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ABSTRACT 

Phase-lock loops are being developed and tested for 
robust tracking of the GPS L1 C/A and L2C CL signals 
through strong ionospheric scintillations.  This work is 
part of an effort to design robust dual-frequency 
scintillation monitors that exploit the characteristics of the 

new civilian signals which are appearing on the GPS L2 
frequency.  Three new features increase L2 carrier 
tracking robustness in comparison to current civilian 
dual-frequency GPS receivers.  The first feature is open 
access to the transmitted L2C PRN codes, which enables 
the tracking algorithm to eliminate the squaring loss of 
current semicodeless dual-frequency civilian receivers.  
The second feature is the use of the L2C CL pilot signal, 
which avoids a second source of squaring loss inherent in 
the removal of unknown navigation data bits.  The third 
feature is a new PLL architecture that is based on a 
Kalman filter and that generalizes the notion of a 
discriminator in a way that tends to reduce cycle slipping.  
The new tracking loops have been tested on equatorial 
scintillation data that have been collected using a dual-
frequency wide-band digital storage receiver.  The new 
L2 tracking loop performs well, but the data did not 
provide a significant tracking challenge because the 
highest S4 index was 0.51.  Additional tests have been 
performed on the L1 and L2 tracking loops using a 
simulation that includes a high-fidelity physics-based 
scintillation model.  These tests demonstrate that the new 
phase-lock loops can track robustly, with only 
intermittent cycle slips, through scintillations with 
intensities up to S4 = 1. 

INTRODUCTION 

Ionospheric scintillation in the equatorial region is a 
phenomenon in which short-length-scale electron density 
variations give rise to signal diffraction that results in 
rapid changes in the power and carrier phase of received 
GNSS signals.  The most severe scintillations tend to 
occur near the magnetic equator or at high latitudes 1.  
The rapidity and magnitude of the signal fluctuations 
often cause GNSS receivers to lose lock on the 
scintillating signal 2,3,4,5.  This loss of lock causes a total 
loss of data from the received signal. 

There is a significant interest in the development of 
GNSS receivers that can track through scintillations more 
reliably than can current receivers.  Such improvements 
would make Position, Navigating and Timing (PNT) 
operations more dependable in a scintillating 
environment.  The terms "robust" and "robustness" will 
be used throughout this paper in order to characterize 
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tracking algorithms that operate reliably during strong 
scintillations.  This paper's goal is to develop and test new 
tracking algorithms that offer significant increases in 
robustness. 

The authors’ interest in scintillations and in robust 
tracking through scintillations stems from their ongoing 
efforts to use GNSS technology in order to remotely 
sense the ionospheric disturbances that cause this 
phenomenon 6,7,8,9.  An improved ability to track GNSS 
signals through ionospheric scintillations would constitute 
an important aid to their efforts to use GNSS technology 
as a tool for studying the disturbed ionosphere.  Their 
studies specifically seek to probe the strongest possible 
scintillations.  Therefore, they require the highest degree 
of robustness in order to be able to monitor and 
characterize the most severe possible scintillations. 

A new scintillation science experiment that is under 
development provides the motivation for the current 
effort to design dual-frequency GPS receivers that track 
signals very robustly.  This project’s goal is to image the 
ionospheric density variations that cause equatorial 
scintillations.  It seeks to do this by using scintillating 
dual-frequency GPS signals as the inputs to a diffraction 
tomography calculation.  The concept of this experiment 
is illustrated in Fig. 1.  An array of GNSS receivers will 
be distributed along a (magnetic-) east/west line below 
the equatorial ionosphere.  This array will record the 
time-varying signal power and carrier phase variations 
that are caused by scintillations at the L1 and L2 
frequencies.  These dual-frequency amplitude and phase 
data will be the inputs to a model-inversion/estimation 
algorithm.  That algorithm will use a wave propagation 
physical model of how ionospheric electron density 
variations give rise to signal scintillations at the receiver.  
It will estimate the density variations by iteratively 
computing the density profile that best reproduces the 
recorded scintillation data when propagated through its 
physical model. 

The feasibility of conducting such an experiment for 
strong ionospheric scintillations is critically dependent on 
the availability of inexpensive civilian dual-frequency 
GNSS receivers that can track though strong scintillations 
robustly.  Unfortunately, current civilian dual-frequency 
receivers must rely on semicodeless processing of the 
encrypted military P(Y) code in order to track the L2 
signal.  This technology is inherently prone to loss of 
lock, and receivers that use it regularly experience 
tracking problems during scintillations 4,5. 

The present study is part of an ongoing effort by the 
authors to develop receivers with significantly improved 
tracking robustness during scintillations 3,10,11.  Its main 
goal is to develop a new carrier tracking phase-lock loop 
(PLL) that exploits the properties of the new L2C signals 
in order to achieve greatly enhanced L2 tracking 

robustness.  The two significant properties that can 
enhance tracking robustness are the presence of non-
encrypted CM and CL PRN codes and the lack of data 
bits on the CL pilot code. 

 
Fig. 1. Schematic diagram of proposed diffraction 

tomography experiment to image the disturbed 
scintillating ionosphere based on data from an east-
west array of ground-based GPS receivers. 

Current state-of-the-art dual-frequency civilian receivers 
track the L2 signal by performing a cross-correlation with 
the P(Y) code on the L1 signal, which incurs a squaring 
loss.  A tracking loop with a squaring loss tends to 
degrade in accuracy and lose lock much more rapidly as 
power decreases than does a non-squaring loop.  In 
scintillations, where power can fade on L1 and L2, the 
tracking difficulties for a semicodeless loop that operates 
on the L2 P(Y) signal are very pronounced because the 
squaring loss is a function of the power on both GPS 
frequencies.  Receivers that use the new L2C civilian 
signals experience no such difficulties because the 
signals' known PRN codes eliminate the need for cross-
correlation. 

A second form of squaring loss occurs when unknown 
navigation data bits must be wiped off of the signal 
before it can be used in a tracking loop.  Loops that track 
the L1 C/A signal experience this loss when they wipe off 
the 50 Hz navigation data bits.  The L2C signal includes 
two PRN codes, the CM code and the CL code.  They are 
time-multiplexed on an every-other-chip basis 12.  The 
CM signal carries unknown data bits, but the CL signal is 
a dataless pilot signal.  It can be used independently of 
the CM signal in order to implement a non-squaring PLL 
that tracks the L2 signal’s carrier phase. 

The contributions of the present study are to develop a 
new non-squaring PLL for the L2C CL signal and to test 
it under scintillation conditions.  Two types of test have 

+x 

+y 
(nominal mag.
field direction) 

+z 
Linear array of ground-based 

GPS receivers 

Incident plane wave 
from GPS satellite 

Diffracted signal below 
ionosphere 

Disturbed 
ionosphere 



 3

been carried out.  One applies the PLL to dual-frequency 
wide-band data that have been collected during actual 
equatorial scintillations.  The other applies the PLL in a 
physics-based simulation of dual-frequency scintillations.  
This simulation uses a scintillation model that is based on 
a phase screen calculation 13,14.  The goal of the tests is to 
determine whether the new PLL will improve a receiver’s 
ability to track the L2 signal during scintillations.  The 
tests also study the scintillation robustness of an L1 C/A 
signal PLL and of a semicodeless L2 P(Y) PLL.  This 
latter PLL is implemented using a method of 
semicodeless accumulation calculation that is called 
"Soft-Decision Z-tracking" 15. 

The authors’ primary scintillation experience has been 
gained in the equatorial region.  Equatorial scintillations 
are characterized by rapid fluctuations in both the power 
and the carrier phase of the received GNSS signal.  These 
differ from high-latitude scintillations, in which the 
primary disturbances are in the carrier phase.  This paper 
deals exclusively with equatorial scintillations.  Although 
it is quite possible that the paper’s methods and results 
would carry over to high-latitude scintillations, the paper 
itself makes no attempt to demonstrate any applicability 
to the high-latitude case. 

The remainder of this paper is divided into 5 sections plus 
conclusions.  Section II reviews the characteristics of 
scintillations and the difficulty of carrier tracking through 
strong scintillations.  Section III presents a new non-
squaring PLL for tracking the L2C CL signal.  This 
section also describes two variants of the L2C PLL that 
are considered for comparison purposes: a version that 
involves data bit wipe-off for tracking the L1 C/A signal 
and a version for semicodeless tracking of the L2 P(Y) 
signal.  Section IV describes a scintillation data collection 
campaign and how the data have been used to evaluate 
the performance of the L2C CL PLL and the L1 C/A PLL 
during moderate scintillations.  Section V describes a 
phase screen simulation that has been developed in order 
to study tracking under severe scintillation conditions.  
Section VI presents the results of the tracking studies, 
both for the real scintillation data and for the simulated 
data.  Section VII gives a summary of the paper’s 
contributions and presents its conclusions.  The appendix 
contains additional details about the implementation of 
the phase screen simulation.  

II. THE DIFFICULTY OF CARRIER TRACKING 
DURING EQUATORIAL SCINTILLATIONS 

A. Canonical Fades 

The most significant feature of equatorial scintillations 
from the standpoint of carrier tracking is a phenomenon 
that has been given the label “Canonical Fade” 11.  Three 
canonical fades are highlighted in Fig. 2.  This figure 
plots the normalized power time history and the de-

trended carrier phase time history that occurred during 
severe equatorial scintillations of a GPS L1 signal 10. 

 
Fig. 2. Canonical fades as seen in a GPS L1 C/A 

signal's power time history (top plot) and de-
trended carrier phase time history (bottom plot) 
(S4 ≈ 0.9). 

Each canonical fade consists of a rapid, deep power fade 
(see top plot) accompanied by an abrupt phase change of 
+/- ½ carrier cycle (see bottom plot).  It is certain that 
these carrier cycle changes are real.  They are not the 
results of half-cycle tracking loop slips due to erroneous 
decoding of the 50 Hz navigation data bits because the 
off-line MATLAB software receiver that processed these 
data had knowledge of the bits and had wiped them off 
before tracking the signal.  Further confirmation of the 
canonical fade phenomenon has been obtained by 
considering scintillation data from the Wideband satellite 
mission 11. 

Canonical fades present an extreme challenge to a carrier 
tracking loop such as a PLL.  A PLL relies on feedback of 
a measurement of its carrier phase error in order to track a 
signal.  This measurement is based in-phase (I) and 
quadrature (Q) accumulations that are used to compute a 
discriminator value that is an indication of carrier phase 
error.  The phase measurement error varies inversely with 
the square root of the received signal power.  Therefore, 
the phase measurement error is the largest during the deep 
canonical power fades.  Unfortunately, this is exactly the 
time when the PLL needs to have the best possible carrier 
phase measurements in order to accurately discern which 
way the rapid half-cycle carrier phase jump is about to go.  
In other words, the PLL has the poorest information about 
carrier phase at precisely the moment when it needs the 
best possible information in order to track the rapid 
changes of phase.  This combination tends to lead to cycle 
slipping and, if the scintillations are severe enough, 
eventually to complete loss of the signal due to loss of 
frequency lock. 

3 canonical 
fades 
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Fig. 3. Comparison of carrier phase measurements from [I;Q] 
accumulations for L1 C/A signal (left-hand plot) and for L2 CL 
signal (right-hand plot). 

-Δφmeas 

B. The Advantage of using a Pilot Signal to track 
through Equatorial Scintillations 

One advantage of the L2C CL signal for scintillation 
tracking is its lack of navigation data bits.  This advantage 
is illustrated in Fig. 3, which plots measured points in the 
[I;Q] plane for actual scintillating L1 C/A and L2C CL 
signals.  Each [I;Q] pair provides the PLL with a raw 
measurement of the difference between the actual carrier 
phase and that of a reconstruction of the 
signal that exists in the PLL’s numerically 
controlled oscillator (NCO).  As illustrated in 
the figure, the raw phase difference 
measurement, Δφmeas, is the angle between 
the +I axis and the vector from the origin to 
the [I;Q] point. 

