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ABSTRACT

This paper investigates the simulation, Kalman Filter
tracking, and Kalman Filter geolocation of a chirp–
type civilian Global Positioning System (GPS) jam-
mer. The paper is divided into four parts. The first
two parts present information on the current genera-
tion of GPS jammers and propose a simple method
of jammer signal simulation. The third part outlines
a method by which a Kalman Filter can track the
state of the simulated signal at the output of a sim-
ulated radio frequency (RF) front end. The method
uses in-phase and quadrature accumulations, accu-
mulation models, and noise models. The paper also
considers the computational speed and numerical is-
sues of the proposed system. Results are presented
for the Kalman Filter signal tracker on data from
a truth-model simulation. The fourth part outlines
a particular implementation of a Time Difference of
Arrival (TDOA) jammer geolocation system and its
associated state and measurements. A method of
Time–of–Arrival measurement formulation which re-
duces the required communication bandwidth between
different TDOA stations is also presented. A jammer
TDOA data collection campaign at White Sands Mis-
sile Range in June of 2012 is detailed. Results of the
proposed TDOA jammer geolocation system on two
sets of real data are compared to Inertial Navigation
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System (INS) position estimates.

INTRODUCTION

The Global Positioning System and other Global Nav-
igation Satellite Systems (GNSS) have found a wide
variety of uses in civilian life. They are heavily used
in trucking and shipping [1], aircraft and maritime
navigation [2], and for high precision timing applica-
tions [3, 4].

Ubiquitous positioning capabilities are sometimes con-
sidered a threat to some individuals operating outside
of the boundaries of the law. The threat of undesired
GPS geolocation can be avoided through the use of
a civilian GPS jammer, also referred to as a personal
privacy device (PPD). A straightforward application
of one of these devices would be a car thief prevent-
ing recovery of a stolen vehicle by jamming the GPS–
enabled theft recovery device. Another potential ex-
ample would be that of an employee of a trucking com-
pany attempting to hide his position from his superiors
by jamming the corporation–owned GPS tracker, and
then proceeding to do as he wishes while being paid
to make deliveries. The case with the most benign in-
tent would be someone who simply wishes to enforce
their privacy with a personal privacy device, and pre-
vent themselves from being tracked while in their own
vehicle [5].

All of the above scenarios involve jamming or interfer-
ing with the GPS or another GNSS. Therefore, GPS
jammers have become available for purchase at cer-
tain locations around the world and at certain sites on
the internet. This has led to a number of incidents.
In the so called Newark incident a piece of equipment
at Newark airport was periodically jammed by a com-
muter [2]. There was also an incident in Great Britain
where a group of car thieves used GPS jammers [1].

Enforcement of the laws protecting the GPS and GNSS
bands requires that the jammers be located and taken
away from their operators. This has led to an increased
focus by the GNSS community on GPS jammers in
general [6, 7, 8] and on their geolocation in specific [9].
This paper will focus on various related aspects of GPS
jammer signal processing with the long–term goal of
enabling further law enforcement actions by means of
jammer geolocation.

The remainder of the paper is divided into five sec-
tions. The first section discusses the background of
GPS jammers. The second section is on GPS jam-
mer signal simulation. The third is on tracking of the
simulated GPS jamming signal using a Kalman Filter.

The fourth section focuses on GPS jammer geoloca-
tion, specifically using a Kalman Filter and the Time
Difference of Arrival geolocation method. The fifth
section presents the summary and conclusions.

GPS JAMMER BACKGROUND

Civilian GPS jammers can be found in a variety of
form factors, but are on average approximately the size
of a hand-held cell phone [7]. Three different civilian
GPS jammers are shown in Fig 1. The jammer on the
far left in the picture is the lowest power jammer and
is powered from an automobile accessory power outlet.
The middle one is slightly more powerful, contains a
battery, and can be carried around and activated at
almost any location and time. The one on the far
right is slightly less powerful than the middle one, but
it also contains a battery and is disguised to look like
a cellular telephone.

Figure 1 Three different form factors of civilian GPS
jammers.

Processing of signals from GPS jammers can benefit
from an understanding of the RF output of the jam-
mers. A typical output of a civil GPS jammer is shown
in Fig 2. The horizontal axis is time and the top plot’s
vertical axis is frequency. Each vertical slice of the top
plot in the figure is a Fast Fourier Transform (FFT) of
the RF sampled signal, centered at the L1 frequency.
The bottom plot’s vertical axis is power. The figure
shows a classic example of a chirp signal, or a tone
whose frequency repeatedly ramps linearly upwards
and then resets back to the starting frequency.
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Figure 2 Typical civilian GPS jammer output. The
top plot is a surface color contour FFT power spectra,
in batches of 64 data points. The bottom plot is of
power into the system that digitized the RF signal.

GPS JAMMER SIMULATION

To enable algorithm development and testing, the
civilian GPS jamming signal was simulated in soft-
ware. There are many ways that the GPS jamming
signal could be simulated, particularly for jammer sig-
nals that differ slightly from that in Fig 2, but only
one method is presented. In this method, an idealized
chirp signal is assumed, and some parts of its param-
eterization are shown graphically in Fig 3.

Figure 3 Candidate parameterization of an idealized
chirp–type jammer, with important features labeled.

The parameterization assumes that the signal starts at
one frequency and linearly ramps upward in time with
a slope denoted by α. Once the ramp has progressed
at rate α for a time TR, the jammer reset period, the
jammer frequency resets by an amount fR, the jammer
reset frequency amount. This occurs at time tR, which
is incremented by TR to define each new reset.

The parameterization in Fig 3 leads to the following
state vector in Eq 1.

x =



φ
f
α
A
fR
tR
TR


(1)

where the first four states (φ, f , α, A) evolve con-
tinuously over time. They are the phase, frequency,
frequency rate of change, and the amplitude. Their re-
spective units are cycles, Hertz, Hertz/sec, and Volts.
The last three states (fR, tR, TR) act on the system at
discrete times (tR), and have units of Hertz, seconds,
and seconds, respectively. The combination of these
continuous and discrete states creates a hybrid system
formulation of a GPS jammer signal.

The previously described signal state can be used to
generate a signal history. The state can be initialized
to a starting value and then propagated forward in
time by using its dynamics:

xk+1 = ΦJ (tk+1, tk;xk)xk (2)

where the term ΦJ (tk+1, tk;xk) is the general state
transition matrix that takes the state from time tk and
propagates it forward to time tk+1. ΦJ (tk+1, tk;xk) is
a product of two types of terms:

ΦJ
1 (tb, ta) =



1 ∆t 0.5∆t2 0 0 0 0
0 1 ∆t 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(3)

ΦJ
2 =



1 0 0 0 0 0 0
0 1 0 0 −1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1


(4)

where ∆t is the defined as tb − ta.

