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ABSTRACT

A method for the removal of ionospheric effects from
single-frequency non-GPS radio navigation data through
the use of data collected from a single collocated dual-
frequency GPS receiver is presented. The method uses a
local ionosphere model to estimate the total electron con-
tent (TEC) along any line of sight that differs from the GPS
satellite lines of sight. Two novel models are investigated,
a thick-shell model and a thin-shell model. It is shown that
the thin-shell model is more observable than the thick-shell
model, and different variations of the thin-shell model are
analyzed for utility in this application. A novel method for
determining the Gauss-Markov dynamics model tuning pa-
rameters using the International Reference Ionosphere (IRI)
model is also presented. The algorithm is tested using real
GPS observables, and modest improvement is shown over
an existing method.

1 INTRODUCTION

A method for the removal of ionospheric effects from
single-frequency non-GPS radio navigation data is desired.
The strategy adopted uses data from a single collocated
dual-frequency GPS receiver. This data is used in conjunc-
tion with a local ionosphere model to estimate different lines
of sight in the ionosphere, as opposed to kriging, where one
attempts to interpolate a random field.

The concept is illustrated in Fig. 1, where rRx
is the re-

ceiver location and TECL1,L2 is the TEC along the GPS
satellite lines of sight. The TEC can be measured along the
lines of sight to the GPS satellites because they operate on
two frequencies. The TEC cannot be measured along the
line of sight to the LEO satellite because it only operates
on a single-frequency. The additional ionospheric electron
content will be approximately removed using the IRI model.

Figure 1 Dual-frequency measurements of the ionosphere
used to estimate TEC along other lines of sight

There have been a number of papers that have explored the
concept of a local ionosphere model using dual-frequency
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receivers. Reference [1] at the University of Calgary used
a thin-shell ionosphere model at a fixed altitude, with first
and second-order derivatives in Vertical Total Electron Con-
tent (VTEC) with respect to latitude and longitude. Ref-
erence [2] used a single receiver and created a “circus tent”
local ionosphere model, which is effectively a model based
on different sections of sight in the elevation and azimuth
space. The International GNSS Service [3] also creates
global maps of VTEC using a fixed altitude thin-shell model
and an array of receivers.

This paper puts forth, and investigates the validity of, two
different local ionosphere models. The first is a thick-shell
Chapman layer model with latitude and longitude varia-
tions in VTEC, scale height, and height of maximum elec-
tron density. The second is a thin-shell model with latitude
and longitude variations in height and VTEC. Also pre-
sented is a new method of using the IRI model to determine
an initial starting point for tuning of the filter dynamics
model parameters.

This paper starts with the derivation of the relevant GPS
observables equations and then moves on to the derivation
of the thick-shell and thin-shell local ionosphere models.
From there the paper develops a first-order Gauss-Markov
dynamics model for use in Extended Kalman Filtering. The
parameters of the Gauss-Markov model are derived from
batch estimation of the local models using synthesized TEC
measurements from the IRI model at the desired receiver
location, at intervals throughout a given day. The validity
of the local ionosphere models are first evaluated with truth
model simulations, and then with batch estimation of TEC
measurements constructed from the IRI model. The pa-
per concludes with testing of the presented algorithm using
observables from a dual-frequency GPS receiver.

2 IONOSPHERIC IMPACT ON GPS OBSERV-
ABLES

To most GNSS users, the ionospheric effects are typically
regarded as a nuisance parameter that degrades the fidelity
of the navigation solution. The ways in which the iono-
sphere affects the GPS observables, through group delay
and phase advance, have been described by many authors
and will be presented here only briefly, [4], [5] and [6].

The ionosphere acts on the pseudorange or phase of the
signal by delaying or advancing it in proportion to the
square of its frequency, as shown in Eq. 1.

δsat,j
Iono = 40.3

TECsat,j
Rx

f2
(1)

The ionospheric delay shows up in the pseudorange equa-
tions, Eqs. 2 and 3, where P sat,j

Rx,L1
is the pseudorange from

satellite j to the receiver at the L1 frequency, ρsat,j is the
actual physical range, c is the speed of light, δtRx is the
receiver clock bias, δtsat,j is the satellite clock bias, δsat,j

trop

is the tropospheric delay, δsat,j
Iono,L1

is the ionospheric delay
at the L1 frequency, εsat,j

L1
is the satellite frequency depen-

dent bias, and εRx,L1 is the receiver frequency dependent
bias. The variables are the same for Eq. 3, but at the L2

frequency.