If the PLL were tracking the signal perfectly 
and if there were no thermal noise or 
scintillation-induced amplitude and phase 
variations, then each red cloud of points on 
each of the two plots would collapse into a 
single point.  These points would lie along 
the Q axis in the PLL implementations whose 
data are plotted in Fig. 3.  Thermal noise 
causes the points to spread out into a cloud.  
Amplitude scintillation causes power fades, 
which appear on the [I;Q] plane as elongation 
of the clouds in the direction of the origin 
because amplitude is proportional to the distance of the 
cloud from the origin and power is proportional to the 
distance squared.  The presence of navigation data bits 
with a Binary Phase-Shift Keying (BPSK) modulation 
causes the  [I;Q] points to split into 2 clouds on the left-
hand L1 C/A signal plot.  There is only 1 cloud on the 
right-hand L2C CL plot because the CL signal does not 
carry data bits. 

Given these facts, it is straightforward to understand why 
the L2C CL signal has an advantage in scintillation 
tracking in comparison to the L1 C/A signal.  Each of the 
signals has a 360 deg carrier phase ambiguity because a 
1-cycle phase error has no effect on the location of a 
measured [I;Q] point on Fig. 3.  The L1 C/A signal also 
has a 180 deg phase ambiguity because a half-cycle phase 
error has exactly the same effect on an [I;Q] point as does 
a change of sign of a +1/-1 navigation data bit.  A PLL 
that tracks an L1 C/A signal must use the horizontal blue 
line in the left-hand plot of Fig. 3 in order to distinguish 
which of the two possible point clouds is the cloud from 
which a particular [I;Q] pair has been sampled. 

These two point clouds move towards the origin and 
intersect during the deep power fades of strong 
scintillations.  As they approach the origin, the phase 
error standard deviation of each measurement increases 
because the aspect ratio of the cloud width divided by its 
distance from the origin increases.  When the two clouds 

contact, the PLL will start to make errors in its 
association of [I;Q] pairs with clouds, that is, with data bit 
values.  These mis-associations correspond to 180 deg 
phase measurement errors.  If enough errors of this type 
occur, then the tracking loop will start to slip half cycles, 
and eventually it will completely lose carrier lock. 

The L2C CL signal, on the other hand, has no such 
problem of deciding between two point clouds.  
Therefore, it does not need to make a bit decision along 

the horizontal axis of the [I;Q] plane.  The only decision 
that it must make is whether a full cycle slip has occurred.  
This amounts to a decision at the vertical blue pair of line 
segments that bracket the vertical +Q axis on the right-
hand plot of Fig. 3.  This ambiguity is inherent in all 
phase detectors because of the fact that one carrier cycle 
looks like the next. 

In the final analysis, the presence of data bits means that 
the PLL starts to have significant problems when the two 
[I;Q] clouds approach close enough to the origin to cause 
the phase measurement error standard deviation to be a 
significant fraction of 90 deg.  If using a pilot signal, on 
the other hand, then problems occur only when the error 
standard deviation becomes a significant fraction of 180 
deg.  Thus, a PLL for a pilot signal will track more 
robustly during scintillation-induced power fades than 
will a PLL for a signal that carries data bits. 

III. A KALMAN-FILTER-BASED PLL FOR 
TRACKING THE L2 CL SIGNAL 

A. Kalman Filter Equations for CL Signal PLL 

The PLL that has been developed for tracking the L2C 
CL signal is a modified form of the Kalman-filter-based 
PLLs that were originally introduced in Refs. 16 and 17.  
The Kalman filter estimates the following state vector at 
the accumulation start/stop time tk: 
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xk  =  [Δφk, ωk, αk]T (1) 

where Δφk is the difference between the true carrier phase 
and the phase of the PLL's NCO, ωk is the carrier Doppler 
shift, and αk is the rate of change of carrier Doppler shift. 

The Kalman filter PLL works from sample to sample, and 
its operations can be defined by considering a single 
accumulation/sample interval that starts at time tk and that 
ends at time tk+1.  At the start of this interval, the Kalman 
filter begins with its a posteriori estimates of the states: 

T][ kkkk ˆ,ˆ,ˆˆ αωφΔ=x  (2) 

The qualifier "a posteriori" indicates that these estimates 
are based on all accumulation data that have been 
measured up to, but not beyond, time tk.  The latest such 
data that will have been used are the accumulations Ik and 
Qk, which will have been computed during the sample 
interval from tk-1 to tk. 

The Kalman filter's first operation is the following 
dynamic propagation from time tk to time tk+1: 
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where Δtk = tk+1 - tk is the accumulation interval and where 
ωPLLk is the rough Doppler shift estimate that the PLL 
sends to its carrier NCO during this interval.  Note that 
ωPLLk does not necessarily equal the Doppler shift 
estimate kω̂ .  In fact, there is a considerable degree of 
latitude in the choice of ωPLLk.  A particular method for 
choosing ωPLLk will be defined below.  The resulting a 
priori state estimate at time tk+1 is 

T
1111 ][ ++++ = kkkk ,, αωφΔx  (4) 

where the qualifier "a priori" indicates that this estimate 
is based on accumulation data only up through time tk, 
i.e., only on data up through Ik and Qk. 

The Kalman filter finishes its operations for the interval 
by applying a measurement update.  This update is based 
on the accumulations Ik+1 and Qk+1, which will have been 
computed by the receiver's baseband digital processor.  In 
addition to a carrier NCO and a baseband mixer, the 
baseband processor will use a code chipping rate from a 
DLL as the input to its code NCO, which will produce the 
replica PRN code that the processor will use to wipe the 
code off of the received signal before computing its 
accumulations.  This analysis presumes that the DLL and 
the code NCO perform PRN code removal with negligible 
error.  The accumulations Ik+1 and Qk+1 are used in a 
discriminator-like calculation in order to compute the 
phase measurement: 

)(2 111 +++ −= kkk I,Qtanay  (5) 

where atan2( , ) is the usual 2-argument arctangent 
function that produces outputs in the range -π ≤  yk+1 ≤  π.  
This measurement has a 2π phase ambiguity that is dealt 
with at a later stage of processing. 

The Kalman filter measurement update uses an a priori 
estimate of what the measurement would have been if the 
state estimates had been correct.  This estimate takes the 
form 
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The formula in Eq. (6) represents the error between the 
true carrier phase and the PLL NCO's phase averaged 
over the interval from tk to tk+1.  This formula for the 
average presumes an underlying continuous-time model 
in which (ω - ωPLLk) is the time derivative of Δφ, α is the 
time derivative of ω, and ωPLLk is a constant. 

The measurement update finishes by computing the error 
between yk+1 and 1+ky  and by using this error in a 
feedback update that forms the a posteriori state estimate 
at time tk+1.  This error is called the filter innovation: 

111 +++ −= kkk yyν  (7) 

The final update equation takes the form: 
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where L is the 3x1 Kalman filter gain matrix. 

The computation in Eq. (8) that involves the innovation 
1+kν  in the round operation constitutes the Kalman 

filter's method of dealing with the 2π phase ambiguity of 
the atan2( , ) function in Eq. (5).  This operation assigns a 
value to the phase ambiguity based on the assumption that 
the true measurement innovation should not lie outside 
the range: -π ≤  1+kν  ≤  π.  This is a reasonable 
assumption given that 1+ky  constitutes the Kalman filter's 
best estimate of what yk+1 should be. 

The inclusion of this round operation tends to give the 
Kalman filter more tracking robustness than it would have 
if it were to feed back the output of the atan2( , ) function 
as a simple PLL discriminator.  The added robustness 
comes from the fact that the 2π ambiguity folding point 
effectively moves about in the [I;Q] plane in a way that 
keeps it opposite to the current best estimate of where the 
[I;Q] accumulations should be falling, i.e., opposite to the 
cloud shown in the right-hand plot of Fig. 3.  This fact 
allows the Kalman filter's performance to be largely 
insensitive to the structure and bandwidth of the 
somewhat arbitrary feedback control law that determines 
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ωPLLk.  In a more traditional PLL, on the other hand, an 
improperly tuned loop filter might drive ωPLLk in a way 
that allowed the π ambiguity folding point to get too near 
to the actual carrier phase, which could lead to nonlinear 
stability problems and eventual loss of frequency lock. 

The total carrier phase estimate of this Kalman filter is the 
sum of the phase error estimate kφ̂Δ  and the phase of the 
PLL's NCO, φPLLk.  This total phase is the receiver's 
estimate of the integrated Doppler shift, which equals the 
negative of the accumulated delta range measured in 
radians of carrier wavelengths.  The NCO phase is the 
time integral of the PLL Doppler shift: 

PLLkkPLLkkPLL t ωΔφφ +=+ )1(  (9) 

The total phase estimate PLLkk
ˆ φφΔ +  tends to be more 

accurate than the PLL output φPLLk alone even if Δφk is 
relatively small.  Similarly, the state estimate kω̂  is 
normally a more accurate estimate of the carrier Doppler 
shift than is ωPLLk. 

This Kalman filter effectively implements a 3rd-order 
PLL through its use of 3 states.  As is usual with a 3rd-
order PLL, it can track a ramping Doppler shift with zero 
phase error.  That is, it can deal with a non-zero constant 
phase acceleration α in a way that results in zero bias in 
the total phase estimate PLLkk

ˆ φφΔ + . 

The Kalman filter implemented in Eqs. (3), (5), (6), (7), 
and (8) represents a straightforward application of 
Kalman filter theory for the chosen system model.  
References 18 and 19 are text books that explain Kalman 
filter theory well. 

B. A Stabilizing Feedback to Drive the Carrier NCO 

The choice of carrier NCO frequency ωPLLk is somewhat 
arbitrary.  It must not differ from the true Doppler shift by 
a large enough amount to cause aliasing or even to cause 
significant power loss in the accumulations. 

A variety of stabilizing feedback control laws could be 
used in order to synthesize ωPLLk based on the state 
estimates.  The only restriction is that the state estimates 

kφ̂Δ , kω̂ , and kα̂  cannot be used to compute the NCO 
frequency for accumulation index values less than k+1.  
This restriction ensures that the Kalman filter can be 
implemented in real-time.  The final dynamic propagation 
and measurement update that are used to form the 
estimates in kφ̂Δ , kω̂ , and kα̂  cannot be completed until 
after time tk because the measurement update requires the 
accumulations Ik and Qk, which become available only 
after time tk.  Presuming that the processor is fast enough 
to perform the computations in Eqs. (3-8) in less than one 
accumulation interval, it is possible to use kφ̂Δ , kω̂ , and 

kα̂  in order to compute ωPLL(k+1) in real-time, i.e., before 
time tk+1, at which point  this quantity is needed by the 
carrier NCO. 

The NCO feedback control law that has been used in the 
present study takes the form 16: 
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where η is a feedback tuning parameter and Δφdes is the 
desired steady-state value of the phase error Δφk.  As a 
point of reference, this steady-state target value was 
arbitrarily set to Δφdes = -π/2 in the PLL that generated the 
data for the right-hand plot of Fig. 3.  This feedback 
control law has been designed in order to make the NCO 
phase error dynamics obey the following stable 2nd-order 
linear difference equation in the absence of noise or other 
disturbances: 

deskkk
ˆˆˆ φΔηφΔηφΔηφΔ 22

12 )1(2 −=+− ++  (11) 

This fact can be proved by a set of algebraic 
manipulations that use Eqs. (3) and (10) and that assume 
that the a posteriori and a priori state estimates are equal.  
The two characteristic values of the dynamic model in Eq. 
(11) are η repeated twice.  Thus, these error dynamics 
will be stable for any tuning value in the range  -1 < η < 
1.  Typically one uses positive values for η that are near 1 
in order to have a low bandwidth.  Note, however, that 
the bandwidth of this NCO error dynamics model is 
completely decoupled from the bandwidth of the Kalman 
filter. 