ΦJ
1 (tb, ta) is the state transition matrix for the linear

portion of the frequency ramp from time ta to tb as-
suming that there is no reset over that time period,
and ΦJ

2 is the state transition matrix for the instanta-
neous time of reset.

As an example, if a single reset were to occur during
the interval from tk to tk+1 then the propagation of the
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state would take the form in the first line; otherwise it
takes the form in the second line:

xk+1 = ΦJ
1 (tk+1, tR) ΦJ

2 ΦJ
1 (tR, tk)xk

xk+1 = ΦJ
1 (tk+1, tk)xk

(5)

Process noise has also been added in an attempt to
improve the fidelity of the simulation. The process
noise influence matrix Γk is shown below:

Γk =



∆t3

6 0 0 0
∆t2

2 0 0 0
∆t 0 0 0
0 ∆t 0 0
0 0 ∆t 0
0 0 0 0
0 0 0 ∆t


(6)

where continuous-time phase noise is allowed to enter
only through the α and fR states, and additional noise
has been added to the A and TR states.

The full state dynamics are shown below:

xk+1 = ΦJ (tk+1, tk;xk)xk + Γkwk (7)

where the vector wk is the process noise vector. In this
study’s simulation, the process noise vector is zero–
mean, white, Gaussian noise that has been scaled by
the user–specified standard deviations. In an actual
system, this vector may have different statistical be-
havior.

The jammer state is used to generate a simulated RF
signal. This RF signal is assumed to be the output of
the GPS jammer, immediately upon leaving the jam-
mer antenna. The signal simulation is accomplished
by passing the phase state history through a cosine
function and then multiplying the result by the jam-
mer amplitude state A:

yk = Akcos(2πφk) (8)

White, Gaussian, measurement noise vk with a user–
specified standard deviation has been added to create
a more realistic simulation of a jammer’s output signal:

yk = Akcos(2πφk) + vk (9)

The simulated signal yk can be used as the input to
tracking and localization algorithms.

KALMAN FILTER TRACKING OF A GPS
JAMMER

Accurate tracking of a civil GPS jammer is useful for
a number of purposes, specifically for developing mea-
surements for geolocation algorithms. This study rec-
ommends the use of a Kalman Filter for signal tracking
for three reasons. The filter has the ability to track sig-
nals through significant noise, it can be programmed
to run with a low computational burden, and the re-
sulting estimated states have a high degree of accuracy
and would be optimal if the true system corresponded
to the filter stochastic model.

The reader is assumed to have moderate knowledge of
Kalman Filtering techniques, and the derivation of the
Kalman Filter is not required here. Readers interested
in gaining a further understanding of Kalman Filters
are referred to the extensive body of literature on the
subject, with a number of references provided by way
of example, [10, 11, 12]. Furthermore, the reader is
assumed to have an understanding of how Kalman Fil-
ters can be used to track RF signals, specifically GPS
signals as in references [13, 14].

This section will present its Kalman Filter formulation
in seven subsections. The first subsection will discuss
the Kalman Filter state and its dynamics. The second
subsection will present the derivation of the measure-
ments provided to the Kalman Filter, the in-phase and
quadrature accumulations. The third subsection will
derive an accumulation measurement model for the
Kalman Filter. The fourth subsection will cover the
way in which measurement noise enters the system.
The fifth subsection will discuss Kalman Filter archi-
tecture selection and numerical considerations. The
sixth subsection will detail a simple Kalman Filter
state initialization procedure. The final subsection will
present results of the Kalman Filter using data from a
jammer truth-model simulation.

Kalman Filter State and Dynamics

The Kalman Filter state and dynamics are the same
as that used in the jammer simulation presented in
the previous section. Explicitly, the state is given in
Eq 1, and the state transition matrices are given in
Eqs 3 and 4, and the process noise is given in Eq 6.
The full state dynamics are shown in Eq 7.

Kalman Filter Measurements: Accumulations

The Kalman Filter measurements must be synthesized
in a causal manner from raw digitized data fed in from
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the RF front end. The Kalman Filter derivation pre-
sented in this paper uses a model of the signal after it
has passed through the ADC. It is assumed that signal
amplitude has been halved due to the IF mixing.

The jamming signal input to the RF front end after
digitization at the ADC is the following:

yJi =
Ak

2
cos

(
2π

[
φJk +fJk ∆ti +αJ

k

∆t2i
2
−fmixti

])
+vi

(10)

where φJk , fJk , αJ
k , and Ak are the first four entries of

the jammer state at time tk. The term fmix is the
mixing frequency that brings the signal to IF, and is
in units of Hertz. vi is zero–mean, white, Gaussian
noise, and is in units of volts. The output time ti is
assumed to lie between time tk and tk+1, but before
a reset occurs. It can be expressed in equations as
follows:

ti ∈ [tk, tk+1] , < tR,k (11)

∆ti = (ti − tk) (12)

Technically, Eq 10 should also contain a term that con-
siders the process noise shown in Eq 7, but this effect
is beyond the scope of the current study.

If a reset does occur in the interval of [tk, tk+1], vio-
lating the assumption of Eq 11, then a consistent form
of yJi from Eq 10 can be maintained by redefining two
states to account for the reset:

fJk =

{
fJk , if ti ∈ [tk, tR,k)

fJk + fJR,k, if ti ∈ [tR,k, tk+1]

φJk =

{
φJk , if ti ∈ [tk, tR,k)

φJk − fJR,k (tR,k − tk) , if ti ∈ [tR,k, tk+1]

(13)

The jammer signal at the RF front end output, yJi , is
used to form in-phase (I) and quadrature (Q) accumu-
lations according to the following recipes:

Ik =

N∑
i=1

yJi cos
(
φNi
)

(14)

Qk =

N∑
i=1

yJi sin
(
φNi
)

(15)

where the term φNi is the phase at time ti that
is generated by the numerically controlled oscillator
(NCO). The superscript N denotes that this is the

NCO phase. These accumulations constitute the mea-
surements that are used by the Kalman Filter.

Accumulations will contain significant power if the
NCO frequency time history is close to that of the
actual jamming signal frequency. A good selection of
NCO phase history is the one that would be gener-
ated by the Kalman Filter’s estimate of the jamming
signals state.

It should be emphasized that a causal system will re-
quire that the NCO be fed the (k-2)th state to compute
the kth accumulation. This requirement exists because
the system must accumulate I and Q values over one
accumulation period (Taccum) and then perform the
Kalman Filter calculations over the next accumula-
tion period, before the new state can be fed back to
the NCO. Fortunately, the state at time tk−2 can be
propagated with the dynamics model up to time tk,
to maximize accumulation power. If the state esti-
mate is poor, then the forward propagation could po-
tentially make the accumulation results worse. This
forward propagation step is not required when track-
ing the GPS signal because the GPS signal dynamics
are slow and benign in most applications.

