture data from a rising-GPS-satellite limb scan, 

without any loss of data during the time it would take to 

carry out a standard acquisition.   

 

To realize this goal of robustness and speed, the new 

tracking algorithm utilizes a bank of correlators to 

encompass uncertainties in code phase and Doppler shift, 

forming rectangular regions within Doppler-shift/code-

phase space. Figure 1 illustrates this concept.  Note that 

   indicates the Doppler shift axis, and    indicates the 

PRN code delay axis. 

 

In the space of these two signal properties, with time as a 

parameter, the estimated trajectory begins at the first 

estimate of Doppler shift and code phase.  The uncertainty 

at this time is relatively large, but the bank of correlators 

spans a range that contains the true point.  As time 

progresses, the level of uncertainty may change.  In the 

case depicted, the level shrinks, and therefore the size of 

correlator bank will also decrease. 
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Fig. 1. Using correlator banks to cover the true trajectory 

and range of uncertainty in Doppler-shift/code-

phase space, an illustration. 

This paper’s method seeks to continuously track time-

varying carrier phase, carrier Doppler shift, carrier 

amplitude and code phase.  Each bank of correlators, 

however, is similar to that of a brute-force acquisition, 

although possibly over a smaller range of uncertainty.  

This bank does not generate continuous numerically 

controlled oscillator (NCO) replicas of code and carrier 

phase.  One of the paper’s contributions consists of a way 

to use these correlator banks as though they produced 

continuous carrier and code NCO phases. 

 

The accumulation measurements, produced by the bank of 

correlators, are handled by optimal estimation techniques: 

batch nonlinear optimization and Kalman filtering.  Batch 

estimation, in this case the Levenberg-Marquardt method, 

acts as a measurement pre-processor to the Kalman filter, 

as shown in Figure 2.  One could interpret its pre-

processing calculations as a special coupled carrier-

phase/carrier-Doppler-shift/code-phase discriminator. 

 

 
Fig. 2. Block diagram of tracking algorithm, showing 

pre-processing behaviour of Levenberg-

Marquardt batch estimation. 

Batch nonlinear optimization yields “pseudo-

measurements” that the Kalman filter uses in the 

measurement update, while the main loop fulfills the 

ultimate purpose, which is tracking the estimates of 

carrier phase, code phase and carrier amplitude that 

constitute the states of the dynamic model.  

The new algorithm has been evaluated by using 

measurements from a truth-model simulation of limb-

scanning.  These measurements simulate the 

accumulations from a given correlator bank, based on the 

carrier Doppler shift and code phase offsets between the 

true limb-scanning signal and each element of the 

correlator bank.   

 

This paper begins by reviewing the signal model in 

Section II, from which the accumulation measurement 

model is derived in Section III.  It then gives the dynamic 

model for carrier phase, code phase and carrier amplitude 

in Section IV.  Sections V, VI and VII are devoted to the 

implementations of batch nonlinear optimization, the 

Kalman filter, and the PLL and DLL feedback control 

laws.  Lastly, in Sections VIII and IX, the paper explains 

the mechanics of the limb scan simulation and analyzes 

the results of applying the algorithm to the simulation. 

 

II. SIGNAL MODEL 

 

Batch optimization and Kalman filter algorithms require a 

model of how carrier phase, carrier Doppler shift, carrier 

amplitude and code phase are related to the correlations 

that are computed in a receiver.  A correct accumulation 

model starts with a signal model that describes the output 

of the RF front-end.  This model assumes that the receiver 

RF front-end produces an intermediate-frequency output 

signal in the form 
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(1) 

where   is the signal amplitude,    is the 50 Hz GPS 

navigation data stream of ±1 values,  ( ) is the PRN code 

of the received signal,    
 is the PRN code start time, 

          ⁄  is the non-dimensional Doppler on the 

PRN code chipping rate,     is the nominal intermediate 

frequency, the frequency to which the RF front-end mixes 

the nominal carrier frequency      ,    is the k
th

 