Although not used in the present study, it should be 
acceptable to use a simple frequency-lock loop (FLL) in 
order to compute ωPLL(k+1).  The following FLL feedback 
control law should work satisfactorily: 

ωPLL(k+1)  =  kkkk ˆttˆ αΔΔω )( 12
1

+++  (12) 

In this case, the carrier phase estimate PLLkk
ˆ φφΔ +  still 

should be a very good phase estimate, like that of any 
good PLL, even though the estimate PLLkφ  would tend to 
be a very poor estimate due to drift between the NCO 
phase and the true phase.  The Kalman filter would 
accumulate an accurate estimate of this drift in its kφ̂Δ  
state. 

C. Tuning of the Kalman Filter 

Implementation of the PLL Kalman filter requires 
knowledge of the 3x1 filter gain matrix L.  One could 
choose to implement a time-varying Kalman filter in 
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which L varied with the sample index k to become Lk.  
Such an implementation would necessitate the use of an 
estimation error covariance propagation and a gain 
computation for each accumulation interval 18,19. 

A time-varying gain computation could adapt the filter to 
deal with the increased phase error measurement standard 
deviation that occurs when scintillations cause the power 
to fade, but this is not the only important issue.  A truly 
optimal implementation would require an additional 
adaptation parameter that accounted for the increased 
rapidity of the carrier phase changes that occurred during 
canonical fades.  The increased measurement noise during 
fades would tend to decrease the magnitudes of the gain 
elements in Lk, but the increased phase dynamics 
uncertainty would tend to increase these magnitudes. 

Therefore, it is reasonable to attempt to use a fixed-gain 
Kalman filter.  A further advantage of a fixed-gain filter 
is its elimination of the expensive matrix computations 
that are used by a time-varying filter in order to 
manipulate the error covariance matrix and in order to 
compute the gain matrix. 

Fixed-gain filters occur in steady-state when the 
dynamics model is time-invariant.  If one presumes a 
nominal value of the accumulation interval Δtk = Δt 
independent of k, then one can compute a fixed filter 
gain.  This is what has been done.  As a further 
simplification, a limiting property of the Kalman filter has 
been used in order to allow the steady-state gain to be 
computed using the pole placement technique.  This 
known property is that the filter's characteristic values 
tend towards a Butterworth pattern.  Therefore, the 
steady-state gain matrix L has been chosen so that the 
filter's steady-state error state transition matrix 

]621[
100

10
501 2

2

/t,/t,Lt
t.t

cl ΔΔΔ
ΔΔ

Φ −
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=  (13) 

will have the desired closed-loop eigenvalues 
exp(-2πBPLLΔt), exp([-1+j 3 ]πBPLLΔt), and 
exp([-1-j 3 ]πBPLLΔt), where BPLL is the bandwidth of the 
Kalman filter in Hz and Δt is given in seconds. 

The results section of this paper considers PLLs that all 
use the same value for the nominal accumulation period, 
but it considers two different possible Kalman filter 
tunings.  The nominal accumulation period has been 
chosen to be Δt = 0.010 sec, which yields a 100 Hz 
accumulation frequency.  This interval has been found to 
yield good tracking results in strong equatorial 
scintillations 11.  The two gain matrices that have been 
considered along with their corresponding filter 
bandwidths are: 

  
33.123850
4.391752
0.291004

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=L     for BPLL = 2.5 Hz (14a) 

  
51323.31969

50.129594
0.943983

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=L     for BPLL = 10 Hz (14b) 

The 10 Hz bandwidth tuning in Eq. (14b) has been 
considered because this bandwidth has been found to be 
good for traditional PLLs when operating in equatorial 
scintillations 11.  The lower bandwidth of 2.5 Hz in Eq. 
(14a) has been considered because the robustness of the 
proposed Kalman-filter-based PLL may depend 
significantly on its bandwidth, and the optimal bandwidth 
may differ from that determined in Ref. 11 for traditional 
PLLs.  The consideration of an alternate bandwidth 
provides a means of probing this issue.  In fact, several 
additional bandwidths have been considered, but only 
these two are reported here because the results 
concentrate on these two tunings and because these two 
cases serve to illustrate how tuning is accomplished. 

For completeness sake, the tuning of the ad hoc ωPLL 
feedback law in Eq. (10) is also presented.  The tuning 
value η = 0.774597 has been chosen.  This yields a 
bandwidth of -ln(η)/(2πΔt) = 4.065 Hz.  Note that the 
Kalman filter masks the effects of this feedback from its 
estimation process.  Therefore, the bandwidth of this ad 
hoc feedback law in no way influences the effective 
bandwidth of the Kalman-filter-based PLL. 

D. Variant Kalman Filter for L1 C/A Tracking 
This study also considers a PLL for tracking the L1 C/A 
signal in order to provide a point of comparison for the 
L2C CL signal PLL.  The L1 C/A PLL is almost the same 
as the Kalman-filter-based PLL described earlier in this 
section, except that it includes some extra steps in order 
to wipe the data bits off of the signal before computing 
the measurement yk.  These steps constitute its method for 
making the decision about the point cloud to which a 
particular [I;Q] sample belongs, as in the left-hand plot of 
Fig. 3. 

This PLL makes the assumption that the carrier tracking 
loop has achieved bit synchronization so that each bit 
period corresponds exactly to an integer number of 
accumulation periods.  The bit period is nominally 0.020 
sec long, and it can vary slightly due to Doppler shift.  
Therefore, the nominal accumulation period is Δtk = 
0.020/K seconds, where K is the integer number of 
accumulations per bit.  Without loss of generality, 
suppose that the accumulation indices have been lined up 
with the bit periods so that the first bit period consists of 
accumulations k = 0, 1, 2, ..., K-1, the second bit period 
consists of accumulations k = K, K+1, K+2, ... 2K-1, and 
the mth bit period consists of accumulations (m-1)K, 
(m-1)K+1, (m-1)K+2, ..., mK-1. 
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The L1 C/A signal PLL makes its decisions about the data 
bits' signs by using an adaptation of the dot-product bit 
detection scheme described in Ref. 11.  The basic idea is 
to accumulate the Ik and Qk values over as much of the 
current bit interval as has elapsed and to use these 
accumulations in order to decide on the bit sign.  In Ref. 
11, the method of deciding the bit sign is to form the dot 
product of the current partial-bit-length accumulations of 
Ik and Qk with the full-bit-length accumulations from the 
previous bit interval.  If this dot product is positive, then 
the current bit is assigned the same value as the previous 
bit.  If the dot product is negative, then the bit sign is 
reversed from the previous bit.  The reason for using this 
strategy is that the longer accumulations of Ik and Qk, up 
to K of them summed together, provides an increased 
signal-to-noise ratio (SNR) and, therefore, a decreased 
probability of bit detection error. 

The use of a Kalman filter PLL affords the opportunity to 
construct an improved version of the dot-product method 
of Ref. 11.  This improved method forms the dot product 
between the current partial-bit-length accumulations of Ik 
and Qk and the Kalman filter's estimates of what the 
normalized versions of these accumulations should be.  
This approach has the advantage of eliminating the 
possibility of a bit detection error due to Δφk phase 
rotation between the preceding data bit interval and the 
current data bit interval. 

The explicit formulas used for bit detection are as 
follows.  The partial Ik and Qk accumulations for the 
current bit interval are: 

∑=
=

k

K/kfloorKi
ibitk II

)(
 (15a) 

∑=
=

k

K/kfloorKi
ibitk QQ

)(
 (15b) 

where the floor() function rounds its input argument to 
the nearest integer in the direction of −∞ .  This partial bit 
accumulation is for navigation data bit m = floor(k/K) + 1.  
The partial accumulations for the Kalman filter's 
estimates of the normalized Ik and Qk values are 

∑=
=

k

K/kfloorKi
ibitk ycosI

)(
)(  (16a) 

∑−=
=

k

K/kfloorKi
ibitk ysinQ

)(
)(  (16b) 

where iy  is the filter's a priori prediction of the carrier 
phase measurement, as in Eq. (6).  Note that the 4 partial-
bit accumulations can be constructed recursively by using 
the following formulas: 

⎩
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⎧
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=

=
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⎩
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kkbit

k
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The 4 partial-bit accumulations in Eqs. (17a)-(17b) are 
used in the following dot product rule in order to estimate 
the sign of the current navigation data bit: 

⎩
⎨
⎧

<+−
+≤+=

0)( if1
)(0 if1

bitkbitkbitkbitk

bitkbitkbitkbitk
bitk QQII

QQII d  (18) 

Given the bit estimate from Eq. (18), but for 
accumulation k+1, the Kalman filter computes its carrier 
phase measurement by using the following modified form 
of Eq. (5): 

])[]([2 1)1(1)1(1 +++++ −= kkbitkkbitk Id,Qdtanay  (19) 

The Kalman filter PLL uses this modified measurement 
computation along with Eqs. (3), (6), (7), (8), and (10) in 
order to implement its computations for one accumulation 
interval.  Thus, it operates exactly like the L2C CL PLL 
after it has wiped the navigation data bit off of its 
accumulations using Eqs. (17a)-(19). 

This PLL forms K different estimates of the navigation 
data bit that applies for the mth bit interval, )]1([ Km-bitd , 

)1]1([ +Km-bitd , )2]1([ +Km-bitd , ..., )1(mK-bitd .  The best 
estimate is the final one, )1(mK-bitd ; it is based on 
accumulation sums, as in Eqs. (16a) and (16b), that have 
the highest SNR.  This final estimate should be used as 
the navigation data bit if the receiver needs to recover the 
navigation message. 

E. Variant Kalman Filter for Semicodeless P(Y) 
Tracking of L2 Signal 
A Kalman-filter-based PLL has also been designed for 
semicodeless P(Y) tracking of the L2 signal.  This PLL 
provides a comparison case that should be representative 
of the capabilities of current state-of-the-art civilian dual-
frequency receivers. 

The PLL for the L2 P(Y) signal is exactly like the PLL 
for the L2C CL signal except for manner in which its 
baseband processor computes the accumulations Ik and 
Qk.  An L2C CL receiver computes these accumulations 
by using a DLL and a code NCO in order to produce a 
reconstruction of the known CL PRN code, which it uses 
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to wipe the PRN code off of the signal before the carrier 
NCO mixes the signal to baseband and before the 
summation of the accumulations. 

For semicodeless P(Y) tracking, the full P(Y) code is not 
available.  A semicodeless receiver uses an approximate 
reconstruction of the P(Y) code in place of the true P(Y) 
code in order to do code wipe-off, but it otherwise 
functions like any other receiver.  Its code reconstruction 
takes the form: 

)()()( tŴtPtY =  (20) 

where Y(t) is the unknown P(Y) code, P(t) is the known P 
code 12, and )(tŴ  is the estimated time history of the 
unknown encryption chips that turn the P code into the 
P(Y) code.  These encryption chips have an average 
chipping rate of 480 KHz, and they have a known timing 
relative to the P code 20.  The only unknown is the proper 
sequence of the actual +1/-1 chip values.  A semicodeless 
receiver constructs estimates of the W(t) chips by using 
the L1 signal.  In one of the best semicodeless methods, 
the method known as soft decision Z-tracking, the 
estimate of W(t) is constructed as follows 15: 

∑=
∞

−∞=n
ntn t-tŴtŴ n )()( δΠ  (21) 

where the function Πδt(t) is the usual rectangular support 
function, which is equal to one over the interval 0 ≤ t < δt 
and zero elsewhere.  nŴ  is the "soft" estimate of the nth 
W-code chip. The interval from tn to tn+1 (=tn+δtn) is the 
nominal broadcast interval of encryption chip nW .  The 
chip estimate is constructed from the L1 signal as follows 

∫ −+=
−

−

+ 1L1

1L

)()]([)( 1L1L1L1L
τ

τ
τφω

ˆt

ˆt
n

n

n

dtˆtPtˆtsintzŴ  (22) 

The integration interval is the chip's nominal broadcast 
interval offset by 1Lτ̂ , which is the receiver DLL's 
estimate of the L1 P(Y) code transmission delay.  This 
code delay estimate is derived using the L1 C/A code and 
the known timing relationship between the C/A and P(Y) 
codes on L1.  The function zL1(t) is the received L1 
signal, and )]([ 1L1L tˆtsin φω +  is the L1 PLL's estimate of 
the quadrature component of the received L1 carrier 
signal. 