P sat,j
Rx,L1

= ρsat,j + c(δtRx − δtsat,j) + δsat,j
trop + δsat,j

Iono,L1

+ c(εsat,j
L1

+ εRx,L1) (2)

P sat,j
Rx,L2

= ρsat,j + c(δtRx − δtsat,j) + δsat,j
trop + δsat,j

Iono,L2

+ c(εsat,j
L2

+ εRx,L2) (3)

The ionospheric delay shows up in the phase equations,
as shown in Eqs. 4 and 5, where the repeated variables are
the same as in the pseudorange equations, Eqs. 2 and 3.
Lsat,j

Rx,L1
is the phase range from satellite j to the receiver at

the L1 frequency, λL1 and λL2 are the wave lengths at L1

and L2 frequencies, respectively. λL1Φ
amb,j
L1

and λL2Φ
amb,j
L2

are the phase ambiguities for satellite j at the L1 and L2

frequencies, respectively. The variables are the same for
Eq. 5, but at the L2 frequency.

Lsat,j
Rx,L1

= λL1Φ
sat,j
Rx = ρsat,j + c(δtRx − δtsat,j)+

δsat,j
trop,L1

− δsat,j
Iono,L1

+ c(εsat,j
L1

+ εRx,L1) + λL1Φ
amb,j
L1

(4)

Lsat,j
Rx,L2

= λL2Φ
sat,j
Rx = ρsat,j + c(δtRx − δtsat,j)+

δsat,j
trop,L2

− δsat,j
Iono,L2

+ c(εsat,j
L2

+ εRx,L2) + λL2Φ
amb,j
L2

(5)

The paper develops its Kalman Filter measurement model
by taking the single difference of both the pseudorange and
phase equations, to produce Eqs. 6 and 7, where ∆P sat,j

Rx is
the difference in the pseudoranges on the L1 and L2 frequen-
cies, ∆T sat,j

CB is satellite j’s interfrequency pseudorange de-
lay (code bias), and ∆TCB,Rx is the receiver interfrequency
pseudorange delay. In addition, ∆ρamb,j is the difference in
the phase ambiguities at the L1 and L2 frequencies. The
single difference removes the actual range between the re-
ceiver and satellite along a given line of sight (LOS), the
satellite clock bias, the receiver clock bias and the tropo-
spheric delay.

∆P sat,j
Rx = P sat,j

Rx,L2
− P sat,j

Rx,L1
= (δsat,j

Iono,L2
− δsat,j

Iono,L1
)

−c(∆T sat,j
CB )− c(∆TCB,Rx) (6)
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∆Lsat,j
Rx = Lsat,j

Rx,L1
− Lsat,j

Rx,L2
= (δsat,j

Iono,L2
− δsat,j

Iono,L1
)

+c(∆T sat,j
CB ) + c(∆TCB,Rx) + ∆ρamb,j (7)

∆ρamb,j = λL1Φ
amb,j
L1

− λL2Φ
amb,j
L2

(8)

The differenced pseudorange equations provide an unam-
biguous, but noisy, measurement of TEC. The phase mea-
surements are much more precise, with about an order of
magnitude less noise, but they require estimation of the
delta phase ambiguities, Eq. 8. The receiver code bias and
satellite biases drift very slowly and will be assumed to stay
constant over a full day. Reference [7] showed that the day-
to-day variations of the satellite interfrequency code biases
over a five week span are less than 0.3 ns, and receiver bi-
ases are on the order of 0.5 ns. The satellite code bias is
provided by JPL, with approximately one week latency, and
will be assumed to be compensated for in the rest of this
paper.

This assumption is necessary because a single dual-
frequency receiver cannot estimate the satellite biases. The
use of old satellite biases will introduce some errors in the
final filter results, but they should have an acceptably small
magnitude.

Rearranging Eqs. 6 and 7, and using the first-order model
approximation of range delay and phase advance, Eq. 1, one
arrives at the final measurement model equations, Eqs. 9
and 10, where fL1 is the L1 frequency and fL2 is the L2

frequency. One should take note that the TEC terms have
the same sign and the interfrequency bias terms have the
opposite sign because of an intentional sign reversal be-
tween the definitions of the pseudorange and phase single
differences in Eqs. 6 and 7.

∆P sat,j
Rx = 40.3

(
f2

L1
− f2

L2

f2
L1

f2
L2

)
TECsat,j

Rx

−c(∆T sat,j
CB + ∆TCB,Rx) (9)

∆Lsat,j
Rx = 40.3

(
f2

L1
− f2

L2

f2
L1

f2
L2

)
TECsat,j

Rx

+c(∆T sat,j
CB + ∆TCB,Rx) + ∆ρamb,j (10)

TEC is defined as the integrated electron density between
the receiver and satellite.

TEC =
∫ sat

Rx

ρelec(LOS, α) dα (11)

LOCAL THICK-SHELL MODEL WITH ALTI-
TUDE AND THICKNESS VARIATIONS

The GPS satellites provide an estimate of TEC along GPS
satellite lines of sight, but give no information about TEC
along other lines of sight. Local ionosphere models can pro-
vide the means to predict TEC along other lines of sight.
Two local ionosphere models are presented, a thick-shell
model and a thin-shell model. The thick-shell model is de-
rived from the Chapman profile [8], which is a simple pro-
file that is used to describe the variation of electron density
with altitude.