(negative) beat carrier phase,      
 is start time of the k

th
 

accumulation interval,       
is the average Doppler shift 

during the k
th

 accumulation interval, and    is a sample of 

zero-mean discrete-time Gaussian white noise with 

variance   
 . The carrier-to-noise density of the sampled 

signal is    ⁄   (   
   )⁄  , where            is 

the RF front-end sampling interval.  For the purposes of 

the paper, the navigation bit    is assumed to be known at 

all times.  In addition, note that    is the time integral of 

the carrier Doppler shift, which makes it the negative of 

the usual definition of beat carrier phase.  Also note that 

the DLL attempts to keep      
 close to    

.  The DLL 

keeps track of      
 as part of its strategy for providing a 

continuous record of its code phase estimates. 
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III. ACCUMULATION MEASUREMENT MODELS 

 

The receiver accumulates correlations between  (  ) and 

replicas of carrier and code signals.  The recipes for its in-

phase and quadrature accumulations take the form 
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where the ranges of Doppler shifts and code delays that 

define the correlator bank are the following: 
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where       and       are the carrier Doppler shift and 

code delay spacings of the correlator bank, and         
 

and          
 are, respectively, the predicted carrier 

Doppler shift and code delay error for the interval.     is 

the minimum   such that      
   ,    is the maximum 

  such that                 
, and      is the initial 

intermediate-frequency phase offset of the baseband 

mixing signal for the particular correlator and 

accumulation interval.  

 

This model is different from traditional continuous-phase 

carrier NCO’s, especially given that there are multiple 

NCO Doppler shifts.  Equations (2a) and (2b) constitute 

recipes that will actually be implemented in an FPGA, or 

some other digital hardware, to calculate the 

accumulations for its bank of correlators.  However, the 

above model is needed for relating these accumulations to 

the signal parameters that the estimation methods will 

determine. 

 

The model below is used to design estimators that deduce 

carrier phase, code phase and carrier amplitude from the 

accumulation outputs of the bank of correlators.  It has 

been constructed by substituting Eq. (1) into Eq.’s (2a) 

and (2b), and by using trigonometric product identities, by 

assuming that the summation will filter out frequencies 

near     , and by using approximations of nearly 

continuous-time sampling and large   . The final 

measurement model takes the form 
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where        
 (           

) (
    

 
)          is the 

total Doppler-shifted mixing signals’ intermediate-

frequency phase at the midpoint of the accumulation 

samples,     
     ,   *     (

    

 
)   +    - is 

the common-mode phase associated with the nominal 

intermediate frequency at the midpoint,      
 is average 

carrier phase over the accumulation interval, and 

       
 

 

 
(    

       
) is the code phase error at 

the midpoint of the accumulation interval.      
    

 

     
 is the code phase error at the start of the interval.  If 

the accumulation interval is defined as       
 

       
      

, then     (      
    )  ,  in the 

sinc functions of Eq. (4).  ( ) is the autocorrelation 

function of the PRN code.  It is modelled with cubic 

splines at its slope discontinuities, in order to make its 

derivatives continuous and also take into account the 

actual rounding of the function’s sharp corners due to the 

limited bandwidth of the RF front-end.   

 

The vector   
   

 has two elements, but the correlator bank 

produces P×L such vectors.  This entire set of correlation 

measurements can be stacked into the 2PL×1 vector 
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Similarly, the noise terms at the end of Eq. (4) can be 

stacked into the 2PL×1 noise vector   .  The zero-mean, 

Gaussian discrete-time noise vector    is characterized by 

its 2PL×2PL noise covariance matrix,   . The necessary 

formulas for its elements are   
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It is important to note that although optimal estimation 

works best when the measurement model refers directly to 

the raw measurements and their errors, as in Eq. (1), in 

this case such an approach would be inefficient.  The final 

measurement model in Eq. (4) and the related covariance 

matrix described in Eq.’s (6a) and (6b) retains most of the 

significant signal information, if the correlator bank 

carrier Doppler shifts and code delays are chosen wisely. 

 

IV. CARRIER PHASE, CODE PHASE AND 

CARRIER AMPLITUDE DYNAMICS 

 

The dynamics model for carrier phase assumes the form 

of three cascaded integrators driven by white nose: 
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where (      ) 
 
 are the states carrier phase, carrier 

Doppler shift, and rate of change of carrier Doppler shift 

at the start of the k
th

 accumulation interval, or in other 

words, at time      
.  Recall that       

 is the length of 

the k
th

 accumulation interval.     
, another zero-mean, 

discrete-time Gaussian noise sequence, is the carrier 

phase process noise.   