This method of estimating the nW  encryption chips is 
termed "soft" because the nŴ  values are allowed to take 
on a range of real values; they are not forced to be either 
+1 or -1.  This approach effectively weights the certainty 
of the knowledge of the nŴ  chip's sign by the amplitude 
of the chip, which is a reasonable thing to do given the 
typically low SNR of the nŴ  estimate. 

The chip estimation formula in Eq. (22) fails to account 
for the possible effects of code Doppler shift.  The 
generalization to handle code Doppler shift is fairly 
straightforward, but has been omitted in order to simplify 
the presentation. 

The semicodeless P(Y) PLL does not have to deal with 
uncertainty about the 50 Hz navigation data bits.  This is 
true because the data bits are normally broadcast on both 
the L1 and L2 channels.  Therefore, the nŴ  encryption 
chip estimate already has an estimate of the current 
navigation data bit factored into it, and the use of the 
approximate P(Y) replica signal in Eq. (20) to wipe the 
PRN code off of the received L2 signal has the effect of 
also wiping off the navigation data bits. 

IV. COLLECTION AND PROCESSING OF DUAL-
FREQUENCY SCINTILLATION DATA 

A. Collection of Equatorial Scintillation Data 
Wide-band dual-frequency scintillation data were 
collected in Natal, Brazil in January of 2007.  In this 
context, wide-band data refers to the digitized outputs of 
an RF front-end that has a wide enough filter bandwidth 
and a fast enough sampling rate to capture all of the main 
power lobe of the PRN code in question. 

The wide-band scintillation data have been collected 
using the dual-frequency RF front-end  that is depicted in 
Fig. 4.  This front-end is based on the Zarlink/Plessey 
GP2015 front-end for the L1 signal.  The dual-frequency 
front-end uses two GP2015 chips.  One is connected 
directly to the output of the antenna/preamp through a 
splitter, and it digitizes the L1 C/A code band with a final 
filter bandwidth of 1.9 MHz and a sampling rate of 
5.7143 MHz, which ensures that the 2.046 MHz wide 
main lobe of the C/A signal is captured.  The other 
GP2015 receives the L2 signal after it is filtered and then 
mixed with a 347.8261 MHz signal in order to bring its 
frequency near to L1.  Its final bandwidth and sampling 
frequency are the same as for the L1 channel, which 
ensures that the 2.046 MHz wide main lobe of the L2C 
signal is captured.  The L2 to L1 mixer, both GP2015 
mixing chains, and both GP2015 sample clocks are 
referenced to a common 10 MHz oscillator in order to 
ensure phase coherence.  Reference 21 contains 
additional information about this dual-frequency RF 
front-end. 

The outputs from the dual-frequency RF front-end were 
sent to a computer through a digital data acquisition card, 
and they were stored on disk.  The data recording 
computer was controlled by an operator who also had 
access to a real-time scintillation monitor.  The real-time 
monitor provided the operator with a means of assessing 
whether significant scintillations were occurring.  Wide-
band data were retained only for time periods that showed 
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significant levels of scintillation. 

The advantage of collecting wide-band data is that the 
data are guaranteed to retain all of their information about 
scintillations.  A wide-band data recorder does not use a 
PLL or a DLL to track the signal in order to remove the 
carrier or the PRN code because the wide-band data has 
enough room in its spectrum to retain these signal 
features.  Therefore, it is impossible to lose the signal due 
to loss of lock in a tracking loop. 

 
Fig. 4. RF front-end of a dual-frequency digital storage 

receiver for the L1 C/A and L2C signals. 

Wide-band dual-frequency scintillation data were 
recorded for the GPS signal PRN 12 on the evenings of 
Jan. 17 and Jan. 20, 2007.  The entire data recording 
campaign lasted from Jan. 13-24, 2007, but scintillations 
occurred on PRN 12 only on these two evenings. 

Only three GPS satellites were sufficiently 
modern in January 2007 to be broadcasting 
the L2C signal.  GPS satellites broadcast 
this signal if they are from Block IIR-M, 
Block IIF, or beyond.  The three orbiting 
Block IIR-M satellites were PRN 12, 17, 
and 31.  Of these three, only PRN 12 and 
17 were visible from Natal, Brazil after 
local sunset, which is the time when 
scintillations occur.  The line-of-sight 
(LOS) vector to PRN 17 never passed 
through a scintillating portion of the 
ionosphere during the campaign. 

It was disappointing to get scintillations 
only on one dual-frequency signal, but this 
was better than the outcome of a similar 
campaign in Jan. 2006, when only PRN 17 
was broadcasting the L2C signal and when 
its LOS vector never passed through scintillations.  Future 
scintillation data collection campaigns are expected to 
yield richer sets of dual-frequency data as additional L2C-
capable GPS satellites get launched and as the next solar 
maximum approaches. 

B. MATLAB Post-Processing of Wide-band 
Scintillation Data 
The wide-band data were post-processed in a MATLAB 
software receiver in order to evaluate the performance of 
the PLL tracking loops that have been discussed in 
Section III.  Figure 5 presents a block diagram for this 
post-processing scenario.  The left-hand side of the block 
diagram defines the data collection hardware, and the 
right-hand side depicts the MATLAB software receiver. 

The purpose of the MATLAB software receiver is to test 
the Kalman-filter-based PLL in the blue-outlined block 
on the extreme right-hand side of Fig. 5’s second line.  
This block exactly implements the PLL algorithm of 
Section III.  The many additional blocks shown in the 
diagram are needed in order to test the PLL using real 
data. 

The signal acquisition procedure uses FFT block 
processing, as in Refs. 22 and 23, in order to get initial 
estimates of the PRN code offsets and carrier Doppler 
shifts of the L1 C/A signal and the L2C CM signal.  The 
acquisition of the L2C CM signal uses the Doppler shift 
estimate from the L1 C/A signal in order to reduce its 
Doppler search space.  The L2C CL signal is acquired by 
considering all 75 possible offsets of the CL code start 
time relative to the CM code start time;  the repeat period 
of the CM code is 0.020 sec, and the repeat period of the 
CL code is 1.5 seconds 12.  A small number of fractional 
code chip offsets of the CL code relative to each of the 75 
possible offsets with respect to the CM code are used to 

compute CL accumulations, and the offset with the 
largest accumulation power determines the CL code start 
time.  Visual inspection of the CL code correlation as a 
function of PRN code offset has been used in order to 
verify the presence of the expected triangular peak. 

The completed acquisition calculations are used to 
initialize the DLL's code phase estimate and the PLL's 
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Fig. 5. Block diagram of wide-band data collection and off-line 
processing in a MATLAB software receiver. 
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carrier Doppler shift estimate, 0ω̂ .  The PLL's first two 
NCO frequencies, ωPLL0 and ωPLL1 are also initialized 
using the acquisition's Doppler shift estimate.  The PLL's 
carrier NCO phase is initialized to the value 0PLLφ  = 0, 
and its Kalman filter phase error estimate is initialized 
using the first accumulations: 0φΔ ˆ  = )(2 00 I,Qtana− .  
The PLL's carrier Doppler shift rate estimate is initialized 
to 0α̂  = 0. 

The DLL uses a standard first-order loop that includes 
carrier aiding.  It uses a non-coherent dot-product 
discriminator with a ½ chip early/late spacing.  The 
discriminator includes both a power normalization in 
order to maintain bandwidth during canonical fades and 
an upper magnitude bound of ¼ chip in order to limit the 
effects of noise during the deepest fades.  DLL 
bandwidths in the range 0.2 to 0.3 Hz have been used in 
this study. 

The prompt Ik and Qk accumulations that are used by the 
PLL are computed in the lower block of the MATLAB 
software receiver.  This block performs its code mixing, 
carrier baseband mixing, and integrate-and-dump 
calculations according to the following formulas 
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where z(τi) is the output signal of the RF front-end at 
sample time τi, and ik is the index of the first sample in the 
accumulation interval; it is the minimum value of i such 
that τi ≥  tk.  The quantity ωIF is the signed nominal 
intermediate frequency of the carrier signal at the output 
of the RF front-end -- it is negative if the RF front-end 
uses high side mixing.  The function C[τ] is the signal's 
known PRN code.  The quantity fck is the Doppler-shifted 
PRN code chipping rate as determined by the DLL, and 
fcnom = 1.023x106 Hz is the nominal PRN code chipping 
rate.  The quantity tnomk is the nominal phase, expressed in 
seconds, of the point in the prompt PRN code that the 
DLL estimates as having been received at time tk. 

Although implemented off-line, all of the PLL, DLL, and 
accumulation calculations are implemented in a manner 
that is consistent with real-time operation, as discussed in 
Section III.  Therefore, the performance of any given PLL 
in this off-line test environment will be equivalent to the 
performance that it could have achieved in real-time if it 
had been implemented in a receiver that had been 
operated during the scintillation data collection campaign. 

V. PHYSICS-BASED SIMULATION OF PLL 
TRACKING DURING DUAL-FREQUENCY 
SCINTILLATIONS 

A physics-based simulation of dual-frequency 
scintillations has been developed as a means of providing 
a rich set of test cases for the PLLs of Section III.  The 
data from actual scintillations described in Section IV 
contain less than 120 minutes of L2 scintillations that 
have an S4 intensity index above 0.2.  Less than 20 
minutes of the data have an S4 above 0.4, and no data 
have an S4 above 0.51.  These do not represent 
challenging cases for scintillation tracking.  Therefore, it 
was decided to develop a physics-based simulation of 
dual-frequency scintillations in order to be able to fully 
probe the PLLs’ tracking robustness without having to 
wait for data from future scintillation monitoring 
campaigns. 

A. Phase Screen Scintillation Model 
A phase screen provides a relatively simple physical 
model that is deemed to have a reasonable level of 
validity for equatorial scintillations 13.  Using the 
coordinate system of Fig. 1, a phase screen model starts 
with a profile of the vertical total electron content as a 
function of horizontal displacement perpendicular to the 
magnetic field, TEC(x).  It uses TEC(x) in the following 
formula in order to determine an x profile for the net 
carrier phase advance 24: 

⎥⎦
⎤

⎢⎣
⎡=

ω
πφ

c
TEC.

sc
)(340)2()( 2 xx  (24) 

where c is the speed of light, ω is the carrier frequency, 
either ωL1 or ωL2, and TEC(x) is expressed in units of 
electrons/m2.  This phase advance profile is used to define 
an instantaneous phase change that occurs in the signal as 
it passes through the thin screen of the ionosphere at the 
vertical position z = 0.  If a given signal quantity, such as 
voltage in the x direction, takes on the following value 
just above the ionosphere 

tjeAt,,,u ω
0)0( =−yx  (25) 

then just below the ionosphere this same signal quantity is 
perturbed by the phase screen to become 

)}({
0)0( xyx sctjeAt,,,u φω ++ =  (26) 

The signal in Eq. (25) represents a plane wave of 
amplitude A0 that is incident perpendicular to the 
ionosphere.  The perturbed signal in Eq. (26) has the 
same amplitude just below the ionosphere, but it has a 
perturbed phase that varies with x. 