The Chapman profile in Fig. 2 is created using Eq. 12,
where hscale is related to the width of the profile, hmax is
the altitude of maximum electron density, and ρmax is the
maximum electron density. This profile can also be formu-
lated using VTEC instead of ρmax, as shown in Eq. 13.

Figure 2 An example Chapman profile, with the parame-
ters hmax = 350 km, hscale = 75 km, and ρmax = 1.5 ∗ 1012

elec/m3

ρelec = ρmaxe[1−zchap−e−zchap ] (12)

ρelec =
[

V TEC

e1hscale

]
e[1−zchap−e−zchap ] (13)

Where,

zchap =
h− hmax

hscale
(14)

is a non-dimensional altitude, and h is the height that the
profile is evaluated at.

The electron density profile of Eq. 13 can be modified to
allow variations in VTEC, hscale and hmax with respect to
latitude and longitude. The Chapman profile is centered
on the location of maximum electron density, hmax. It is
important to realize that in this local model the Chapman
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profile is defined not along the local vertical, but along the
local normal to the hmax surface, as shown in Fig 3. The
electron density of any point off of the hmax surface is eval-
uated by finding the nearest point on the hmax surface, and
then evaluating the Chapman profile associated with that
point.

Figure 3 Geometry of the thick-shell density model and
TEC calculation

In Fig. 3, the curve above the receiver, rmax(φ, λ), is the
line of maximum electron density, the arrow, r̂LOS , is the
line of sight and the dots are the integration points. α is
the distance along the line of sight, from the receiver to the
satellite, at which one wishes to evaluate the model.

The thick-shell model is parameterized by three second-
order Taylor Series Expansions, one for its height of maxi-
mum electron density, one for its scale height, and one for
its VTEC. Each Taylor Series is a two-dimensional function
of latitude and longitude perturbation from the receiver lo-
cation. These perturbations are measured at the points on
the hmax surface.

hmax = hmax0+
dhmax

dφ
∆φn +

dhmax

dλ
∆λn+

1
2

d2hmax

d2φ
∆φ2

n +
d2hmax

dφdλ
∆φn∆λn+

1
2

d2hmax

d2λ
∆λ2

n (15)

hscale = hscale0+
dhscale

dφ
∆φn +

dhscale

dλ
∆λn

+
1
2

d2hscale

d2φ
∆φ2

n +
d2hscale

dφdλ
∆φn∆λn+

1
2

d2hscale

d2λ
∆λ2

n (16)

V TEC = V TEC0+
dV TEC

dφ
∆φn +

dV TEC

dλ
∆λn

+
1
2

d2V TEC

d2φ
∆φ2

n +
d2V TEC

dφdλ
∆φn∆λn+

1
2

d2V TEC

d2λ
∆λ2

n (17)

The process of determining the electron density at an arbi-
trary point is complicated. Suppose one wants to determine
electron density at the following point along the line of sight
direction unit vector:

rRx + αr̂LOS (18)

where rRx is the receiver location. Suppose this density is
called ρLOS(α). The calculation starts by determining the
nearest point on the hmax surface:

rn(α) = rmax [φn(rRx + αr̂LOS), λn(rRx + αr̂LOS)] (19)

where n stands for “nearest”, and φn(rRx + αr̂LOS) and
λn(rRx+αr̂LOS) are the latitude and longitude of the near-
est point on the hmax surface. The functions φn(rRx +
αr̂LOS) and λn(rRx+αr̂LOS) must be evaluated via numer-
ical optimization. This optimization uses the definitions:

∆φn = φn(rRx + αr̂LOS)− φRx (20)

∆λn = λn(rRx + αr̂LOS)− λRx (21)

and the function rmax(φn, λn), which can be defined based
on Eq. 15 and the WGS 84 ellipsoid. The optimization seeks
the φn and λn that minimize ‖rmax(φn, λn)−rRx−αr̂LOS‖.
This minimization results in the perpendicularity condition
that is demonstrated in Fig. 3.

Given rn(α) and the associated ∆φn and ∆λn, one can
evaluate Eqs. 16 and 17 to determine hscale and VTEC.
One can then use rn(α) and hscale to compute:
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zchap =
‖rRx + αr̂LOS − rn‖

hscale
(22)

and one can use these results in Eq. 13 to compute
ρLOS(α).

Determining the TEC from the calculation of individual
ρLOS(α)s requires numerical integration:

TEC =
∫ sat

Rx

ρLOS(α) dα ≈
N∑

i=1

ρLOS(α)∆α (23)

Integration will require evaluation of the local model at
numerous points along any given line of sight. Quadrature
integration using 125 points along the line of sight, spaced
evenly between zchap of -4 and 30, results in an accuracy of
1 part in 1010.