 

The states of this linear system can be used to derive the 

average carrier phase over the accumulation interval 

between times      
 and        
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This is the phase that is subtracted from the NCO phase in 

the measurement model expressed in Eq. (4). Similarly, 

the average Doppler shift over the accumulation interval 

is 
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(9) 

 

This is the Doppler shift that is subtracted from the NCO 

Doppler shift in the measurement model of Eq (4).  

 

The noise covariance matrix associated with the white 

process noise in this dynamic model takes into account 

the random walk acceleration of the line-of-sight (LOS) 

vector, as well as the random walks of the receiver clock 

frequency and receiver clock phase.  The covariance 

matrix for    
is  
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where      is the power spectral density of the 

continuous-time white noise that drives the acceleration 

random walk,    is the power spectral density of the white 

noise that drives the receiver clock frequency random 

walk, and    is the power spectral density of the white 

noise that drives the clock phase random walk 
2
. 

 

The dynamic model for the PRN code phase keeps track 

of the true code start and stop times associated with the 

nominal PRN code segment for the accumulation interval: 
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Where      is the nominal length of the code segment 

and     
is a white noise term that models the random 

walk of code phase. The second term on the right-hand 

side of Eq. (11) is the carrier-aiding term that captures the 

coupling between carrier Doppler shift and code chipping 

rate.  The dynamic model for code phase error is therefore 
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Note that the second and third terms on the right-hand 

side of Eq. (12) comprise the difference between the true 

length of the code segment and the DLL’s estimate of it.  

The DLL attempts to keep this difference near zero.  The 

PRN code phase error at the midpoint of the 

accumulation, which is needed as part of the argument for 

the autocorrelation function in Eq. (4) is 

 

       
     

 
 

 

                    

         
 
 

       

 
 

 
      

 
 

 
    

 

(13) 

 

Also modelled as a purely random walk is carrier 

amplitude: 

 

           
 (14) 

  

where    
is the discrete-time white process noise that 

drives the random walk. This equation can be used to 

deduce the average amplitude of the accumulations: 

 

    
 

 

 
     

 

 
     

 

  
(15) 

V. BATCH NONLINEAR OPTIMIZATION USING 

THE LEVENBERG-MARQUARDT METHOD 

 

Kalman filters typically contain two stages of 

computation: Dynamic propagation and measurement 

update.  Measurement updating adjusts the a priori states 

according to incoming measurements.  Batch optimization 

in the present algorithm provides these measurements as a 

multi-correlator vector discriminator of carrier Doppler 

shift, code phase, carrier phase and carrier amplitude. 

Specifically, batch optimization fits accumulation data 

coming out of the correlator bank to the measurement 

model in Eq. (4), and yields the most likely signal 

parameters associated with the best fit.  These parameters 

are the batch states for which the Levenberg-Marquardt 

algorithm seeks the solution. The states are average 

Doppler shift, midpoint code phase error, average carrier 

phase and average carrier amplitude, denoted in this paper 

by (      
        

      
     

).  The equations for 

these variables were given in the previous section. In 

essence, the output of the batch optimization algorithm 

provides something akin to partial measurement 

linearization and sensitivity adjustment of the 

accumulations about the optimal values of these signal 

parameters. 

 

Batch nonlinear optimization starts by choosing the 

correlator, indexed by    , that has the highest    
  accumulation power, along with its nearest neighbours.  

This search is conducted along both the Doppler shift and 

code phase directions, and the calculations are the same as 

those in a normal GNSS acquisition search.  Figure 3 

shows a superposition of continuous, theoretical power, 

which the receiver never actually sees, and discrete, 

correlator-measured power. 

 

 
Fig. 3. Measured power of accumulations from a 

correlator bank, superimposed on theoretical 

power. 