The accumulations in Eqs 14 and 15 are the sums of
the products of two trigonometric terms over an ac-
cumulation period, and are therefore nonlinear equa-
tions. As a result of this nonlinearity, there is only a
small region of states whose corresponding phase his-
tories will generate any power in the accumulations. If
the state estimate is too far away from the true states
then the accumulations will have insufficient power for
tracking purposes, and will appear to be random noise.
This nonlinear effect is known as the measurement’s
pull-in range.

One solution to the pull-in problem that still preserves
the traditional RF signal tracking architecture of the
Kalman Filter is to generate multiple accumulations
by feeding a variety of states to the NCOs. There is no
theoretical limit to this approach, but there are prac-
tical limits such as computation time and complexity.

The multiple accumulation approach is used to im-
prove the filter’s pull-in range with respect to errors
in the estimate of the jammer’s tR state, which can
be difficult to estimate. Therefore, this paper recom-
mends that two pairs of accumulations be calculated
at each Kalman Filter measurement update. The first
(I,Q) pair will be referred to as Type A, and the second
will be referred to as Type B. These two accumulations
will create a larger pull-in region for the estimation of
the tR state.

The central concepts of accumulation Types A and B
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are shown graphically in Fig 4 for a full accumulation
period, where one accumulation period Taccum is as-
sumed to be much less than one reset period TR.

Figure 4 Frequencies generated by the NCOs for ac-
cumulation Types A and B. The Kalman Filter’s es-
timate of the jammer frequency is the red dashed line
and the NCO frequencies are the solid green lines.

Accumulation Type A would be considered the clas-
sical implementation of a Kalman Filter tracking an
RF signal. The NCO generates exactly the phase his-
tory predicted by the current state estimate, with no
modifications to the jammer frequency state. Accu-
mulation Type A will have significant power if the
state estimate, in particular the reset time tR and re-
set amount fR, are close to the real jammer states.
The primary feature of accumulation Type B is that
the frequency state fed into the NCO is assumed to
reset by an amount fR at the very beginning of the
accumulation interval, denoted time tR,NCO in Fig 4.
Accumulation Type B will have significant power if the
jammer frequency state resets at the beginning of the
accumulation interval.

The two accumulation types were designed so that
Type A will have all of the power and Type B will
have none of the power if the reset time is correctly
predicted. If the reset time is erroneously predicted
to occur outside of the accumulation interval when it
actually occurs near the beginning then Type A will
have no power and Type B will have significant power,
assuming that the remainder of the jammer state esti-
mate is within the pull-in range of the actual jammer
state. If the reset time occurs in the middle of an ac-
cumulation interval then both types will have power,
where the amount of power in each will be a function
of the time duration for which they have the correct
frequency.

The resulting Kalman Filter measurements for accu-
mulation period k are:

zk =


IA
QA

IB
QB


k

=


∑N

i=1 y
J
i cos

(
φNi
)∑N

i=1 y
J
i sin

(
φNi
)∑N

i=1 y
J
i cos

(
φNi + fNR ∆ti

)∑N
i=1 y

J
i sin

(
φNi + fNR ∆ti

)

k

(16)

Kalman Filter Measurement Model

Kalman Filter tracking requires a model of how the
states affect the measurements provided to the filter.
The current system uses accumulations as its measure-
ments, and will therefore require a model of how the
accumulations depend on the state. This section will
only consider accumulation Type A, but calculation of
Type B is straightforward and simply requires another
frequency term. Manipulation of the accumulation’s
recipes of Eqs 14 and 15 will be required to reach the
final accumulation measurement models.

The first step is to rewrite Eqs 14 and 15 to include
the time per sample Ts:

Ik =
1

Ts

N∑
i=1

yJi cos
(
φNi
)
Ts (17)

Qk =
1

Ts

N∑
i=1

yJi sin
(
φNi
)
Ts (18)

The above equations can be viewed as discrete approx-
imations to continuous integrals. Conversion to con-
tinuous integration yields the following two equations:

Ik ∼=
1

Ts

∫ tk+NTs

tk

yJ(ti)cos
(
φN (ti)

)
dti (19)

Qk
∼=

1

Ts

∫ tk+NTs

tk

yJ(ti)sin
(
φN (ti)

)
dti (20)

The next step is to substitute the modeled state and
known NCO phase time history into Eqs 19 and 20,
by replacing yJ(ti) and φN (ti) with the following for-
mulas:

yJ(ti) =
Ak

2
cos

(
2π

[
φJk + fJk ∆ti +αJ

k

∆t2i
2
− fmixti

])
(21)

φN (ti) =

(
2π

[
φNk + fNk ∆ti + αN

k

∆t2i
2
− fmixti

])
(22)
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where Eq 21 is the noiseless input at the RF front end,
similar to Eq 10, and Eq 22 is the NCO phase history
over the accumulation interval.

The Kalman Filter accumulation measurement models
are the following:

Ik ∼=
Ak

2Ts

∫ NTs

0

cos

(
2π

[
φJk + fJk t+ αJ

k

t2

2
− fmix(t+ tk)

])
cos

(
2π

[
φNk + fNk t+ αN

k

t2

2
− fmix(t+ tk)

])
dt

(23)

Qk
∼=

Ak

2Ts

∫ NTs

0

cos

(
2π

[
φJk + fJk t+ αJ

k

t2

2
− fmix(t+ tk)

])
sin

(
2π

[
φNk + fNk t+ αN

k

t2

2
− fmix(t+ tk)

])
dt

(24)

where a change of dummy integration variables has
been performed to switch from ti to t. The change
of variables results in the ∆t terms changing to t and
the bounds of integration changing from [tk, tk+1] to
[0, NTs].

Typically, in GPS tracking the above equations are fur-
ther modified with the following trigonometric identi-
ties:

cos(a) ∗ cos(b) =
1

2
[cos(a− b) + cos(a+ b)]

cos(a) ∗ sin(b) =
1

2
[−sin(a− b) + sin(a+ b)]

(25)

and result in the following equations:

Ik ∼=
Ak

4Ts

∫ NTs

0

[
cos

(
2π

[
∆φ+ ∆ft+ ∆α

t2

2

])
+

cos

(
2π

[∑
φ+

∑
ft+

∑
α
t2

2

− 2fmix(t+ tk)

])]
dt

(26)

Qk
∼=

Ak

4Ts

∫ NTs

0

[
−sin

(
2π

[
∆φ+ ∆ft+ ∆α

t2

2

])
+

sin

(
2π

[∑
φ+

∑
ft+

∑
α
t2

2

− 2fmix(t+ tk)

])]
dt

(27)

where the terms with ∆ and Σ are defined as:

∆∗ = ∗Jk − ∗Nk
Σ∗ = ∗Jk + ∗Nk

(28)

The trigonometric functions containing the Σ terms
in Eqs 26 and 27 are then typically ignored. They
are ignored because they have a large effective fre-
quency when compared to integration time, which
causes the integration of that term to be effectively
zero. That is not always the case in the current sys-
tem. GPS integration times tend to be the length of
one Coarse/Acquisition code, or 1 ms, but this system
will use accumulations that are approximately three
orders of magnitude shorter, or 1 µs. In addition to the
lower accumulation times, the frequency resets could
cause issues if the IF is not chosen correctly.