The benefits of this local model versus that of the next
model, the thin-shell model, is that it is based on an electron
distribution profile. If this local model can be accurately fit
to the local ionosphere, then numerical integration of this
model will be more accurate than the thin-shell model.

The downsides of this model are that many of the states
are weakly observable, namely hscale and hmax, and there is
an increase in computation time over the thin-shell model.
The reason for the weak observability is that one receives
data in the form of TEC, which does not contain much
information about the distribution within the profile. This
local ionosphere model can use up to 18 parameters, the 18
Taylor Series coefficients in Eqs 15 - 17. These coefficients
can be difficult to estimate when the maximum number
of GPS satellites observable at any given time is 12, even
with a time series of measurements. This model can be
truncated as necessary by constraining certain Taylor Series
coefficients. The usefulness of this model is investigated
further in section 4.

LOCAL THIN-SHELL MODEL WITH ALTI-
TUDE VARIATIONS

In the local thin-shell ionosphere, the thickness is assumed
to be compressed into an infinitesimal layer at a given alti-
tude, with hscale effectively set to zero, as shown in Fig. 4.

Figure 4 The electron density profile of the thin-shell
model can be thought of as an impulse function in TEC
at a given altitude

The local thin-shell ionosphere model is similar to the
thick-shell model in that it allows variations of VTEC and
altitude with respect to latitude and longitude, as shown in
Fig. 5.

Figure 5 Geometry of the local ionosphere thin-shell layer
and of TEC evaluation at the pierce point

The TEC along any given line of sight is equal to the
VTEC (actually the TEC perpendicular to the thin-shell
layer) at the pierce point multiplied by a mapping function.
The mapping function used in this paper is equal to one
divided by the cosine of the angle made by the line of sight
and the normal of the shell at the pierce point, as shown in
Eq. 24.

TEC = V TEC
1

cos(z′)
(24)

There are many other forms of the mapping function [9]
but they are not considered in this paper.
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The height and VTEC states are allowed to vary with re-
spect to latitude and longitude using a second-order Taylor
Series Expansion.

h = h0+
dh

dφ
∆φpp +

dh

dλ
∆λpp+

1
2

d2h

d2φ
∆φ2

pp +
d2h

dφdλ
∆φpp∆λpp+

1
2

d2h

d2λ
∆λ2

pp (25)

V TEC = V TEC0+
dV TEC

dφ
∆φpp +

dV TEC

dλ
∆λpp+

1
2

d2V TEC

d2φ
∆φ2

pp +
d2V TEC

dφdλ
∆φpp∆λpp+

1
2

d2V TEC

d2λ
∆λ2

pp (26)

The thin-shell ionosphere model does not require integra-
tion because the electron density is all concentrated at one
altitude, and ∆φpp and ∆λpp are evaluated at the single
pierce point:

∆φpp = φpp − φRx (27)

∆λpp = λpp − λRx (28)

3 EXTENDED SQUARE ROOT INFORMA-
TION FILTERING OF MEASUREMENT
TIME HISTORIES

Kalman Filtering is typically used when there is some form
of correlation between model states from one time epoch to
the next, and when one wants an optimal state estimate.
The Extended Square Root Information Filter is one form of
the Extended Kalman Filter that linearizes about the cur-
rent state estimate, has favorable numerical stability prop-
erties, and is computationally efficient. The state temporal
correlation is formulated using a dynamics model.

FILTER DYNAMICS MODEL

The dynamics model for this system does not use any phys-
ical dynamics of the ionosphere for a number of reasons,

specifically because of the level of complexity that would
be required and because of observability issues. Instead,
this model attempts to capture the temporal correlation be-
tween states through the use of a first-order Gauss-Markov
process on the perturbation of the state from a nominal
state value. This model takes the following form:

ẋIono =
−1

τIono,1
0 . . . 0

0 −1
τIono,2

. . .
...

...
. . . . . . 0

0 . . . 0 −1
τIono,n


(
xIono − xIonoRef

)

+



σIono,1

√
2

τIono,1
0 . . . 0

0 σIono,2

√
2

τIono,2

. . .
...

...
. . . . . . 0

0 . . . 0 σIono,n

√
2

τIono,n


w

(29)

where xIono is the ionospheric state vector, the τIonos are
the state correlation time constants, w is the zero-mean
unit-power-spectral-density process noise input vector, and
σIonos are the steady state standard deviations of the ele-
ments of xIono from their nominal values, which are con-
tained in xIonoRef

.

The reference vector, xIonoRef
, is used because one can

reasonably assume that the ionosphere will remain rela-
tively near a nominal value. This reference state can be
considered a tuning parameter, where the following refer-
ence values were used: 350 km for hmax, 50 km for hscale

and 10 TECU for VTEC during the day. This reference
state could be modified to a daily time varying reference if
enough data were available to form a reasonable guess.