Each dot represents a correlator that mixes the RF front-

end output signal with the appropriate NCO Doppler shift 

and code phase offset within the specified ranges. Note 

that the effects of noise have been neglected in generating 

Figure 3, thereby causing the dots to fall directly on the 

theoretical plot. The number of correlators used will 

depend on the uncertainty of these two signal parameters 

in the current accumulation interval.  Uncertainty here is 

based on the Doppler shift and code phase offset 
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variances in the state error covariance matrix determined 

by the Kalman filter.  The spacing of the correlator grid is 

predetermined in the simulation with reasonable values 

that are close enough to find the peak, but not so close 

that they begin to cause excessive computational cost and 

numerical conditioning problems. 

 

The red dots depict the correlators that are chosen to have 

their accumulation measurements sent to the batch 

estimation algorithm for data fitting.  A clearer view of 

the correlator grid and these selected points is shown in 

the power contour plot of Figure 4. 

 

 
Fig. 4. Power contours mapped onto a bank of 

correlators. 

In the plot above, it is obvious that none of the chosen 

correlators, indicated in red, need to be exactly on the 

peak of the power function.  The Levenberg-Marquardt 

solution, however, will give the best accuracy if the 

selected points span the peak. 

 

Data fitting is performed by minimizing the cost function 
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The measurement vector     
is a truncated version of the 

vector of I’s and Q’s obtained directly from the correlator 

bank, and the vector     
 is the corresponding truncated 

version of    from Eq. (5).  This truncation eliminates the 

correlations associated with the blue dots in Figures 3 and 

4, to retain only those associated with the red dots, i.e. the 

correlations that have significant power.  The inverse 

covariance matrix     

   will likewise be a smaller 

version of the original noise covariance matrix.  The cost 

   is the negative log likelihood of its four input 

parameters. Therefore, the Levenberg-Marquardt solution 

is the maximum likelihood solution. 

 

Before implementing the Levenberg-Marquardt 

algorithm, it is helpful to recognize that      
 and     

 

can be optimized analytically.  In order to do this, define 
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(17) 

 

and set the derivative of the above cost function, with 

respect to this vector  , to zero.  The resulting necessary 

condition is linear in  , and can be solved exactly.  

Analytically optimized values of     
and      

can be 

calculated for every pair of       
and        

: 

 

  
   

 ‖ ‖ (18a) 

  
    

      (     ) (18b) 

 

The measurement model can be easily rearranged due to 

its structure so that this can be done. With analytic 

optimization, the Levenberg-Marquardt algorithm will 

only need to search in the two directions of Doppler shift 

and code phase error, instead of in four directions.  This 

cuts down much of the computational expense. 

 

The Levenberg-Marquardt implementation used here has 

two special features 
3
.  The first is its use of the exact cost 

function Hessian, rather than the approximate Hessian 

that uses only first derivatives of the measurement 

function     
.  The second feature is a modification of 

how the algorithm calculates the parameter that limits the 

step size.  In addition to the usual requirement of cost 

decrease, the parameter can be adjusted upward to 

compensate for an indefinite cost Hessian and to keep the 

solution within the bounds of the chosen points in 

Doppler-shift/code-phase space.  This limitation, paired 

with the use of the peak power point as the first guess, 

tends to guarantee that the solution is the global 

minimum. 

 

The final optimized batch states become the Kalman 

filter’s measurements.  These have been called “pseudo-

measurements” in the introduction due to the fact that 

they do not correspond directly to the measurement model 

in Eq. (4).  Instead, the Kalman filter compares these 

measurements to the models established in Eq.’s (9), (13), 

(8) and (15), respectively.  There is also an error 

covariance matrix associated with this measurement 

model.  It is set equal to the inverse of the Levenberg-

Marquardt optimal cost Hessian.  Although this is more 

like a Cramer-Rao lower bound, it is a reasonable choice. 

   

Note that an alternate method would be to apply a 

nonlinear Kalman filter directly to the accumulation 

measurements described in Eq. (4), but the present 
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method has the advantage of increased accuracy by 

“linearizing” about the parameters that give peak 

accumulation power, instead of only linearizing about the 

Kalman filter’s a priori estimate.  The Levenberg-

Marquardt algorithm is also a way to transition between 

the large collections of accumulations produced by the 

correlator bank to a reasonable set of measurements that 

the Kalman filter can easily incorporate. 