The phase screen model propagates the phase change 
effects to the receiver at the ground.  The propagation 
calculation uses the Huygens-Fresnel approximation of 
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Kirchhoff's integral for wave propagation from the 
boundary to an interior point of a defined region.  The 
boundary of integration is the lower surface of the 
ionosphere, and the interior point in question is the 
receiver location z meters below the ionosphere.  The 
Huygens-Fresnel formula is: 

)()]()([ t,,,ue;Q~j;I~ tj
scsc zyxxx =+ ωωω  
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z
k −= tje
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π
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∞
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−− 'deejA /'-'jtj sc x
z
k zxxkxkz )}2()()({)(

0
2

2
φω

π
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where k = ω/c = 2π/λ is the signal’s wave number, with λ 
being its wavelength.  This equation’s outputs, )( ω;I~sc x  
and )( ω;Q~sc x , define the scintillation-induced in-phase 
and quadrature signal perturbations at the receiver, and 
they can be used to simulate the scintillations’ effects on a 
PLL. 

The in-phase and quadrature scintillation perturbations 
can be translated into functions of time by assuming an 
ionospheric drift velocity.  Suppose that a “frozen” 
TEC(x) vs. x profile drifts past the ionospheric pierce 
point in the x direction and that it has a drift speed of vdrift.  
Experimental results have shown that this is a reasonably 
accurate model for the time evolution of equatorial 
scintillations as sensed at a ground-based receiver 7.  
Typical drift speeds are on the order of vdrift = 100 m/s.  
This drift model and the reasonable assumption that 
vdrift << c can be used to define in-phase and quadrature 
scintillation time histories for the L1 and L2 signals: 

)(1L tI sc  = )( 1Lω;tvI~ driftsc , )(1L tQsc  = 
)( 1Lω;tvQ~ driftsc , )(2L tI sc  = )( 2Lω;tvI~ driftsc , and 

)(2L tQsc  = )( 2Lω;tvQ~ driftsc . 

The phase screen model requires a method of generating a 
reasonable TEC(x) vs. x profile and a method of 
evaluating the integral in Eq. (27).  The TEC(x) profile is 
determined by using a random number generator and a 
filter.  The filter assures that TEC(x) has a pre-defined 
spatial power spectral density (PSD) of the form: 

p
min

p

p
minTT

TT
S

S
ΩΩ

Ω
Ω

+
= 0)(  (28) 

where Ω is the spatial frequency in rad/m, p is the high-
frequency roll-off exponent, Ωmin is the break frequency 
that defines the boundary between a flat power spectrum 
at low frequency and a decreasing power spectrum at high 
frequency, and STT0 is the low-frequency limit of the PSD.  

This form of PSD matches that of Ref. 13 at high 
frequencies if p ≅  4. 

The Huygens-Fresnel integral in Eq. (27) can be 
evaluated using the Fast-Fourier Transform (FFT) 
algorithm if a special Fourier transform pair is used in 
order to exploit the transform’s convolution property 14.  
The needed Fourier transform pair is 

g(x) = )2(2 zkx
z
k /jej −   and  G(Ω) = )2(2 kz /je Ω  (29) 

where Ω is the spatial frequency argument of the Fourier 
transform in units of rad/m.  Examination of Eq. (27) 
reveals that its final integral is the convolution of g(x) 
with the function  h(x) = )(xscje φ .  Therefore, its integral 
can be computed by calculating H(Ω), which is the 
Fourier transform of h(x), forming the product 
H(Ω)G(Ω), and inverse transforming the result. 

The required Fourier transform and inverse Fourier 
transform are carried out numerically using the FFT 
algorithm, and the result is a set of )( ω;I~sc x  and 

)( ω;Q~sc x  values that are defined at a set of x grid 
points.  A cubic spline is used in order to define 

)( ω;I~sc x  and )( ω;Q~sc x  for all real-valued x between 
the grid points, and these functions are used to define the 
corresponding time histories )(tI sc  and )(tQsc , which 
are needed by the PLL simulation. 

This paper’s appendix documents the details of how the 
final )(tI sc  and )(tQsc  functions are computed.  It starts 
by showing how the TEC(x) profile is generated on a set 
of grid of points, and it finishes by defining the cubic 
splines that constitute )(tI sc  and )(tQsc .  The appendix 
discusses a few subtle, but important points about how 
the FFT and inverse FFT (IFFT) calculations must be 
implemented, and it defines the underlying assumptions 
about TEC(x) that are implied by the use of sampling and 
FFT calculations. 

The realism of this phase screen model is illustrated by an 
example of its dual-frequency scintillation outputs, as 
shown in Fig. 6.  This figure clearly shows the presence 
of the expected canonical fades on the L1 and L2 signals.  
It also shows a greater intensity of the L2 scintillations 
and the partial de-correlation of the L1 and L2 power 
fades as S4 becomes large.  Both of these phenomena are 
consistent with experimental observations. 

B. PLL Simulation that Incorporates Phase Screen 
Model 
The simulated )(tI sc  and )(tQsc  scintillation time 
histories are used as inputs to the simulation of each PLL.  
Figure 7 depicts a block diagram of the operations that 
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are involved in PLL simulation.  This figure shows how 
the phase screen scintillation model of the preceding sub-
section is combined with models of accumulated delta 
range, L1 C/A signal navigation data bits, and receiver 
thermal noise in order to provide signal inputs to 
simulations of L1 and L2 carrier tracking PLLs.  The flow 
of information in Fig. 7's block diagram is generally from 
left to right. 

 
Fig. 6. Simulated L1 and L2 power (top plot) and phase 

(bottom plot) scintillations as generated by the 
phase screen model. 

The 4 blocks on the extreme left-hand side of the diagram 
implement the phase screen simulation of the 
scintillations as described in the preceding subsection.  
The one important additional point to note about the 
phase screen model is that a common TEC(x) density 
profile is generated that feeds into two Huygens-Fresnel 
phase screen models, one for the L1 signal and one for 

the L2 signal.  This implies that any correlations between 
the L1 and L2 scintillations is firmly rooted in the physics 
of the phase screen model. 

The outputs of the scintillation models get mixed with the 
accumulated delta range parts of the signals just to the left 
of center in the block diagram.  The signal Δρ(t) is the 
accumulated delta range.  It is allowed to have a non-zero 
initial value Δρ0, a non-zero initial velocity v, and a non-
zero acceleration a.  The delta range is scaled by the 
appropriate carrier frequency divided by the speed of 
light and is negated in order to produce the appropriate 
phase effect. 

The L1 signal is mixed with the 50 Hz navigation data bit 
stream dbit(t).  A random number generator is used to 
generate a random sequence of +1/-1 values at 50 Hz.  
The L1 PLL simulation presumes that bit lock has been 
achieved so that every K of its accumulation periods are 
aligned with a single unknown navigation data bit. 

After the effects of scintillations, accumulated delta 
range, and L1 navigation data bits have been 
incorporated, the resultant signals are fed into the L1 and 
L2 PLLs’ baseband mixers and integrate-and-dump 
registers.  There are no PRN code mixers because this 
simulation makes the reasonable assumption that a good 
DLL is maintaining code lock and, therefore, that code 
wipe-off works perfectly or nearly perfectly. 

The outputs of the integrate-and-
dump registers are added to the 
noise terms νIk and νQk in order to 
produce the simulated Ik and Qk 
accumulations.  The noise is 
generated by a random number 
generator (not shown), and its 
covariance is sized based on the 
mean signal power, the mean 
carrier-to-noise ratio, and the 
accumulation interval of the 
integrate-and-dump register. 

The Ik and Qk accumulations are 
processed by the PLLs to produce 
the ωPLLk outputs, as described in 
Section III of this paper, and these 
outputs are fed into the simulated 
carrier NCOs.  Any reasonable 
real-time PLL model or even an 
FLL model could be substituted 

into this block diagram in place of the PLL models of 
Section III. 

The carrier NCOs create the phases of the baseband 
mixing signals that apply during the accumulation 
interval from tk to tk+1: φPLL1(t) = φPLL1k + ωPLL1k(t-tk) and 
φPLL2(t) = φPLL2k + ωPLL2k(t-tk).  These phase time histories 
are fed back to the blocks that simulate the baseband 
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Fig. 7. Block diagram of phase screen/PLL simulation. 
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mixers and the integrate-and-dump registers. 

The simulation performs many of its calculations in 
continuous time.  Continuous-time modeling starts with 
cubic spline models of the scintillating signals that are 
output by the blocks that implement the Huygens-Fresnel 
FFT calculations and the ionospheric drift transformation. 
Continuous-time modeling ends at the outputs of the 
blocks that simulate the baseband mixers and the 
integrate-and-dump registers.  The PLL is modeled in 
discrete time downstream of the integrate-and-dump 
registers. 

The two dashed-line connections in Fig. 7 allow for the 
possibility of simulating a semicodeless L2 P(Y) PLL.  
They feed the output of the L1 carrier NCO along with 
the L1 signal (prior to data bit mixing) into the block that 
simulates the L2 baseband mixer and its integrate-and-
dump register.  These extra inputs are needed in order to 
simulate how the semicodeless soft decision Z-tracking 
algorithm generates and uses the estimated Y(t) signal in 
order to compute L2 accumulations, as per Eqs. (20)-(22). 

Simulation of Baseband Mixing and Integrate-and-
Dump Operations.  The blocks that simulate baseband 
mixing and the integrate-and-dump registers evaluate 
integrals that approximate the accumulation 
computations.  Except for the case of L2 semicodeless 
tracking, the in-phase and quadrature processing that 
occurs in these blocks can be modeled by the following 
integrals 

kI
(

  = 

 ∫ +
+1

)]}([)()]([)({1 k

k
k

t

t
PLLinPLLint dttsintQtcostI φφΔ  

  (30a) 

kQ
(

  = 

 ∫ −
+1

)]}([)()]([)({1 k

k
k

t

t
PLLinPLLint dttcostQtsintI φφΔ  

   (30b) 

where kI
(

 and kQ
(

 are the perfect noise-free values of the 
in-phase and quadrature accumulations, which are the 
outputs of the block.  The in-phase and quadrature 
quantities Iin(t) and Qin(t) that appear in the integrands of 
Eqs. (30a) and (30b) are the inputs to the left-hand side of 
the baseband-mixing/integrate-and-dump block.  For the 
L1 channel, these quantities take on the values 

)(1L tIin   =  )]([)(){( 1L1L tcostItd scbit ρΔφ  

 )]}([)( 1L1L tsintQsc ρΔφ−  (31a) 

)(1L tQin   =  )]([)(){( 1L1L tsintItd scbit ρΔφ  

 )]}([)( 1L1L tcostQsc ρΔφ+  (31b) 

where φΔρL1(t) = -Δρ(t)ωL1/c is the L1 carrier phase 
component that is caused by accumulated delta range.  
The formulas for the L2 channel are similar, except that 
they lack the navigation data bit: 

)(2L tIin   =  )]([)( 2L2L tcostI sc ρΔφ  

 )]([)( 2L2L tsintQsc ρΔφ−  (32a) 

)(2L tQin   =  )]([)( 2L2L tsintI sc ρΔφ  

 )]([)( 2L2L tcostQsc ρΔφ+  (32b) 

with φΔρL2(t) = -Δρ(t)ωL2/c. 