Ideally, the models in Eqs 26 and 27 could be reduced
to a more compact version, such as the sinc function
used in GPS, but that is not possible in the current
system. The difficulty arises from the t2 entries in the
trigonometric identities. The integration of a trigono-
metric term that contains a quadratic variable results
in a Fresnel integral, which has no closed form solution
and must be approximated numerically or with a series
expansion. As a result, Eqs 26 and 27 are considered
to be the final form of the accumulation measurement
models.

Measurement Model Speed Considerations

The measurement models presented in Eqs 26 and 27
can be manipulated to save computational effort by
avoiding numerical integration and instead using a
Taylor Series expansion. Equations 26 and 27 will be
further expanded using another trigonometric identity
to isolate the t2 terms.

cos(u± v) = cos(u)cos(v)∓ sin(u)sin(v)

sin(u± v) = sin(u)cos(v)± cos(u)sin(v) (29)
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To simplify notation the following substitutions are
made:

ad = 2π∆φ

bd = 2π∆f

cd = π∆α

as = 2π
(∑

φ− 2fmixtk

)
bs = 2π

(∑
f − 2fmix

)
cs = π

∑
α

(30)

Application of Eqs 29 and 30 to Eqs 26 and 27 result
in the following equations:

(31)
Ik ∼=

Ak

4Ts

∫ NTs

0

[
cos (ad + bdt) cos

(
cdt

2
)
−

sin (ad + bdt) sin
(
cdt

2
)

+

cos (as + bst) cos
(
cst

2
)
−

sin (as + bst) sin
(
cst

2
)]
dt

(32)
Qk
∼=

Ak

4Ts

∫ NTs

0

[
−sin (ad + bdt) cos

(
cdt

2
)
−

cos (ad + bdt) sin
(
cdt

2
)

+

sin (as + bst) cos
(
cst

2
)

+

cos (as + bst) sin
(
cst

2
)]
dt

The trigonometric functions containing t2 terms can
now be replaced with their Taylor Series expansions.
The results avoid evaluation of the Fresnel integral,
and can be integrated in a term–by–term manner:

Ik ∼=
Ak

4Ts

∫ NTs

0

[
cos (ad + bdt)

∞∑
n=0

(−1)n

(2n)!

(
cdt

2
)2n −

sin (ad + bdt)

∞∑
n=0

(−1)n

(2n+ 1)!

(
cdt

2
)2n+1

+

cos (as + bst)

∞∑
n=0

(−1)n

(2n)!

(
cst

2
)2n −

sin (as + bst)

∞∑
n=0

(−1)n

(2n+ 1)!

(
cst

2
)2n+1

]
dt

(33)

Qk
∼=
Ak

4Ts

∫ NTs

0

[
−sin (ad + bdt)

∞∑
n=0

(−1)n

(2n)!

(
cdt

2
)2n−

cos (ad + bdt)

∞∑
n=0

(−1)n

(2n+ 1)!

(
cdt

2
)2n+1

+

sin (as + bst)

∞∑
n=0

(−1)n

(2n)!

(
cst

2
)2n

+

cos (as + bst)

∞∑
n=0

(−1)n

(2n+ 1)!

(
cst

2
)2n+1

]
dt

(34)

Evaluation of Eqs 33 and 34 preserves the numerical
accuracy of all of the components in Eqs 23 and 24
except for those contained in cd and cs. Theoretically,
the Taylor Series can be evaluated with as many terms
as required. Practically, there are numerical limita-
tions to the number of terms that could be used in the
series.

The final speed increase of the above series expan-
sion is significant. A three term expansion running
in MATLAB on an i7 processor was able to realize
greater than one order of magnitude time reduction in
the execution speed of the measurement model, when
compared to a tightly toleranced Gaussian quadrature
integration method.

Measurement Noise

A measurement noise model is required for Kalman
Filter signal tracking. Actual measurement noise is
assumed to enter the system only through the vk term
in Eq 9. There will be additional significant error due
to the small number of samples used in each accumu-
lation measurement, which are only approximations of
the continuous integrals in Eqs 23 and 24, and the
process noise term that was ignored in Eq 10.

The accumulations of Eqs 14 and 15 are rewritten be-
low to specifically include the effects of noise:

Ik =

N∑
i=1

(
Ai

2
cos(2πφi) + vi

)
cos
(
φNi
)

(35)

Qk =

N∑
i=1

(
Ai

2
cos(2πφi) + vi

)
sin
(
φNi
)

(36)

Equations 35 and 36 can be rewritten to separate the
signal part accumulations (Isig, Qsig) and the noise
part accumulations:

Ik =

N∑
i=1

Ai

2
cos(2πφi)cos

(
φNi
)

+

N∑
i=1

vicos
(
φNi
)

= Isig + vI

(37)
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Qk =

N∑
i=1

Ai

2
icos(2πφi)sin

(
φNi
)

+

N∑
i=1

visin
(
φNi
)

= Qsig + vQ
(38)

The noise accumulation terms are rewritten in vector
forms:

vI =

N∑
i=1

vicos
(
φNi
)

= vT ∗ cos
(
φN
)

(39)

vQ =

N∑
i=1

visin
(
φNi
)

= vT ∗ sin
(
φN
)

(40)

where v is an N-by-1 column vector of noise values over
an accumulation and φN is an N-by-1 column vector of
the complete NCO phase history over an accumulation
period.

The Kalman Filter in this study uses four measure-
ments from two different accumulation types, Type A
and Type B. The measurement noise vectors for both
accumulation types are stacked into one vector below:

vh =


vI,A
vQ,A

vI,B
vQ,B

 =


vT ∗ cos

(
φN
A

)
vT ∗ sin

(
φN
A

)
vT ∗ cos

(
φN
B

)
vT ∗ sin

(
φN
B

)

 =


CT

A

ST
A

CT
B

ST
B

 v (41)

where vh is a 4-by-1 column vector of accumulation
noises. CA and CB are N-by-1 column vectors of the
cosine of the NCO phase histories for accumulation
types A and B, respectively. Similarly, the SA and SB

terms are the sine values of the NCO phase histories
for accumulation types A and B. The superscript T

indicates a matrix or vector transpose.

The accumulation measurement noise covariance ma-
trix is defined using vh as follows:

(42)

R = E
[
vhv

T
h

]
= E



CT

A

ST
A

CT
B

ST
B

 vvT
(
CA SA CB SB

)

= σ2
v



CT

A

ST
A

CT
B

ST
B

( CA SA CB SB

)

= σ2
v


CT

ACA CT
ASA CT

ACB CT
ASB

ST
ASA ST

ACB ST
ASB

CT
BCB CT

BSB

ST
BSB



where E [∗] indicates the expected value of the quan-
tity enclosed in the square brackets, and σv is the stan-
dard deviation of vi, the zero–mean, white, Gaussian
noise.