 

VI. IMPLEMENTATION OF KALMAN FILTER 

 

Two Kalman filters are tested for the tracking algorithm: 

A nonlinear extended square root information filter (EKF) 

and a nonlinear unscented Kalman filter (UKF). The 

results from these two filters have no significant 

difference.  The Kalman filter makes use of the dynamic 

models for carrier phase, carrier Doppler shift, rate of 

change of carrier Doppler shift, carrier amplitude and 

code phase error. This model is a combination of Eq.’s 

(7), (12) and (14), and is used in dynamic propagation.  

The model used for measurement update is the output of 

the batch optimization, as described in the previous 

section.  Both processes of dynamic propagation and 

measurement update are nonlinear due to carrier-aiding 

being present in code phase dynamics.  This nonlinearity 

is the only one remaining after Levenberg-Marquardt, and 

its weakness is likely the cause of the close similarity of 

results produced by the different extended filters. 

 

Also implemented within the Kalman filter are four data 

tests that are used in order to decide whether or not to 

perform a measurement update.  All four tests must be 

passed to perform an update.  The first test accepts data 

only if the peak accumulation power in the correlator 

bank does not lie on a boundary in the Doppler shift or 

code delay range.  The second test requires that the 

Levenberg-Marquardt algorithm converges in a 

reasonable number of iterations.  The third test examines 

the optimal Leveberg-Marquardt cost.  It should be half of 

a chi-squared sample from a distribution of degree 

    
  , where     

 is the number of elements in     
 

and in     
, or twice the number of selected red dots in 

Figures 3 and 4.  If the optimal Levenberg-Marquardt cost 

is too high, say high enough that the random probability 

of generating it is less than 10
-4

, then the measurement is 

rejected.  The fourth test performs the Kalman filter 

measurement update, and examines the value of the sum 

of the squares of the normalized innovation vector.  It 

should be a sample from a chi-squared distribution of 

degree four.  If the value is too high, then the 

measurement update is rejected.  Such rejections, 

however, are rare, except at very low carrier-to-noise 

ratios. 

 

 

 

 

VII. PLL AND DLL FEEDBACK CONTROL LAWS 

 

Feedback control laws are needed in order to complete the 

loop shown in Figure 2, by implementing the correlator 

block control segment.  These laws take the most recent 

Kalman filter a posterior state estimates to predetermine 

the accumulation intervals, the NCO carrier Doppler 

shifts, as defined in Eq. (3a), and the NCO code phase 

offsets, as defined in Eq. (3b).  The feedback from a given 

accumulation interval is used to set these values two 

accumulation intervals forward.   

 

The DLL feedback control law determines the k+2
nd

 

accumulation interval as follows:  

 

        
   ̂    

 
          

       ̂    
          ̂   

 
          

       ̂    
          ̂   

         
 

(19) 

 

The effect of this control law is to use the code phase 

offset estimate at        
, which is   ̂    

, and the 

predicted lengths of the k+1
st
 and k+2

nd
 intervals, so that 

the predicted code phase offset at        
 will be zero. 

 

The DLL also needs to predict the expected average code 

phase error for the k+2
nd

 accumulation interval.  Although 

the expected error is zero at the end of the interval, as per 

the design of Eq. (19), it is not necessarily zero at the 

beginning.  In fact, it equals half the sum of the first, 

second and fourth terms on the right-hand side of Eq. 

(19): 
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       ̂    
          ̂   

          
/ 

(

(20) 

 

    

Eq. (3b) also requires a choice of the PRN code spacing 

      and the number of code offsets P.       is normally 

chosen in the range 0.5 to 1 code chip lengths.  P is 

normally chosen so that        is four to six times the 

Kalman filter’s 1-σ code phase uncertainty, as computed 

from its covariance matrix.  Note that a minimum value of 

P = 3 is enforced when the code delay uncertainty is very 

small.  