The time integrals in Eqs. (30a) and (30b) are carried out 
using cubic spline representations of the integrands.  
Given a cubic spline that is represented by the function’s 
values and first time derivatives at a set of grid points, it 
is straightforward to perform the exact analytical 
integration of the function over a defined interval of 
integration.  Furthermore, given a chosen set of grid 
points for the spline representation, it is straightforward to 
compute the value and the time derivative of each 
integrand in Eqs. (30a) and (30b) because the formulas 
involve trigonometric functions, simple analytically 
defined phase time histories, and the Isc(t) and Qsc(t) time 
histories.  These latter time histories are themselves 
defined via a cubic spline, as in Eq. (A.9). 

The only remaining question about the evaluation of the 
integrals in Eqs. (30a) and (30b) is the question of which 
time grid points to use for the spline.  The initial choice of 
spline grid points is the set of grid points used to define 
the Isc(t) and Qsc(t) splines, the points tscm for m = 0, …, 
M-1 as defined in the appendix just before Eqs. (A.8a)-
(A.8d).  Before using these points, however, a check is 
made of whether the carrier phase difference φPLL(t) - 
φΔρ(t) changes by too large of an amount during a spline 
interval.  This angle would be the phase difference 
between the PLL NCO and the true received signal if 
there were no scintillations.  If this angle rotates too much 
during a cubic spline interval, then the trigonometric 
functions cos[φPLL(t)-φΔρ(t)] and sin[φPLL(t)-φΔρ(t)], which 
are implicitly used in the integrands of Eqs. (30a) and 
(30b), will be inaccurately represented by their cubic 
splines.  Therefore, extra spline points are added between 
the tscm points, if needed, in order to ensure that 
|[φPLL(tsp(l+1))-φΔρ(tsp(l+1))] - [φPLL(tspl)-φΔρ(tspl)]| ≤  Δφmax for 
all pairs of adjacent spline grid points tspl and tsp(l+1).  A 
reasonable upper limit for this phase change is Δφmax = 
0.4π rad (1/5 of a cycle). 

If the phase error φPLL(t) - φΔρ(t) changes too much during 
an accumulation interval, then this is an indication of loss 
of frequency lock.  The power in the kI

(
 and kQ

(
 

accumulations becomes very small in this case.  Spline 
techniques could be used to precisely compute these small 
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values.  The Δφmax limitation on rotation would dictate the 
use of an inordinate number of spline points in this case.  
This choice would lead to a greatly increased computation 
time for a situation in which accurate simulation is not 
worthwhile.  Therefore, the simulation arbitrarily assigns 
the output accumulation values kI

(
 = 0 and kQ

(
 = 0 if the 

phase error φPLL(t) - φΔρ(t) rotates by more than 8π rad (4 
cycles) during any portion of an accumulation interval. 

Integrals different from those in Eqs. (30a) and (30b) are 
required for simulation of the accumulations that are 
computed by the semicodeless L2 soft decision Z tracking 
algorithm.  The modified integrals take the form 
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Use of the function IY1(t) in these integrals simulates the 
effect of estimating the W bits based on L1 quadrature 
accumulations in order to approximate the P(Y) code, as 
in Eqs. (20)-(22).  The multiplications by IY1(t) in Eqs. 
(33a) and (33b) are analogous to the code wipe-off 
multiplications involving the estimated P(Y) code that 
occur in an actual semicodeless L2 receiver.  The IY1(t) 
time history is generated via linear interpolation between 
values that are defined at the end points of the 
accumulation intervals.  The end-point values are 

kYI 1   =  )]([)( 1L11L1L kkPLLkksc tˆcostI ρΔφφφΔ −+  

 )]([)( 1L11L1L kkPLLkksc tˆsintQ ρΔφφφΔ −++  (34a) 

)1(1 +kYI   =   

 )]([)( 11L)1(1)1(1L11L ++++ −+ kkPLLkksc tˆcostI ρΔφφφΔ  

 )]([)( 11L)1(1)1(1L11L ++++ −++ kkPLLkksc tˆsintQ ρΔφφφΔ  
  (34b) 

The linear interpolation of this function takes the standard 
form 
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for the kth accumulation interval.  Note that IY1(t) is the L1 
in-phase integrand that would be used in Eq. (30a) if 
there were no navigation data bits on the L1 channel and 
if the phase offsets k

ˆ
1LφΔ  and )1(1L +kφ̂Δ  were both zero.  

The time integrals in Eqs. (33a) and (33b) are computed 
using cubic spline approximations of their integrands, as 

has been discussed in connection with the integration of 
Eqs. (30a) and (30b). 

The use of k
ˆ

1LφΔ  and )1(1L +kφ̂Δ  in Eqs. (34a) and (34b) 
constitutes aiding from the L1 PLL Kalman filter, as 
defined in Section III.  This aiding might have been 
represented in Fig. 7 by an additional dashed line from 
the L1 PLL to the L2 baseband-mixer/integrate-and-dump 
block.  This simulated aiding serves to make the soft 
decision Z tracking loop as robust as possible and, 
therefore, to make the results of this simulation optimistic 
about the performance of semicodeless tracking.  A more 
conservative version of Eqs. (34a) and (34b) would have 
used the target stabilized value of 1LφΔ  in place of 

k
ˆ

1LφΔ  and )1(1L +kφ̂Δ .  This value is Δφdes, which has 
been defined in connection with Eqs. (10) and (11). 

Simulation of Receiver Thermal Noise.  The simulation 
of receiver thermal noise is straightforward for the L1 
C/A and L2C CL tracking loops.  The accumulation 
formulas in Eqs. (30a) and (30b) have been normalized 
by the integration time, which implies that the average 
power in the noise-free accumulations kI

(
 and kQ

(
 is 2

0A .  
Recall that A0 is the original amplitude of the complex 
signal just before it enters the phase screen model of the 
ionosphere, as in Eq. (25).  This average power, the 
average carrier-to-noise ratio C/N0, and the accumulation 
interval Δtk, can be used to compute the common standard 
deviation of the in-phase and quadrature noise 
components νIk and νQk.  For the L1 channel, this 
common standard deviation is 

kIQ1νσ   =  
ktN/C

A

Δ1L0

1L0

)(2
 (36) 

For the L2C CL channel, the thermal noise power is 3 dB 
higher relative to the signal power due to the every-other-
chip time multiplexing of the CL signal with the CM 
signal.  The noise model for the L2C CL signal reflects 
this degradation: 

kIQ2νσ   =  
ktN/C

A

Δ2L0

2L0

)(
 (37) 

Given these standard deviations, a Gaussian random 
number generator can be used to determine the νI1k, νQ1k, 
νI2k, and νQ2k noise samples.  Note that the very small 
level of the variations of Δtk from sample to sample 
eliminates the need to re-calculate new σνIQk values for 
each new accumulation interval. 

The thermal noise model for the semicodeless soft-
decision Z tracking of the L2 signal is more complicated.  
It involves products of the thermal noise on the L1 
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channel with the signal and the thermal noise on the L2 
channel and vice versa.  These product terms arise 
because the nŴ  estimates from Eq. (22) include an L1 
signal component and an L1 noise component, and these 
components of nŴ  get mixed with the L2 signal in order 
to approximately wipe off the P(Y) PRN code before 
computation of the L2 accumulations. 

These noise products cause the thermal noise in the L2 
accumulations to be non-Gaussian.  Fortunately, many 
such products are summed in a typical accumulation 
interval because the nŴ  estimates and the resulting noise 
products are computed at an average rate of 480 KHz 
while the accumulations used in the L2 PLL are 
computed at a rate of 100 Hz or thereabouts.  Therefore, 
the central limit theorem can be invoked in order to 
justify using Gaussian models of the net accumulated 
errors due to the noise product terms. 

The Gaussian approximation of the soft-decision Z 
tracking accumulation noise has a mean of zero and a 
non-diagonal covariance matrix.  The off-diagonal terms 
result from the presence of L1 noise terms on both the in-
phase and quadrature L2 channels, which causes a cross-
correlation between νI2k, and νQ2k.  The noise model’s 2x2 
covariance matrix is 
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where the four new scalar terms in this expression are 
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All of the terms in this noise model are products that 
involve noise power terms or signal terms in the 
accumulation models of Eqs. (33a) and (33b).  These 
products arise from the signal products that are intrinsic 
to semicodeless soft decision Z-tracking. 

Given the covariance matrix in Eq. (38), νI2k and νQ2k 
samples can be simulated by acquiring two samples from 
a zero-mean, unit-variance Gaussian random number 
generator.  If these samples are stacked to form a 2x1 
column vector, then a left Cholesky factor of the 
covariance in Eq. (38) can be multiplied by this random 
column vector in order to synthesize the random vector 
[νI2k, νQ2k]T in a manner that causes it to have the correct 
covariance. 

The covariance calculation in Eq. (38) and the auxiliary 
calculations in Eqs. (39a)-(39d) must be re-calculated for 
each and every simulated accumulation interval because 
these quantities vary significantly from accumulation to 
accumulation.  The time integrals in Eqs. (39a) to (39c) 
are computed using cubic spline approximations of their 
integrands, as already discussed for Eqs. (30a) and (30b).  
An efficient implementation computes the accumulation 
integrals in Eqs. (33a) and (33b) and the covariance 
integrals in Eqs. (39a) to (39c) together in order to exploit 
the commonality of two of the time histories that are used 
to form the five integrands. 

VI. PLL TRACKING RESULTS FOR ACTUAL 
AND SIMULATED DUAL-FREQUENCY 
SCINTILLATIONS 

A. Tracking of Experimental Wide-band Scintillation 
Data 
The tracking algorithms described in Section III have 
been incorporated into the MATLAB software receiver 
shown in Fig. 5, and they have been applied to the wide-
band data that are described in Section IV.  Figure 8 
shows example tracking outputs for a data set that was 
collected starting at 00:15 UTC on Jan. 17, 2007.  The top 
plot shows the normalized power as a function of time in 
dB, and the bottom plot shows the de-trended carrier 
phase in cycles.  Phase de-trending had been 
accomplished by subtracting out a 3rd-order polynomial fit 
to each 10 minute data batch.  The solid blue curves are 
for the L1 C/A signal, and the dash-dotted red curves are 
for the L2C CL signal. 

The L1 and L2 PLLs appear to have maintained lock 
through these moderate scintillations.  All tracking 
metrics, such as Qk vs. Ik plots, confirmed the successful 
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tracking of the signal without cycle slips or loss of lock. 

These are the strongest L2 scintillations that were seen on 
the PRN 12 signal during the January 2007 data 
collection campaign.  The S4 values associated with this 
data are 0.36 on L1 and 0.51 on L2.  These S4 values have 
been computed using the wide-band/narrow-band power 
differencing method that is described in Ref. 25, with the 
wide-band accumulations computed at 100 Hz and the 
narrow-band accumulations computed at 10 Hz.  These 
scintillations are not very strong.  Therefore, one would 
expect any reasonably robust PLL to track through them. 

 

Fig. 8. Experimental dual-frequency scintillation 
tracking results for PRN 12, normalized power 
(top plot) and de-trended carrier phase (bottom 
plot). 

The authors were disappointed not to see stronger 
scintillations that could have more fully exercised this 
paper’s PLL tracking algorithms.  They had hoped to see 
S4 levels above 0.9, as were observed during an earlier L1 
wide-band data collection campaign that was conducted 
in Cachoeira Paulista, Brazil in December 2003 10. 

Despite the relative mildness of their S4 levels, these data 
serve to confirm several important facts.  First, they show 
an obvious strong correlation between the L1 and L2 
frequencies of the amplitude fades and the phase 
variations *.  This is what the phase screen model in Eq. 
(27) predicts at moderate S4 levels.  Second, the peak L2 
power fades are deeper than those of the L1 signal, which 
causes the L2 S4 index to be larger than the L1 value.  
This verifies another prediction of the phase screen 

                                                           
* The de-trended carrier phase time histories include the 

effects of receiver clock variations.  Some of the phase 
correlations between the L1 and L2 signals could be 
caused by the receiver clock rather than the 
scintillations. 

model, one that should be valid at all S4 levels. 