Note:

xIono =
[

xh

xV TEC

]
, or

 xhmax

xhscale

xV TEC

 (30)

where the left hand expression is used for the thin-shell
ionosphere model, and the right hand expression is used for
the thick-shell ionosphere model. The vector xh consists of
the unknown Taylor series coefficients in Eq. 25, the vec-
tor xhmax

consists of the unknown coefficients in Eq. 15.
The vector xhscale

contains the Taylor Series coefficients of
Eq. 16. The vector xV TEC contains the unknown coeffi-
cients from Eq. 17 or 26, depending on whether the thin-
shell or thick-shell model is being used.

Determining τ and σ can be difficult, as these parame-
ters could vary greatly from location to location and from
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day to day. In an attempt to quantify the best-case, low-
ionospheric-activity values of the dynamics model tuning
parameters, the IRI model was used in a non-linear batch
estimation scheme.

The IRI model, Reference [10], provides a basic distri-
bution of electrons around the earth. This model can be
evaluated at a number of points along a given line of sight
and then combined with an integration scheme to obtain
the TEC along a given line of sight. Once a receiver loca-
tion is identified, the TEC along many lines of sight can
be determined throughout the course of a full day. These
TEC values can be considered as TEC “measurements”
from a calibrated dual-frequency receiver. One can then
use a Gauss-Newton batch estimator to fit the thin-shell or
thick-shell local ionosphere models to the measurements at
a single time epoch. This process can be repeated sequen-
tially throughout the day.

The τ and σ values of each state can be backed out of this
process by looking at the normalized correlation of each
state throughout the day. Fig. 6 is a plot of the batch
estimates of the V TEC0 state (VTEC directly above the
receiver) throughout the course of a day. Fig. 7 is the nor-
malized correlation plot. The time constant τ will equal the
time for the normalized correlation value to go below e−1,
and σ will be initially based on the standard deviation of
the state over the day. The corresponding value of xIonoRef

could be taken as the mean throughout the day, although
this was not always the case in the present study.

It is important to fit only the number of states of the local
ionosphere model that one will actually use when filter-
ing, because the resulting τ and σ parameters can vary for
different state combinations (i.e. Taylor series coefficient
combinations).

Figure 6 The batch estimate of VTEC above the receiver
throughout the day

Figure 7 The normalized correlation plot of the VTEC
state over the day

The above method of determining the dynamics model
tuning parameters is not robust. Therefore, in actual im-
plementation the dynamics model tuning parameters τ and
σ will be different. The correlation and noise will likely
both be scaled down by the same factor. The parameters
determined from the IRI model provide a starting point for
tuning of the final dynamics model parameters. The re-
sults of this batch estimation scheme for a given day, and
for three different models, are listed in Tables 1 and 2 in
section 4.

Some practitioners in this field pick τ and σ values based
on experience, [2] and [1], but the present authors preferred
the method defined above because of a lack of experience.
The above practitioners likely performed additional tuning
once they had experience using real data.

FILTER MEASURMENT MODEL

The measurement model for this system is effectively a
nesting of the local ionosphere measurement model inside
a GPS single difference observables measurement model:

y =
[
hP (x)
hL(x)

]
+ ν =



∆P 1

...
∆P j

∆L1

...
∆Lj




+ ν (31)

where the measurement function hP (x) is defined by the
single difference pseudorange equation, Eq 9; and hL(x) is
defined by the single phase difference equation, Eq 10.

The full state of this system, x, includes the ionospheric
state vector, but it has been augmented to include the nui-
sance parameters of receiver code bias and delta phase am-
biguities:
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x =

∆TCB,Rx

∆ρamb,j

xIono

 =


∆TCB,Rx∆ρamb,1

...
∆ρamb,j


xIono

 (32)

Extended Kalman Filters require the measurement sen-
sitivity matrix, the Jacobians ∂hP

∂x and ∂hL

∂x , in order to
determine the optimal state estimate. It takes the form of
the top part of Eq. 33, where the second line simplifies the
nuisance parameters.

H =
∂h

∂x
=


∂hP

∂∆TCB,Rx
,

∂hP

∂∆ρamb,j ,
∂hP

∂xIono

∂hL

∂∆TCB,Rx
,

∂hL

∂∆ρamb,j ,
∂hL

∂xIono



=

−c ∗ e , I ,
∂hP

∂xIono

−c ∗ e , 0 ,
∂hL

∂xIono

 (33)

Where:

e =

1
...
1

 (34)

FILTER MECHANICS

This project used an Extended Square Root Information
Filter (ESRIF), which is a more numerically stable form of
the Extended Kalman Filter. The reader is assumed to have
some familiarity with this type of filter, and its formulation
is not presented here. Reference [11] contains further in-
formation on Extended Kalman Filters, and reference [12]
contains further information on Square Root Information
Filters.