 

The nominal Doppler shift predicted by the PLL for the 

k+2
nd

 accumulation interval is 
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Eq. (3a) also requires a choice of the Doppler shift 

spacing      and the number of Doppler offsets L.  

      is normally chosen in the range       ⁄  to 

       ⁄ , i.e. from ½ to 1 times the accumulation 

frequency.  L is normally chosen so that       is four to 

six times the Kalman filter’s 1-σ Doppler shift 

uncertainty.  Note, however, that a minimum value of L = 
3 is always used, even when the Doppler shift uncertainty 

is very small. 
 

The “hat” accents denote estimates given by the Kalman 

filter, for time        
.  These do not become available 

until shortly after that time, because they are based on 

accumulations from the interval that ends at that time.  

Presumably, the receiver’s processor can finish 

computing all of these feedback quantities during the 

interval from        
to        

, so that they will be 

available to the correlator block control segment during 

the interval from        
 to        

        
         

.   

 

VIII. LIMB SCAN SIMULATION 

 

The rising-GPS-satellite limb-scanning application, with a 

low-Earth orbit (LEO) satellite carrying a GPS receiver, is 

an ideal application for this acquisitionless tracking 

system.  The most useful meteorological data occurs just 

at the initial point when the satellite rises, but it is difficult 

to start tracking the signal immediately at this point with 

traditional receiver algorithms.  An acquisition would 

waste some of this valuable data.   

 

To investigate the new system’s performance on this 

problem, a high-fidelity truth-model simulation of a limb 

scan has been developed.  Its goal is to show that the new 

Kalman Filter can start tracking the signal with high 

accuracy on its carrier and code phase, immediately upon 

availability.  Thus, meteorological data could be captured 

for limb scans with minimum altitudes of only several 

meters. 

 

The truth-model simulation includes LEO orbital 

dynamics, namely, a circular orbit with 700 km of altitude 

and 98.2° of inclination.  The GPS satellite orbital 

dynamics are modelled using standard GPS ephemerides 

and orbit calculations.  As the orbital dynamics cause the 

signal to penetrate the atmosphere, the signal path 

experiences refraction dictated by the generalized 3D 

Snell’s law differential equation, and through modelled 

neutral atmosphere density and ionosphere electron 

density distributions.  The solution for the refracted path 

is that of a two-point boundary value problem (TPBVP) 

between each LEO and GPS satellite location.  Figure 5 

renders an example of a curve determined by the TPBVP 

solver. The plot shows the geometry of the Earth limb 

(blue), the straight-line path (green) which is occulted, 

and the refracted bent path (red) which has a minimum 

altitude of 54 m. 

 

 
Fig. 5. Sketch of limb-scan geometry. 

The effects on carrier Doppler shift and pseudorange are 

calculated at discrete time points and then interpolated 

between these times.  These effects are due to 

tropospheric and ionospheric refraction, and cause large 

initial perturbations in pseudorange and Doppler shift, as 

shown in Figure 6.  The modelled refraction includes the 

phenomena of geometric path bending, signal group-

delay/phase-delay in the troposphere, and group-

delay/phase-advance in the ionosphere. 

 

 
Fig. 6. Pseudorange and carrier Doppler shift 

perturbation time histories due to refraction. 

The change in Doppler shift in the first 20 seconds is 

about 300 Hz, translating into an apparent unmodelled 

acceleration of about 0.3 g at the L1 carrier frequency.  

The initial pseudorange offset is 1040 m, which implies a 

code phase uncertainty of about 3.5 chips of C/A code. 

 

The effects of receiver clock error are also simulated 

using a standard Markov model.  They are given in Ref. 4.  

 

IX. SIMULATION TESTING RESULTS 

 

The following are results of applying the new algorithm 

to the limb-scan truth-model simulation.  The overall 

simulation has been implemented in MATLAB and uses 
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correlator grid spaces of        37.5 Hz in Doppler 

shift and        0.75 chips in code phase offset.  These 

are reasonable, albeit ad-hoc, values that are large enough 

to avoid numerical issues such as poor conditioning of 

noise covariance matrices.  The receiver clock model uses 

the parameters     10
-22

 s and      7.6×10
-24

 s
-1

.  