These data will provide useful initial inputs to a 
rudimentary ionospheric scintillation diffraction 
tomography algorithm.  One can use the “frozen, drifting” 
ionosphere assumption in order to translate amplitude and 
phase time histories at a single receiver into spatial 
amplitude and phase profiles that might have been 
measured simultaneously by a linear array of receivers, as 
in Fig. 1.  These profiles can be input to a tomography 
algorithm in order to test whether a single ionospheric 
density profile can be generated that fits the recorded data 
at both GPS frequencies. 

B. PLL Tracking Performance in Simulated Strong 
Scintillations 
The physics-based phase screen simulation has been used 
to test the PLLs of Section III in severe scintillation 
conditions.  All three PLLs have been tested, the L1 C/A 
signal PLL that must deal with unknown navigation data 
bits, the L2C PLL that uses the CL pilot signal in order to 
avoid the signal squaring which is inherent in data bit 
wipe-off, and the semicodeless L2 P(Y) tracking 
algorithm that is representative of current civilian dual-
frequency receivers. 

Figure 9 presents results for these three PLLs in the 
presence of moderately strong L1 scintillations (S4 = 
0.70) and severe L2 scintillations (S4 = 1.00).  The upper 
plot of this figure shows the scintillating power time 
histories expressed in dB relative to the average power, 
and the bottom plot shows the carrier phase error time 
histories in cycles.  Errors can be computed because the 
“truth” phase is known from the simulation.  The “truth” 
phase includes the effects of accumulated delta range and 
of scintillations.  The simulation duration is 1000 
seconds.   

The L1 C/A PLL tracks the signal very well, as evidenced 
by the blue curve in the bottom plot of Fig. 9.  It 
experiences no cycle slips.  This is because the L1 
scintillations are only moderate.  The expected mean time 
between cycle slips for this PLL has been estimated to be 
83 sec based on the analysis of Ref. 11.  This implies that 
the new L1 C/A PLL is somehow much better than the 
standard PLLs that were considered in Ref. 11. 

The L2C CL PLL experiences 2 full cycle slips during 
this simulation, as shown by the red curve in Fig. 9’s 
lower plot.  This PLL has more trouble than does the L1 
PLL because the L2 scintillations are much more severe 
than the L1 scintillations, as evidenced by their higher S4 
value and lower correlation time, τ0 as defined Ref. 11. 

The L2C CL PLL does better than the semicodeless L2 
P(Y) PLL.  The latter PLL experiences 5 cycle slips, as 
evidenced by the black curve on the lower plot of Fig. 9.  
This black curve also appears to have more noise on it 
than does the red curve.  The L2C CL PLL is more robust 
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because the CL code is known, which allows this PLL to 
avoid the squaring loss that is inherent in semicodeless 
techniques. 
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Fig. 9. Simulated PLL tracking results through 

moderate L1 scintillations and strong L2 
scintillations, normalized power (top plot) and 
carrier phase error (bottom plot) 

A surprising result is that the semicodeless L2 P(Y) PLL 
does not experience complete loss of frequency lock in 
this case.  Experience during actual scintillations suggests 
that current civilian dual-frequency receivers would not 
do as well as the performance that is exhibited by the 
black curve in Fig. 9 4,5.  There are several possible 
reasons for this improved simulation performance.  The 
simulated average C/N0 for the P(Y) signal on L1 and L2 
may be slightly higher than is typical.  This simulation 
used the average values C/N0 = 46 dB-Hz for the L1 P(Y) 
signal and C/N0 = 44 dB-Hz for the L2 P(Y) signal.  
Another possible reason is that the simulation does not 
include the phase jitter that would be caused by a poor 
receiver oscillator.  Yet a third possibility is that the new 
Kalman-filter-based PLLs for the L1 C/A signal and for 
the L2 P(Y) signal are superior to existing PLLs, either by 
virtue of their architectures or by virtue of their tunings.  
If this latter explanation is the primary reason for the 
surprisingly good simulated performance of the 
semicodeless L2 PLL, then the scintillation tracking 
robustness of existing civilian dual-frequency receivers 
may be improvable through modest software changes. 

An interesting feature of Fig. 9 is the apparent reason for 
the first cycle slip of the L2 P(Y) semicodeless PLL.  It 
occurs just after t = 192 sec.  There is no L2 power fade 
evidenced at this time in the dash-dotted red curve of the 
figure's top plot, but there is a deep power fade in the 
solid blue L1 curve on the top plot.  This correlation 
implies that the L1 fade caused the slip, which is entirely 
possible because of the cross-correlation computations 
that are part of the semicodeless tracking algorithm.  By 

contrast, the two cycle slips of the L2C CL PLL correlate 
closely with abrupt power fades on the L2 signal 
(compare the red curves on the figure's two plots). 

The bandwidth BPLL = 2.5 Hz has been used for both L2 
PLL simulations of Fig. 9, but the higher bandwidth BPLL 
= 10 Hz has been used for the L1 PLL.  The 10 Hz 
bandwidth was initially preferred because it is the 
recommended bandwidth from Ref. 11 for scintillation 
tracking.  It has been found, however, that the new PLLs 
of the present paper are more robust in very strong 
scintillations at the lower bandwidth 2.5 Hz.  In another 
tracking simulation run that used the same scintillation 
profile as has been used in Fig. 9, the use of BPLL = 10 Hz 
caused the L2C CL PLL to completely lose frequency 
lock. 

A second simulation case with increased scintillation 
severity is presented in Fig. 10.  These scintillations have 
higher S4 values and lower τ0 values than those associated 
with Fig. 9 -- S4 = 0.97 on L1 and 1.08 on L2.  Otherwise, 
this plot is similar to Fig. 9.  This new case reveals 
several interesting properties of the relative performance 
of the various PLLs. 
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Fig. 10. The simulated effects of extremely severe 

scintillations on L1 and L2 PLL tracking, 
normalized power (top plot) and carrier phase 
error (bottom plot) 

The L1 C/A PLL with BPLL = 10 Hz matches the BPLL = 
2.5 Hz PLL out to 532 sec, but then it completely loses 
frequency lock (compare the solid blue curve on the 
lower plot with the dotted green curve).  The blue curve 
experiences 3 cycle slips that can come in multiples of 
half-cycles due to the L1 data bits, but it never loses 
frequency lock.  This result at L1 confirms the similar 
result at L2 that was found for the scintillations associated 
with Fig. 9:  The Kalman filter PLLs of Section III have 
increased tracking robustness during severe scintillations 
if their bandwidths are decreased from BPLL = 10 Hz to 
BPLL = 2.5 Hz. 
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Another interesting feature of the blue curve is that its 
number of cycle slips is markedly lower than the mean 
value of 50 slips that is predicted by Ref. 11 for the S4 
and τ0 values of this case's L1 signal.  This is further 
evidence that the new PLLs of Section III have better 
tracking robustness during scintillations than do the 
standard PLLs that were considered in Ref. 11. 

According to Ref. 11, the L1 scintillations in this case are 
comparable in severity to the L2 scintillations of Fig. 9 
because their (S4, τ0) combinations yield nearly identical 
approximate predictions of the mean time between cycle 
slips.  The L1 C/A PLL with BPLL = 2.5 Hz has 3 cycle 
slips in Fig. 10 versus only 2 slips for the L2C CL PLL in 
Fig. 9.  Although not statistically conclusive, these results 
suggest somewhat improved tracking robustness for the 
L2C CL PLL, which is what is expected.  On the other 
hand, one must be careful not to falsely conclude that the 
L1 C/A squaring loop is better than the L2 CL non-
squaring loop based on simple comparisons of cycle slips 
for the same scintillation event, e.g., based on comparing 
the solid blue and dotted red curves on the bottom plot of 
Fig. 10.  As shown in the real data and in the simulations, 
the same event produces more severe scintillations at L2 
than at L1, thus, one would expect the L2 tracking to be 
more challenged for a given common scintillation event. 

The L2C CL PLL has performance that is far superior to 
that of the semicodeless L2 P(Y) soft decision Z-tracking 
PLL.  The semicodeless PLL starts to slip cycles almost 
immediately, it has an obviously noisier phase error, it 
wanders more than 5 cycles away from "truth" in less 
than 250 sec, and it completely loses frequency lock just 
after t = 515 seconds (consider the black dashed curve on 
the bottom plot of Fig. 10).  Although the L2C CL PLL 
experiences a number of cycle slips, it never loses 
frequency lock (see the red dotted curve on the bottom 
plot of the figure). 

VII. SUMMARY AND CONCLUSIONS 

This paper has developed PLLs with the aim of increasing 
their carrier tracking robustness during equatorial 
scintillations, and it has evaluated these PLLs using both 
experimental scintillation data and a physics-based 
simulation.  This effort has focused on ways to exploit the 
new civilian L2C CL signal in hopes of greatly improving 
the ability of dual-frequency civilian GPS receivers to 
maintain carrier lock on the L2 signal during strong 
scintillations.  The facts that the CL PRN codes are 
known and that they are pilot codes both contribute to 
increased tracking robustness through the elimination of 
squaring losses that would be incurred if the PLL had to 
deal with unknown encryption chips, unknown navigation 
data bits, or both.  An additional improvement has been to 
use a Kalman-filter-based PLL architecture.  It discards 
the idea of a traditional discriminator feedback structure 
and replaces it with a structure in which the 2π ambiguity 

of the two-argument arctangent function is unwound by 
using the filter's a priori state estimate. 

A second contribution of this work has been the 
development of a physics-based simulator of dual-
frequency scintillations and their impact on PLL tracking 
performance.  This simulator uses a spatial distribution of 
TEC in the ionosphere that includes fine-scale 
irregularities of the type that are likely to produce 
scintillations.  It uses a phase screen model in order to 
compute the effects of these irregularities on the L1 and 
L2 carrier signals that are received at the ground.  It uses 
an ionospheric drift model in order to translate a spatial 
scintillation pattern into a temporal pattern.  One version 
of the simulation implements a model of the current best 
semicodeless L2 P(Y) carrier tracking loop in order to 
provide a point of comparison for the new L2C CL 
tracking loop. 

Test results on experimental dual-frequency scintillation 
data show good tracking performance of the new PLLs, 
but the recorded scintillations exhibit only moderate S4 
values, 0.36 on the L1 frequency and 0.51 on L2.  These 
data validate features of the physics-based simulation 
model:  They show correlations of the power fades and of 
the dynamic phase variations between the two frequency 
bands during scintillations with low to moderate levels of 
S4.  They also show significantly higher S4 levels on the 
L2 signal in comparison to the L1 signal for the same 
scintillation event. 

Simulation tests on severe scintillations demonstrate the 
efficacy of the new L2C CL tracking loop and of the new 
Kalman-filter-based PLL architecture in general.  The 
new L2 PLL starts to experience intermittent cycle 
slipping as S4 gets near 1, and the mean time between 
slips decreases to something on the order of 100 sec if S4 
= 1.08 and if the scintillation correlation time is τ0 = 0.77 
sec.  This performance is far superior to that of a 
semicodeless civilian tracking loop for the L2 P(Y) 
signal, which completely loses frequency lock under such 
conditions.  The new Kalman filter PLL architecture also 
appears to offer increased scintillation tracking robustness 
for the L1 C/A signal.  The tracking robustness of this 
architecture during severe scintillations is sensitive to the 
tuning of its loop bandwidth, and a bandwidth of 2.5 Hz 
is better than a bandwidth of 10 Hz, which is contrary to 
experience with traditional PLL architectures. 