Kalman Filter Architecture and Numerical
Considerations

In nonlinear systems appropriate selection of the type
of Kalman Filter to be implemented is important. The
classical filter is the linear Kalman Filter, but there
are a wide variety of filters and filter modifications
that have been created to handle issues that can arise
in real systems. For instance, an Unscented Kalman
Filter is appropriate for systems where it is difficult to
calculate the partial derivatives, and a particle filter is
useful for systems that are extremely nonlinear. This
study started with a simple linear Kalman Filter and
added modifications as necessary.

The first modification enables handling of the nonlin-
earities that arise in the measurement model. The
linear Kalman Filter was changed to an Extended
Kalman Filter (EKF), which effectively linearizes the
dynamics and measurement equations about the esti-
mated state using a Taylor Series Expansion.

The second modification is meant to improve handling
of the nonlinearities in the measurement model. The
entries in the system’s measurement sensitivity ma-
trix, the partial derivatives of each measurement with
respect to the state, are highly dependent on the cur-
rent state estimate. That dependence causes signif-
icant changes in the measurement sensitivity matrix
over even small state changes, and can cause issues in
a standard EKF. This study added an iteration routine
to the standard EKF, creating an Iterated Extended
Kalman Filters (IEKF). The iteration routine allows
multiple relinearizations of the partial derivatives at
each measurement update step, and enforces a nonlin-
ear residuals cost improvement in the overall update.
A reader interested in IEKFs is encouraged to read
reference [15].

The third and final modification is meant to handle the
severe numerical issues present in this system. The
numerical issues arise from the drastically different
numerical scales of the states involved. The α state
might have units with order of magnitude equal to
1012 [Hz/s], while the TR state might have units on
the order of 10−6 [sec]. These two states can cover
a numerical magnitude range equal to 1018. In sim-
ulations running in MATLAB, the greatest condition
number that can be supported, with any significant
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digits remaining after matrix inversion, is 1016. Be-
cause 1018 is two orders of magnitude above 1016 there
will be no significant numbers left over after matrix
inversion, and the algorithm will not produce mean-
ingful results. A modification that can fix this is the
use of Matrix Square Root Techniques. The current
modification uses a combination of normalization and
Cholesky factorization to keep track of smaller num-
bers. The result after applying the square root infor-
mation modification is an Iterated Extended Square
Root Information Filter (IESRIF). A reader interested
in Square Root Information techniques, such as that
used in the IESRIF, is encouraged to read [12].

Kalman Filter State Initialization

Convergence of a nonlinear Kalman Filter can only be
accomplished if the initial state estimate is within the
pull-in range of the system. Because a real system
will have no a priori knowledge of the jammer state,
initialization is accomplished through close examina-
tion of a small batch of data containing at least one
full reset period. The data is Hamming windowed in a
point–by–point manner, and then FFTs are computed.
The simulated result for a jamming signal mixed to a 5
MHz IF and with significant measurement noise added
is shown in Fig 5.

Figure 5 Spectrum of a simulated jamming signal
with significant noise at the output of an RF front
end.

A coarse initialization procedure that can start the
Kalman Filter state within the pull-in range of the
system is outlined below.

At the start of the initialization, the phase state φ is
set to zero. The frequency state f is taken as the max-
imum powered frequency in an FFT at a given time.
The α, TR, and fR states are computed using the min-
imum and maximum frequencies (fmin, fmax), and the

time of the minimum and maximum frequencies (tmin,
tmax), as shown graphically in Fig 6.

Figure 6 A magnified and brightened portion of
Fig 5, marked with important values for Kalman Filter
initialization.

The intial values of α, TR, and fR are determined from
the following simple set of equations:

fR = fmax − fmin

TR = tmax − tmin

α =
fR
TR

(43)

The amplitude state is estimated, and the previously
mentioned states refined, using multiple accumulations
similar to Eq 14 and 15, but with many different initial
state hypotheses. The reset time tR for the next reset
period is determined from further examination of the
FFTs surface plot.

Kalman Filter Results On Simulated Data

This section presents results of the proposed Kalman
Filter using simulated data.

The performance of the Kalman Filter is dependent on
the parameters used in the civil GPS jammer simula-
tion. The parameters used to generate the results in
this study are listed in the following paragraph and in
Tables 1 and 2. The initial covariance estimates were
tuned based on the expected accuracy of the initial-
ization scheme.

The parameterization in this paper causes the process
noise on α to move the state only slightly, because in
many real jammers the slope does not change much.
The amplitude state is allowed to vary only slightly, as
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Table 1 States used in the civil GPS jammer simula-
tion. The σ column is the standard deviation of the
process noise (wk) for each state, in appropriate units.

State units Nominal Value σ

α Hz/sec 5*1011 5*1014

A Volts 1 100
fR Hz 5*106 1*1011

TR sec 10*10−6 0.1

Table 2 Parameters used in the civil GPS jammer
simulation. The σ column is the standard deviation of
the measurement noise (vk), in appropriate units.

Parameter units Nominal Value σ

vi Volts 0 0.1
N N/A 10 N/A

1/Ts Hz 50*106 N/A

the whole simulation spans only 200 µs of real time,
and the amplitude would likely stay relatively constant
over this time in a real jammer. The process noise
standard deviation on state fR is increased above what
is typically seen in GPS jammers. The rationale for the
noise intensity increase on the fR state is to test the
performance of the Kalman Filter tracker with a more
difficult simulation than that which is expected to be
encountered in a real system.

There is a trade-off between the noise intensities on the
α and fR states and the ability of the Kalman Filter
to track the signal. It appears to be more difficult to
track a noisy fR state than a noisy α state. The reason
is that both the noise and the state of fR act on the
measurements in a discrete (instantaneous) manner, as
opposed to α which has both the noise and the state
act on the measurements in a continuous manner.

The results of a simulation and the Kalman Filter
tracking of its outputs are shown for the most inter-
esting 4 states in Figs 7, 8, 9, and 10. The first three
figures are for the first three states, φ, f , and α, and
the fourth figure is for the fifth state, fR.

The phase tracks accurately, although it contains a
bias that is not observable or important. Although
not shown, if the phase in Fig 7 is linearly detrended
and replotted, the result would be a series of parabolas
whose slopes change at the frequency resets.

The states frequency f and frequency rate α are
strongly observable. There is a trade-off between the
number of samples used in an accumulation and the
pull-in of the f and α states. The more samples used
in an accumulation the more power the accumulation

Figure 7 Kalman Filter phase estimate time history
φ (blue stars) and true simulator phase (green line).