These clock parameters yield a minimum root Allen 

variance of 10
-11

 at a delay of 1 s, consistent with an 

ovenized crystal oscillator.       is set to 140 rad
2
/s

5
;  this 

value is based on measures of the degree of error between 

“truth” phase and the rate at which it deviates from a 

quadratic in the limb-scan time histories.  The nominal 

model accumulation interval      is set to 0.02 s, giving 

50 Hz accumulations.  The carrier frequency       

corresponds to that of the L1 signal. 

 

Figure 7 plots the simulated time history of carrier 

Doppler shift, from the point that the GPS satellite rises 

above the Earth limb, as viewed by the LEO satellite.  It is 

important to consider not only the speed with which the 

PLL achieves lock, but also its successful pull-in from an 

initial Doppler shift offset of 122 Hz, despite using 50 Hz 

accumulations. These conditions would prevent a 

traditional 2- or 3-correlator from ever achieving lock. 

 

 
Fig. 7. Time history of carrier Doppler shift. 

Similar results are seen for PRN code phase error, shown 

in Figure 8.  The DLL also achieves and maintains lock 

very quickly, even with an initial code phase error of 5 

chips.  Uncertainty is plotted in the form of a 1-σ value, 

which also drops nearly to zero after only about 0.03 s. 

 

The simulated carrier-to noise ratio and its estimate are 

shown in Figure 9.  The signal starts with about 15 dB of 

attenuation due to atmospheric path loss and the effects of 

refractive lensing.  This power loss disappears after 60 s, 

by which time the signal path is largely clear of the 

atmosphere.  The congruence of the “truth” and estimated 

C/N0 plots implies that signal amplitude is also being 

tracked effectively. 

 

 
Fig. 8. Time history of PRN code phase error. 

 
Fig. 9. Time history of carrier-to-noise ratios. 

The final signal parameter of interest is carrier phase.  Its 

error time history is graphed in Figure 10.  Note once 

again that within about three accumulation intervals, the 

phase error is pulled in from a full cycle to a few degrees.  

The ±1-σ uncertainty is effectively infinite at filter 

initialization, but it decreases to a very small value within 

the first few accumulation intervals. 

 

 
Fig. 10. Time history of carrier phase error. 
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The algorithm responds to the aforementioned drops in 

uncertainty by lowering the number of correlators that 

must be used, saving computational cost.  Time histories 

of these numbers are shown in Figure 11.  The bank of 

correlators starts with L = 21 NCO Doppler shifts and P = 
21 different NCO code phase offsets.  The equality of the 

numbers is largely a coincidence resulting from initial 

uncertainty ranges.   

 

 
Fig. 11. Time history of correlator bank size. 

The rapid reductions in uncertainty, as indicated by the 

Kalman filter covariance matrix, translate into drops in 

the numbers of NCO grid points both in the Doppler shift 

offset direction and in the code offset direction.  After a 

short time, only three correlators are used in each 

direction to maintain lock. 

 

CONCLUSION 

 

A new GPS signal tracking algorithm has been developed 

to combine PLL and DLL functions with accumulation 

data from acquisition-like correlator banks.  Its purpose is 

to achieve rapid tracking with large pull-in regions, 

without the need for a separate initial acquisition.  The 

new tracking algorithm chooses the correlator with the 

highest accumulation power from the bank of correlators, 

along with some of its close neighbours in Doppler shift 

and code phase offset.  The accumulation measurements 

from these selected correlators are passed onto a batch 

nonlinear optimization method, an intermediate step to the 

Kalman filter that retrieves the most likely signal 

parameters.  The Kalman filter treats the optimized batch 

states as measurements and provides the PLL and DLL 

control laws with the necessary inputs for defining the 

region that must be covered by the bank of correlators. 

 

The algorithm’s use of acquisition-like data enables it to 

achieve robust tracking in the presence of highly dynamic 

signals with large initial uncertainties.  For example, PLL 

pull-ins from 122 Hz of initial Doppler error can be 

achieved using 50 Hz accumulations, as can DLL pull-ins 

of from an initial error of 5 C/A code chips.  This 

capability may be very useful in tracking the signal from a 

rising GPS satellite, received aboard a LEO platform.  

The resulting limb-scan data, because near-instantaneous 

tracking can be achieved, will provide information about 

meteorological conditions within a few meters of the 

Earth’s surface. 
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