The uncertainties of TEC along a given line of sight can be
understood through a plot of a surface composed of TEC
uncertainty along many lines of sight versus their azimuths
and elevations. The uncertainties are calculated as follows:

PTEC,LOS =

√(
∂TECLOS

∂xIono

)
Pxx,Iono

(
∂TECLOS

∂xIono

)T

(35)

where Pxx,Iono is the Kalman Filter state estimation error
covariance matrix for the ionospheric states, and ∂TECLOS

∂xIono

is the local ionosphere model measurement sensitivity ma-
trix, similar to Eq. 33. This equation is a linearized approx-
imation of how uncertainty propagates through the iono-
sphere model. An example contour has been plotted in
Fig. 8.

The plot has been generated using a thin-shell model with
a single altitude at 350km and with full VTEC derivatives.
The uncertainties result from a specific two hour span of
GPS observables. The uncertainties in derivatives with re-
spect to latitude and longitude cause the azimuthal ripples
in the surface.

Figure 8 A surface of 1-σ TEC uncertainties versus
line-of-sight azimuths and elevations

4 RESULTS

LOCAL IONOSPHERE MODEL EVALUATIONS

The benefits and limitations of both the thick-shell and
thin-shell ionosphere models will be investigated in order
to determine the better model for the desired application.
The ideal model would emulate the true physics of the iono-
sphere so that the model could accurately predict the TEC
along lines of sight not in its measurement set, but with a
small enough number of states to preserve observability.

Intuitively, one would think that the thick-shell ionosphere
model would be the best model to use because it captures
the distribution of electron density with respect to altitude
and provides a larger number of variable states. With an
unlimited number of TEC measurements, the thick-shell
model would be superior. The benefits of the thick-shell
model however, are offset by the weak observability of the
extra states and by a considerable increase in computation
time.

These models will be evaluated with two criteria,
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observability-state tracking and ionospheric emulation fi-
delity.

CRITERION 1: OBSERVABILITY-STATE
TRACKING (TRUTH MODEL SIMULATION)

A truth model simulation, using measurements created
from exactly the same measurement model as that used
by the Kalman Filter, can test a necessary condition for
observability. The logic of this test is the following: if a
Kalman Filter cannot track its own model, given a long
data run and pure Gaussian white noise, then it will not be
able to emulate and track the true ionosphere.

The following truth model simulation was initialized with
a state vector of hmax equal to 350 km, hscale equal to 50
km, VTEC equal to 20 TECU, and time constants of 100
minutes. The Markov process steady state standard devi-
ations were set to 40 km on hmax, 25 km on hscale and
10 TECU, on VTEC and their derivatives. The simula-
tion used 7 satellites and two hours worth of data, with
measurement noise standard deviations of 0.1 TECU, con-
sistent with carrier phase-based TEC measurements. The
same set of GPS satellite position time histories have been
used throughout this paper, and they represents a real con-
figuration of the GPS constellation. Future studies will use
additional satellite geometries.

Figs. 9, 10 and 11 contain plots of the truth (thick black
line), estimate (red line) and 1-sigma error bounds on the
state estimates (blue lines) of all 18 states, hmax, hscale

and VTEC. The results are a good indicator of the relative
observability of the ionosphere model’s states. It becomes
clear that hscale and its derivatives are weakly observable,
as are the second derivatives of hmax.

The steady state standard deviations on the second deriva-
tives of hmax and hscale are equal to or greater than the
standard deviations given to the dynamics model. This re-
sult means that the time history of the TEC measurements
was not able to improve the certainty of those states be-
yond what was originally provided to the dynamics model,
despite the long temporal correlation. It seems that hmax

and its first derivatives are observable, but that hscale is
weakly observable, if at all. The VTEC states are all ob-
servable, with standard deviations reduced from the values
provided to the dynamics model.

The above analysis was repeated for the thick-shell with
the second derivatives in height removed, and then with
first derivatives removed. The results were very similar to
the previous simulation, but with slightly higher observ-
ability on the remaining height states due to the reduction
in the total number of states. The hscale derivatives were
still unobservable, but the nominal value directly above the
receiver was slightly observable.

Figure 9 hmax and its derivatives with respect to latitude
(φ) and longitude (λ)

Figure 10 hscale and its derivatives with respect to lati-
tude (φ) and longitude (λ)

Figure 11 VTEC and its derivatives with respect to lati-
tude (φ) and longitude (λ)
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A recommended implementation based on state observ-
ability would contain the nominal over-head value of hmax,
its latitude and longitude first derivatives, hscale, VTEC
and all of VTEC’s latitude and longitude derivatives. The
low observability states make the thick-shell local iono-
sphere model difficult to use, and as a result, it will not
be considered further in this paper.