Figure 8 Kalman Filter frequency estimate time his-
tory f (blue stars) and true simulator frequency (green
line).

Figure 9 Kalman Filter frequency rate estimate time
history α (blue stars) and true simulator frequency
rate (green line).
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can have. The accumulation loses power if the f , α,
and fR states fed to the NCOs are not close to the jam-
mer states. Therefore, in a system with intense process
noise only a few samples should be used in each accu-
mulation. The trade-offs will manifest as an increase
in the SNR required to track the noisy jammer, and a
decreased Kalman Filter execution speed.

Figure 10 Kalman Filter frequency reset estimate
time history fR (blue stars) and true simulator fre-
quency reset (green line).

The frequency reset state fR is observable. The cur-
rent implementation of the filter sometimes has diffi-
culty estimating the state at the reset time, but the
filter is able to continue to gain information about
that state even after a few accumulations have passed.
The likely reason for the added information is that the
expected noise intensity on α cannot account for the
changes seen in the accumulation measurements, so
the effects must be attributed to the fR state.

Although the simulation results are encouraging, the
current GPS jammer simulation and Kalman Filter
tracker make a number of assumptions that might be
violated in the real world. One of the primary assump-
tions made in this study is that the frequency state re-
set is instantaneous, or over no more than one sample.
In actual systems, the reset will occupy a finite amount
of time, and must be handled accordingly. A second
assumption is that the entire spectrum of the jam-
mer is contained in the sampled data, whereas in the
real world the jamming frequency may move outside of
the Nyquist range of the system. A third assumption
is that the process noise is zero–mean, white, Gaus-
sian noise, and that the state behavior is a random
walk. Actual GPS jammers would be more accurately
modeled by a Gauss-Markov sequence with appropri-
ate reference and standard deviation values. A fourth
assumption is that the RF front end has a very precise
clock, and its effects can be ignored. A fifth assump-
tion is that there are no environmental effects such as
multipath, additional signals, or correlated measure-
ment noise. At least some of the above effects should

be addressed before attempts are made to use the pro-
posed Kalman Filter on real data.

KALMAN FILTER JAMMER GEOLOCA-
TION

Accurate geolocation of a civil GPS jammer is useful
for numerous reasons, but this study’s primary moti-
vation is the further enablement of law enforcement
actions. This study uses a Kalman Filter and TDOA
measurement model for jammer geolocation.

This section will present its Kalman Filter implemen-
tation in seven subsections. The first subsection dis-
cusses reasons for selecting the TDOA geolocation
method, and the jamming scenarios that this study
is concerned with. The second subsection presents the
Kalman Filter’s state and dynamics, and the third sub-
section presents the Kalman Filter’s measurements.
The fourth subsection presents the Kalman Filter’s
measurement model, and the fifth section discusses
the chosen filter architecture and numerical consider-
ations. The sixth and seventh subsections cover data
collection and results obtained using that data.

TDOA Geolocation Method

There are numerous methods of geolocating a radi-
ation source, but this study will only use the time
difference of arrival method. The existing literature
on time difference of arrival techniques is extensive,
and a small sampling includes the following refer-
ences: [16, 17, 18, 19, 20].

The time difference of arrival geolocation method was
used instead of numerous other possible techniques,
such as direction of arrival (DOA) or power difference
of arrival, for three reasons. Firstly, TDOA can be
a very accurate technique. Secondly, TDOA can be
implemented on general purpose RF equipment. Fi-
nally, TDOA can also be implemented efficiently in
real time, particularly if the technique is modified so
that the method’s computational load can be spread
among multiple stations and the needed inter-station
communication bandwidth kept reasonably low.

Traditional TDOA systems start their measurement
formulation by communicating measurement RF data
streams from multiple stations to one central station.
Then the central station computes cross-correlations
on the data streams. The peak of each cross cor-
relation function corresponds to a time difference of
arrival measurement between the cross correlated sta-
tions. The correlations are typically used in lieu of
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other methods because very little a priori information
about the signal of interest is required. This study
leverages significant a priori information about civil
GPS jammers to reduce the communication demands
on the receiver array, as well as distribute the compu-
tational load among multiple stations.

The type of scenario that this study is primarily con-
cerned with is the geolocation of jammers used in cars
or other road–based vehicles. These vehicle–bound
jammers are naturally constrained to be on the sur-
face of the earth. This constraint is realized in the
form of a fixed altitude on the earth-shaped ellipsoid
from the World Geodetic Survey (WGS84). In the
current study, the altitude will be assumed to be the
average altitude of all of the receivers in the array. In
a theoretical situation where a road crossed through
the array at a slightly different altitude, that altitude
could be used instead of the average altitude of the
receivers in the array. If the altitude varies too much
over the road, then a topographic map could be used
to constrain the solution. In the current study the
altitude constraint is enforced in the form of an alti-
tude measurement, with a user–selected measurement
noise standard deviation. The standard deviation used
in this study was 10 m.

Kalman Filter State and Dynamics

The position of the GPS jammers is estimated using
a Kalman Filter–type approach. Note that the new
Kalman Filter will be almost completely unrelated to
the Kalman Filter presented earlier in this paper. In
this study, the following state is estimated at every
sample time tk:

xk =


tB

xJ

yJ

zJ


k

(44)

where tB is the time that a particular signal feature
is broadcast from the jammer, and the elements xJ ,
yJ , and zJ are the x, y, and z positions of the jammer
in the Earth Centered Earth Fixed (ECEF) coordi-
nate frame at time tk. The current study used the
above state because the batches of measurements cov-
ered a small enough amount of time (0.01 sec) that
the velocities did not contribute much to the position
evolution over a measurement batch. Similar to GPS,
the current system is measurement rich and can com-
pute position solutions without the aid of a dynamics
model using individual batches of measurements.

If the velocities of the jammer are required, as might
be the case in some scenarios when tracking a jammer

in a moving car, the state would be the following:

xk =



tB

xJ

yJ

zJ

ẋJ

ẏJ

żJ


k

(45)

where ẋJ , ẏJ , and żJ are the velocities of the jammer
in the ECEF coordinate frame.

The state transition matrix for the case without veloc-
ity states is:

xk+1 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

xk (46)

and the state transition matrix with velocity states is:

xk+1 =



0 0 0 0 0 0 0
0 1 0 0 ∆t 0 0
0 0 1 0 0 ∆t 0
0 0 0 1 0 0 ∆t
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


xk (47)

The top row of the state transition matrix is set to
zero because the broadcast time state tB , and all in-
formation associated with it, are dropped and then re-
estimated at every measurement update step of the
Kalman Filter. This dropping and re-estimating is
suboptimal because the jammers have a regular reset
period, but it helps maintain the independence of each
measurement set.

In the current study, no noise was considered to enter
into the state dynamics. This is a valid assumption
for two reasons. Firstly, the batches of data used in
the position estimation span a small enough time that
the effects are negligible. Secondly, the broadcast time
tB is estimated from zero a priori information at each
measurement interval. A scenario that used velocity
states would require a process noise term. Further
consideration of the type of process noise that could
be used is beyond the scope of this study.

Theoretically, the jammer reset period and reset time
can be added as fourth and fifth states. If these states
are added, then an estimated broadcast time that is
significantly outside of the standard deviations pre-
dicted by those states’ estimates can be flagged as a
measurement error. The measurement would then be
ignored by the filter.
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Kalman Filter Measurements

The measurements used in this study’s Kalman Filter
are the following:

zk =


t1
...
tn

hAvg,receivers

 (48)

where t1 through tn are the time of the jammer signal
feature arrival at each of the n stations used in the
array, and hAvg,receivers is the average height of the
receivers.

The signal feature time of arrival is the time when the
jamming signal ramps past a chosen frequency, specifi-
cally the L1 frequency, or another frequency close to L1
if the jamming signal does not pass through that fre-
quency. Computation of this crossing time is straight-
forward and could be accomplished in real time, but
it has been accomplished in an after-the-fact manner
in this study.

At every station, FFTs are computed sequentially on
batches of RF data expected to contain the jamming
signal. Figure 11 contains a color-contour plot of 50µs
of FFTed data from a chirp–type jammer. Each ver-
tical slice in the plot is a single FFT of 12 Hamming
windowed data points. Each slice has been advanced
by one point from the preceding slice.

Figure 11 FFT’d data from a GPS jammer with col-
or-contoured signal power plotted versus frequency on
the vertical axis and time on the horizontal axis.

In each FFT, only the point with the maximum power
is considered further. Additionally, the maximum
powered point in every FFT below a certain power
threshold is ignored. The power threshold can be de-
termined on the fly. One possibility would be to calcu-
late the maximum power in a batch of FFTs and then
set the threshold to some fixed fraction of that peak
power. Figure 12 is a plot of the same data used in

Fig 11, but now the maximum powered point in each
FFT above a threshold has a black dot placed on it.

Figure 12 Maximum powered points in each FFT
(black dotted line) above a selected power threshold
on real jamming data. The points are overlaid on top
of the FFTs used in their calculation.

The same points, but without the FFTs underlaid, are
shown in Fig 13. The resulting data can be used to
solve for the time at which the jamming signal sweeps
through L1, the fL1 crossing, also shown in Fig 13.

Figure 13 Frequency of maximum power points
above a selected power threshold in each FFT (dot-
ted line) versus time. The red horizontal line indicates
the L1 frequency, and the red vertical lines are the
signal feature times of arrival for the current station.

Two possible methods for calculating the fL1 crossing
are interpolation or polynomial curve fitting and eval-
uation at the L1 frequency. One advantage of the poly-
nomial fit is that it can reduce the effects of measure-
ment noise. A method that would provide more opti-
mal noise reduction would be to track the frequency
directly, in the sense of the Kalman Filter presented
in the third section of this paper.

The time series of fL1 crossings that result from the
above procedure are the measurements provided to the
Kalman Filter.
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The measurement series from each of the n stations
must be time–aligned for meaningful results. One
method would be to use GPS at each station to dis-
cipline each receiver’s clock and its definition of fL1

when the GPS signal is not completely jammed, as is
the case when the jammer is at a significant distance
from the station of interest. Once the jammer moves
close enough to completely prevent GPS signal track-
ing, the system would then transition to an open–loop
synchronization method, assuming that there are no
unjammed GNSS bands and no user–specified network
timing signal.

Open–loop synchronization would use the clock’s cur-
rent time estimate as a time stamp for every measure-
ment, but it would no longer have time measurement
updates from the GPS satellites. During this open–
loop synchronization the accuracy of the time stamps
and the fL1 frequency crossing at each station are func-
tions primarily of two factors, the quality of the clocks
at each station and the time that has elapsed since the
complete loss of GPS signals. A full analysis of clock
affects on TDOA measurements is beyond the scope
of this study.

Kalman Filter Measurement Model

The Kalman Filter measurement model for TDOA
techniques is simple. The relation between the time of
arrival (TOA) measurements and the jammers states
is:

ρi + ctB = ctRi (49)

where c is the speed of light in a vacuum, or in this
case it could be the speed of light in the atmosphere.
The variable ρi is the distance between the jammer
and receiver i, and is formally defined as:

ρi =
√

(xi − xJ)2 + (yi − yJ)2 + (zi − zJ)2 (50)

Equation 49 is easily understood as a form very close to
the classical GPS pseudorange equation. The only dif-
ference is that the pseudorange, which equals c(tRi −tB)
is not explicitly computed because tB must be kept
separate because it is unknown. This TOA equation
will become a TDOA calculation during the Kalman
Filter measurement update, which will in effect dif-
ference all the equations to isolate the effect of the
unknown ctB term from the unknown ρi terms.

Kalman Filter Architecture and Numerical
Considerations

The filter used in this study is an IEKF. The iteration
routine is required to converge to the correct states be-
cause the state tB must estimated at every time step
and the measurement model is nonlinear. This TDOA
filter is similar to a batch filter, as it considers no pro-
cess noise and its dynamics are stationary states, but
the system is a Kalman Filter because it updates its
state information in sequential measurement updates
for each signal feature broadcast time.

To improve the rate of convergence of the iteration
routine, the state tB is initialized to the earliest mea-
surement reception time at each Kalman Filter mea-
surement update step. The resulting speed improve-
ment was not significant when compared to the total
execution time of the Kalman Filter.

Data Collection for Kalman Filter Geolocation

Data for jammer geolocation was collected at a GPS
jamming event sponsored by the Department of Home-
land Security (DHS) at White Sands Missile Range in
New Mexico. The event spanned multiple days and in-
cluded participants from both industry and academia.
The jamming was performed only at night to mini-
mize interference with GPS users near the range. The
jamming scenarios included, but were not limited to,
static civilian jammers and jammers mounted in cars
driving on prespecified routes. The results presented
in this study are for a subset of the mobile cases only,
as some of the vehicles with jammers contained so-
phisticated INSs, and were therefore able to provide
position solutions in a GPS–denied environment.

Four stations were used to collect data in this study.
Each station is denoted by a red square on the Google
Maps image shown in Fig 14. The stations at the top
and bottom of the image are separated by approxi-
mately one kilometer, while the other two stations are
separated by approximately 500 meters.

All of the stations used general purpose RF equipment
and stored the data for processing in an after-the-fact
manner. The important pieces of RF equipment are
shown in Figs 15, 16, and 17.