Similar to the thick-shell model, the capabilities and limi-
tations of the thin-shell model have been tested with a thin-
shell truth model simulation, but with plots not included.
The thin-shell truth model simulation used the same pa-
rameters and initial state values as the thick-shell model,
but with the hscale terms removed.

The thin-shell truth model simulation result is that the
VTEC states are strongly observable and that the heights
are moderately observable, with the second derivatives on
height being only weakly observable. Any combination of
Taylor Series coefficient states on the local thin-shell iono-
sphere model will work, and these combinations are inves-
tigated further using the second criterion.

CRITERION 2: EMULATION FIDELITY FOR
THE IRI MODEL

This section investigates the abilities of various local thin-
shell ionosphere models to represent the behavior of the true
ionosphere. The investigation involves batch estimation of
the model states in an attempt to fit the IRI model TEC
values.

The four different models considered are depicted graphi-
cally in Fig. 12. Model 1 is a fixed altitude (350 km) model
with full derivatives with respect to latitude and longitude
of VTEC. Model 2 is the same as Model 1, but with a vary-
ing altitude that must be estimated. Models 3 and 4 are
the same as Model 2, but with first and second-order deriva-
tives on height. Model 3 only considers first derivatives, and
Model 4 considers both first and second derivatives. The
graphic in Fig. 12 illustrates these differences by showing
the different models’ possibilities for their thin height con-
tours.

Figure 12 Representative height contours for the 4
thin-shell ionosphere models

The TEC values for the IRI model have been computed
along 100 lines of sight spaced evenly about elevation and

azimuth with an elevation mask of 15 degrees. The above
evaluation is done for a single location and for 3 times
spaced evenly throughout the day. The density along each
line of sight has been evaluated at 300 points spaced evenly
from the theoretical receiver to the theoretical satellite, as
high as the IRI model would allow (60-2000km), and the
points were integrated to evaluate the TEC along each line
of sight, with an expected TEC error of less than 0.001
TECU.

A subset of the TEC measurements was randomly selected
and used to batch estimate the local ionosphere models,
without added measurement noise. The estimated local
ionosphere models were then used to calculate the TEC
along the full 100 lines of sight. The model TEC predic-
tions along the full 100 lines of sight were compared against
the actual computed IRI values, and the RMS TEC error
was calculated. Fig. 13 plots the RMS TEC error against
the number of measurements used in the local ionosphere
estimate for the 4 thin-shell models.

Figure 13 RMS TEC errors of 4 thin-shell ionosphere
models over 100 lines of sight, with varying numbers of
measurements used to fit the individual batch estimates

The results of the IRI batch estimation support what one
might have expected. There are two important regions in
the graph, the region with a high number of measurements
used explicitly in the batch fit, above 75 measurements, and
the region with a low number of measurements, below 45
measurements.

The region with a high number of measurements demon-
strates the ability of each model to capture the true behav-
ior of the IRI model. The more states available, the better
the model fit to the measurements. The best emulation of
the ionosphere comes from Model 4, and Models 3, 2 and 1
have decreasing levels of fidelity. Note however, that even
Model 1 can achieve a RMS fit error of less than 1 RMS
TECU error, which might be sufficient for many applica-
tions.

The region with a low number of measurements demon-
strates the relative observability of each model. Low ob-
servability issues are the most evident in Model 4, where
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there are very large RMS TEC errors, even when there are
up to 45 measurements. These large RMS errors imply poor
observability. Therefore, Model 4 should not be used unless
there are a very high number of measurements, likely more
than are available from the GPS constellation. Model 4 will
not be considered further in this paper.

The number of measurements available, and their spread
in elevation and azimuth, will determine the appropriate
model implementation. If there are many satellites that are
evenly spaced in the sky, then one might want to use the
model with first-order height derivatives. If there are only a
few satellites visible, then it may be best to let the altitude
have only one single estimated variable, its nominal height
above the receiver. The filter will estimate this value along
with the VTEC states, or it may simply fix the altitude at
a specified value.

The results of IRI batch estimation of the Markov process
dynamics model tuning parameters, τ and σ, are listed in
Tables 1 and 2. Blanks in the table indicate parameters not
used in the given model.

Table 1 The Markov process τ values that have been de-
rived from IRI batch estimation

τ (min) of the Taylor Series Coefficients: Model 1 Model 2 Model 3
h0 - 119 218
dh
dφ - - 216
dh
dλ - - 134
d2h
d2φ - - -
d2h

dφdλ - - -
d2h
d2λ - - -

V TEC0 260 258 258
dV TEC

dφ 248 249 246
dV TEC

dλ 189 187 192
d2V TEC

d2φ 177 279 122
d2V TEC

dφdλ 216 212 203
d2V TEC

d2λ 189 288 271

Table 2 The Markov process steady state σ values that
have been derived from IRI batch estimation