Figure 15 contains three important pieces of equip-
ment. The first two boxes on the left are Ettus Re-
search Equipment USRP N200s with two daughter
boards (DBSRX2 800-2350 MHz Rx). They are gen-
eral purpose RF-front ends which can filter RF signals,
mix the signals to baseband, digitize the data and then
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Figure 14 A Google Maps image overlaid with red
square to indicate receiver station locations. (Im-
agery ©2012 DigitalGlobe, GeoEye, NMRGIS, Texas
Orthoimagery Program, USDA Farm Service Agency,
Map data ©2012 Google)

Figure 15 General purpose RF recording equipment.
The two boxes on the left are Ettus Research USRP
N200s, the box in the middle is an ovenized crystal
oscillator and the box on the right is a power inverter.

stream it over an ethernet cable to a laptop. The two
USRPs’ relative digitization times are synchronized us-
ing an Ettus Research Equipment MIMO cable (shown
plugged into the front of both boxes). The box in the
middle is an ovenized crystal oscillator, and is used to
drive the RF-front end mixing chain and sample times
in the two Ettus USRPs. The box on the right is a
Belkin car cigarette lighter socket DC power inverter.
It powered all of the other equipment in the figure.

Figures 16, and 17 show two different antennas that
receive signals at the GPS frequency. Figure 16 shows
an antenna mounted on a ground plane and on a tri-
pod. This setup allows the antenna to be aimed to-
wards the location where a GPS jammer is expected,
so that its emissions may be received. The second an-
tenna, shown in Fig 17, is a simple GPS patch antenna.
The second antenna is meant to enable time synchro-
nization between different stations by means of GPS.
Time synchronization requires tracking at least 4 GPS
satellites if the platform is mobile, and only one if the
platform is stationary. To ensure tracking of the min-
imum number of GPS satellites, the second antenna
was placed on a ground plane (sheet of metal) which
was pointed away from the expected jammer locations
and further shielded from the jammers using the car
or a raised piece of ground near each station. The
ground plane and shielding severely attenuate the re-
ceived power of the GPS jammer and allows tracking
of the GPS satellites.

Figure 16 Jammer pickup antenna on ground plane,
mounted on a tripod for easier aiming.

A picture from one of the setups on a typical night
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Figure 17 GPS pickup patch antenna. Mounted on a
large ground plane and shielded with a car when used
in the field.

is shown in Fig 18. The jammer pickup antenna was
placed on top of the car and was aimed towards the
road where the suspected jammer was assumed to
travel. The second antenna was mounted on a ground
plane and placed against the driver’s side tire. The
shielding and placement selection of the second an-
tenna effectively attenuated power emitted from the
GPS jammer at that antenna. The rest of the equip-
ment was located inside the car and was powered by
the power inverter as the car idled.

Figure 18 Picture of the bottom right station in
Fig 14, on a typical night of testing.

The other three stations were set up with similar
equipment and in a similar manner. The data was
collected from both antennas at approximately 9 MHz,
with 14- bit digitization, and with the L1 frequency set
as the baseband frequency of the Ettus USRPs. Each
USRP used a different fixed gain for each antenna and
for each of the two tests considered in this study. The
first test was of a higher power jammer and typically
used gains of 25dB for the jammer pickup antenna
and 35 dB for the GPS pickup antenna. The second
test was of a lower power jammer and typically used
gains of 30dB for the jammer pickup antenna and 40
dB for the GPS pickup antenna. The total amount of
recorded data was approximately 10 TB, but a much
smaller amount is considered in this study.

Results of Kalman Filter Geolocation Using
Real Data

There were numerous jamming events throughout the
multiple nights of testing at White Sands Missile
Range, but the results of only two scenarios are shown
in the present study. The two studies use data from
jammers mounted on top of vehicles with inertial navi-
gation systems. These vehicle–mounted jammers were
driven through the receiver array.

The first set of results is for a more powerful GPS jam-
mer. This first jammer was able to completely disable
a hand-held road navigation unit placed inside of the
car at the top left station in Fig 14, which was very
near the road. The jammer shown in the middle of
Fig 1 has a similar form factor to the jammer used in
the first test, although the tested jammer was slightly
larger. More detailed information on this type of jam-
mer can be found in reference [7], where it is listed as
that paper’s second classification of jammer type.

The second set of results is for a weaker GPS jam-
mer. In addition to radiating less power than the first
jammer, this particular jammer swept a much larger
frequency range. The larger sweep range results in less
time spent inside of a narrow band at the L1 frequency,
reducing the time–averaged received power. The jam-
mer shown at the far left of Fig 1 has a nearly identical
form factor to that used in the second test. More de-
tailed information on this type of jammer can be found
in reference [7], where it is listed as that paper’s first
classification of jammer type.

The TDOA position solutions are compared to the
INS position solutions for the first and second tests,
with results plotted on top of a Google Maps image
in Figs 19 and 20, respectively. In both figures the re-
ceiver station positions are denoted with red squares,

17



the INS position solutions with blue dots, and the
TDOA position solutions with green dots. The re-
sults use only small batches of data in short Kalman
Filter runs every 5 seconds, with no shared a priori
information passed between batches. The amount of
measurements used comprise only 0.16% of the data
that could have been used. Using all of the data would
improve results, but may be difficult to accomplish in
a real–time system.

The average difference magnitude between the TDOA
and INS positions for the first scenario is approxi-
mately 15 meters in the local east-north plane, while
the average position difference magnitude for the sec-
ond scenario is approximately 8.5 meters. The listed
differences are with respect to an INS, which may
contain a minor bias. The vertical, or altitude, po-
sition difference is negligible because of the altitude
constraint measurement.

SUMMARY AND CONCLUSIONS

This paper has covered four related topics of civilian
GPS jammers.

The first topic has been a brief background review on
civil GPS jamming, and it has been shown that the
output of a typical jammer is a chirp signal.

The second topic has been a particular parameteriza-
tion of the jammer’s linear chirp signal. The chirp
signal dynamics were described with standard linear
systems–type techniques, and the state has been re-
lated to a theoretical RF output at the jammer an-
tenna.

The third topic has been a method of tracking the sim-
ulated signal through the use of accumulations, accu-
mulation models, noise models, and Kalman Filter–
type estimation techniques. Two different types of
accumulations have been used to improve the pull-in
of the filter, one that uses the estimated jammer fre-
quency in the NCO and one that used the jammer
frequency plus its reset. Results of the jammer simu-
lator and Kalman Filter signal tracker have been pre-
sented for a signal with a given parameterization. The
Kalman Filter is able to track a weak jamming signal
with significant process noise.

The final topic has been a TDOA geolocation method
using a Kalman Filter. The measurements used in this
study’s TDOA model are not simple cross–correlation
peaks, but instead are a signal feature, the L1 fre-
quency crossing of the chirp signal. The real data
used in geolocation were collected at a DHS–sponsored

jamming event at White Sands Missile Range in June
of 2012. The presented TDOA algorithm has been
tested on the collected data for two types of jammers
in moving vehicles. The resulting position differences
between the INSs on the vehicles containing the jam-
mers and the TDOA position estimates are approx-
imately 15 and 8.5 meters, for the first and second
test, respectively.
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