σ of the Taylor Series Coefficients: Model 1 Model 2 Model 3
h0 (km) - 3479 37655

dh
dφ (km/rad) - - 9968
dh
dλ (km/rad) - - 6479

d2h
d2φ (km/rad)2 - - -
d2h

dφdλ (km/rad)2 - - -
d2h
d2λ (km/rad)2 - - -

V TEC0 (TECU) 1.84 1.85 3.38
dV TEC

dφ (TECU/rad) 3.82 3.29 2.60
dV TEC

dλ (TECU/rad) 1.62 1.40 1.19
d2V TEC

d2φ (TECU/rad)2 8.40 9.95 2.77
d2V TEC

dφdλ (TECU/rad)2 9.17 6.05 4.61
d2V TEC

d2λ (TECU/rad)2 8.32 11.96 10.18

FILTER EVALUATION USING REAL GPS DATA

The final validation step used dual-frequency GPS observ-
ables from Arecibo, Puerto Rico. Data were recorded for a
two hour span during the first day of the year 2010, and the
data were trimmed to include only the seven continuously
available satellites (continuous phase arcs).

To test the TEC predictive abilities of the proposed algo-
rithm, one satellite was removed from the measurement set,
and the state was estimated based on the remaining 6 satel-
lites. The predicted TEC along the removed line of sight
was then compared against the actual TEC measurement as
determined from the ∆L carrier phase measurement, with
compensation of the necessary parameters for that line of
sight. The compensation used the delta phase ambiguity,
∆ρamb,j , as estimated from the 7 satellite set, and the re-
ceiver interfrequency bias, ∆TCB,Rx, as estimated from the
6 satellite set. This process has been repeated 7 times,
deleting a different satellite from the filter’s measurement
set for each of the 7 implementations. RMS TEC predic-
tion errors were then computed for each filter model based
on its 7 prediction errors.

The filter was tuned based on the measurement set in order
to improve the performance. The final values of τ and σ
were about one half to one fifth of the values predicted
based on batch estimation of the IRI model. This tuning
makes intuitive sense because the development of the IRI
model used monthly averages of data, and the IRI model is
expected to capture only general behavior.

In an attempt to put the results into context, the same
algorithm was run using the fixed altitude model of Ref-
erence [1]. The time constants used by Reference [1] were
1800 seconds for all states, the σs were set to 2 (TECU) for
receiver V TEC0, 0.5 (TECU/rad) for ∂V TEC

∂φ and ∂V TEC
∂λ ,

and 0.25 (TECU/rad)2 for ∂2V TEC
∂φ2 , ∂2V TEC

∂φ∂λ and ∂2V TEC
∂λ2 .

The model also uses a different mapping function and its
dynamics model assumes all reference states are zero. The
difference in mapping function prevents a perfect compar-
ison to the model of Reference [1]. These results are pre-
sented in Table 3.

Table 3 RMS TEC errors for a given set of data, for 4
different thin-shell models

RMS TEC errors (removed lines of sight)
Model 1 6.4 (TECU)
Model 2 6.7 (TECU)
Model 3 5.5 (TECU)

Skone Model (Ref. [1]) 7.2 (TECU)
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5 SUMMARY AND CONCLUSIONS

A method has been developed for the removal of iono-
spheric effects from single frequency non-GPS radio navi-
gation data through the use of data collected from a sin-
gle collocated dual-frequency GPS receiver. Two new lo-
cal ionosphere models have been considered, a thick-shell
ionosphere model and a thin-shell ionosphere model. These
models’ states characterize important ionospheric proper-
ties by including their nominal values above the receiver
and various of their partial derivatives with respect to lati-
tude and longitude. These states enable the model to form
Taylor Series approximations in latitude and longitude of
such quantities as ionospheric height, VTEC, and, in the
case of the thick-shell model, thickness.

Truth model simulation showed that the thick-shell model
contains a subset of very weakly observable states. In con-
trast, the thin-shell model’s Taylor Series coefficient states
are largely observable. The dynamics models for those Tay-
lor series coefficients are first-order Markov models of vari-
ations about nominal values. Tuning of the Markov param-
eters has been based on International Reference Ionosphere
(IRI) dynamic variations, and on experience with real data.

The most successful implementations of the filter use the
thin-shell model with either a fixed known height, an un-
known constant height that must be estimated, or an un-
known height and unknown first partial derivatives of height
with respect to latitude and longitude, all of which must be
estimated. This third model allows the ionosphere to be
tilted.

These models have an ability to fit the IRI model, to fit
actual GPS observables, and to predict TEC along unob-
served lines of sight. RMS fit errors from the IRI model
ranged between 0.1 and 1 TECU, which indicates an accept-
able level of model mismatch between their simple Taylor
Series and a realistic 3-D electron distribution. RMS pre-
diction errors in the range of 5.5-7 TECU have been demon-
strated based on experience with a limited set of actual GPS
data.
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