APPENDIX.  GENERATION OF Isc(t) AND Qsc(t) 
SCINTILLATION TIME HISTORIES USING FFT 
AND SAMPLED-DATA TECHNIQUES 

Spatial Frequency Definition that Avoids Aliasing 
Problems 
FFT calculations are used at several points in this 
appendix, and it is important to properly define the spatial 
frequencies associated with each spatial FFT.  This 
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definition avoids the possibility that frequency aliasing 
will give rise to erroneous results.  Suppose that the N 
signal samples z0, z1, z2, ..., zN-1 are defined at the N 
equally spaced grid points xn = (-0.5N+n)Δx for n = 0, 1, 
2, ..., N-1.  The quantity Δx is the grid spacing in meters.  
Suppose, also, that the number of samples N is a power of 
2.  The spatial FFT of the signal profile z0, z1, z2, ..., zN-1 is 
the set of complex-valued numbers Z0, Z1, Z2, ..., ZN-1.  
These FFT outputs define component amplitudes and 
phases at the component spatial frequencies Ω0, Ω1, Ω2, 
..., ΩN-1, which are given in rad/m.  These frequencies are 
defined to be 
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throughout this appendix.  This explicit definition of the 
spatial FFT frequencies eliminates the well known 
aliasing ambiguity in which Ωn can be replaced by 
Ωn+l2π/Δx for any integer l without affecting the FFT 
result. 

Two parts of the phase screen calculation would be 
problematic if aliasing were allowed to occur.  One of 
these parts is a frequency squaring operation that is used 
in the evaluation of the Huygens-Fresnel integral in Eq. 
(27).  The other part is an IFFT differentiation that is used 
to determine the derivatives of )( ω;I~sc x  and )( ω;Q~sc x  
in order to develop a cubic spline interpolation between 
grid points.  The frequency definition in Eq. (A.1) 
restricts the Ωn values to the lowest frequency range that 
is compatible with the FFT definition, |Ωn| ≤  π/Δx.  This 
restriction implements the most reasonable physical 
assumption among all the possibilities that are implied by 
aliasing. 

Generation of a Filtered Random TEC(x) Profile on a 
Spatial Grid 
The generation of the Isc(t) and Qsc(t) scintillation time 
histories starts with the generation of the TEC(x) profile 
at the spatial grid points xn for n = 0, 1, 2, ..., N-1, as 
defined above.  Call these values TECn for n = 0, 1, 2, ..., 
N-1.  Initially, a Gaussian random number generator is 
used to generate the values TECGn for n = 0, 1, 2, ..., N-1 
by sampling N uncorrelated values from a distribution 
with a mean of 0 and a variance of 1.  These values are 
next filtered as in Eq. (28).  The spatial filtering process 
takes the FFT of the TECGn values in order to compute 
FTECGn for n = 0, 1, 2, ..., N-1.  The calculation re-scales 
these values by the filter response amplitude in order to 
form the values FTECUn = FTECGn/[1 + (|Ωn|/Ωmin)p]0.5 for 
n = 0, 1, 2, ..., N-1.  It applies the IFFT algorithm to the 
values FTECUn in order to compute the un-scaled filtered 

values TECUn for n = 0, 1, 2, ..., N-1.  Lastly, the values 
TECUn are re-scaled in order to achieve the target standard 
deviation σTEC by using the formula  
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σ
   for n = 0, 1, 2, ..., N-1  

 (A.2) 

The FFT operations used to compute )( ω;I~sc x  and 
)( ω;Q~sc x  make the implicit assumption that TECn is 

periodic with period N.  Precautions are taken in order to 
avoid any ill effects that otherwise might result from this 
unnatural periodicity assumption.  These precautions are 
enforced by dividing the xn grid into 7 regions.  These 
regions are defined in Table A.1 by their respective index 
sets. 

Table A.1.  Definitions, Operations, and Uses of 7 
Regions of the Spatial FFT Grid. 

Index Set of 
Region 

Region Name Action Taken in 
Region 

n = 0, ..., Nz-1 Lower zero-
TEC region 

Set TECn = 0 to 
enforce periodicity 

n = Nz, ..., 
Nz+NT-1 

Lower region 
of TEC 

tapering to 
zero 

Replace original 
TECn by  

TECn(n-Nz)/NT 

n = Nz+NT, ..., 
Nz+2NT -1 

Lower buffer 
region 

Leave TECn 
unchanged, but 

discard )( ω;I~ nsc x  
and )( ω;Q~ nsc x  

results 
n = Nz+2NT, ..., 

N-Nz-2NT -1 
Usable region Leave TECn 

unchanged and use 
)( ω;I~ nsc x  and 

)( ω;Q~ nsc x  results 
n = N-Nz-2NT, 
..., N-Nz-NT-1 

Upper buffer 
region 

Leave TECn 
unchanged, but 

discard )( ω;I~ nsc x  
and )( ω;Q~ nsc x  

results 
n = N-Nz-NT, ..., 

N-Nz-1 
Upper region 

of TEC 
tapering to 

zero 

Replace original 
TECn by 

TECn(N-Nz-1-n)/NT 

n = N-Nz, ..., 
N-1 

Upper zero-
TEC region 

Set TECn = 0 to 
enforce periodicity 

The idea of the 7 regions in Table A.1 is to place three 
buffer-type zones before the useable region and an 
additional three buffer-type regions after the usable 
region.  The first and last of these 6 buffer-type zones 
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have TEC = 0.  The second and second-to-last regions 
have random TEC variations whose power gradually 
increases from 0 at their outer edges to the full power 

2
TECσ  at their inner edges.  The third and third-to-last 

buffer-type regions, the ones that are called "Lower 
buffer region" and "Upper buffer region" in the table, 
have the full TEC power, but the computed )( ω;I~sc x  and 

)( ω;Q~sc x  values below these ionospheric regions are not 
used in the simulation because the non-standard TEC 
profiles from the other two buffer-type regions might spill 
over to affect the )( ω;I~sc x  and )( ω;Q~sc x  values in 
these regions.  The central region, the one labeled "Usable 
region" in the table, has the full TEC power and is 
sufficiently remote from the first two and last two non-
full-TEC-power regions to produce useable )( ω;I~sc x  
and )( ω;Q~sc x  values for purposes of simulation.  In 
order for the usable region to be sufficiently remote from 
the first two and last two regions, it is necessary that the 
width of its neighboring buffer regions, NTΔx, be 
sufficiently large.  This condition will be satisfied if this 
width is much larger than the Fresnel length scale λz , 
i.e., NTΔx >> λz .  For the examples considered here, 
the buffer zone width NTΔx = 3000 m has been used.  The 
ionospheric distance has been set to z = 350x103 m.  
Therefore, the Fresnel length scales are 1Lλz  = 260 m 
and 2Lλz  = 290 m, and the buffer limit is satisfied. 

FFT/IFFT Evaluation of the Huygens-Fresnel Integral 
Given TECn for n = 0, ..., N-1, the next step in generating 
Isc(t) and Qsc(t) is to compute )( ω;I~ nsc x  and 

)( ω;Q~ nsc x  for n = 0, ..., N-1 along with their derivatives 
with respect to x.  These operations are accomplished by 
using FFT and IFFT techniques.  This calculation starts 
by computing  

⎥
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ω
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c
TEC. n

scn
340

)2( 2   for n = 0, ..., N-1 (A.3) 

as in Eq. (24). 

The next part of this calculation is to FFT the spatial 
profile exp{jφsc0}, exp{jφsc1}, exp{jφsc2}, ..., exp{jφsc(N-1)}.  
Let the FFT output sequence be called Φsc0, Φsc1, Φsc2, ..., 
Φsc(N-1).  These values are next multiplied term-by-term by 
the Fourier transform given in Eq. (29) to yield the 
transform sequence 

)2(2 kz /j
scnscn ne ΩΦΓ =   for n = 0, ..., N-1 (A.4) 

In this procedure, one must be careful to use the Ωn 
definition given in Eq. (A.1) because the squaring of this 
frequency will yield anomalous results of aliased 
alternative values of Ωn are used in Eq. (A.4). 

Finally, the sequence Γsc0, Γsc1, Γsc2, ..., Γsc(N-1) is passed 
through an IFFT operation to yield the sequence Θsc0, 
Θsc1, Θsc2, ..., Θsc(N-1), and this last sequence is multiplied 
by a complex re-scaling factor in order to yield the 
desired outputs 

)()( ωω ;Q~j;I~ nscnsc xx +  = scn
jeA Θkz−

0  

 for n = 0, ..., N-1 (A.5) 

Computation of the derivatives of )( ω;I~ nsc x  and 

)( ω;Q~ nsc x  with respect to x relies on the definition of 
the IFFT operation.  Suppose that it is defined as follows 

scnΘ  = ∑
−

=

1

0
1 N

m

nj
scmN

me xΔΩΓ   for n = 0, ..., N-1 (A.6) 

as in MATLAB.  Then the derivative computation is based 
on a term-by-term differentiation of this series with 
respect to its nΔx argument.  The calculation proceeds by 
taking the IFFT of the sequence '

scnΓ  = jΩnΓscn for n = 0, 
..., N-1 in order to compute the sequence '

sc0Θ , '
sc1Θ , 

'
sc2Θ , ..., '

Nsc )1( −Θ .  This sequence is multiplied by a 
complex re-scaling factor to yield the derivatives: 
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 for n = 0, ..., N-1 (A.7) 

Similar to Eq. (A.4), one must use the Ωn definition given 
in Eq. (A.1) in order to avoid aliasing problems in this 
calculation because Ωn and any aliased version of the 
form Ωn+l2π/Δx will yield different spatial derivatives. 

Translation from Spatial Dependence to Temporal 
Dependence and Truncation 
The spatial profiles defined by )( ω;I~ nsc x  and 

)( ω;Q~ nsc x  vs. xn must be translated into time profiles, 
and they must be truncated to discard the unusable points.  
These operations are accomplished by using the 
ionospheric drift velocity vdrift along with the )( ω;I~ nsc x  
and )( ω;Q~ nsc x  samples from the central usable region, 
as defined in Table A.1. 

The temporal scintillation samples are defined on the 
truncated grid of time points tscm = (m-1)Δtsc for m = 0, 1, 
2, ..., M-1.  M = N-2Nz-4NT is the total number of grid 
points in the central usable region of Table A.1, and Δtsc = 
Δx/vdrift is the uniform spacing of the new temporal grid.  
The in-phase and quadrature scintillation parameters and 
their time derivatives at these grid points are 

scmI   =  )( scmsc tI   =  )( ]2[ ω;I~ Tz NNmsc ++x  

 for m = 0, ..., M-1 (A.8a) 
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scmQ   =  )( scmsc tQ   =  )( ]2[ ω;Q~ Tz NNmsc ++x  

 for m = 0, ..., M-1 (A.8b) 

scmI&   =  )( scmsc tI&   =  
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 for m = 0, ..., M-1 (A.8c) 
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 for m = 0, ..., M-1 (A.8d) 

Cubic Spline Interpolation to Yield a Continuous 
Function of Time 
The PLL simulation requires time histories Isc(t) and 
Qsc(t) that can be evaluated at any point in time.  It does 
not restrict itself to using values only at the grid points 
associated with Eqs. (A.8a)-(A.8d).  Therefore, a cubic 
spline interpolator has been developed in order to define 
these time functions.  The Isc(t) interpolator takes the 
following form between the grid points tscm and tsc(m+1): 
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The cubic spline formula for Qsc(t) takes a similar form. 

The PLL simulation needs to compute the first time 
derivative and the first time integral of several cubic 
splines that are defined as in Eq. (A.9).  This equation is a 
3rd-order polynomial in t, which makes the needed 
derivative and integral formulas straightforward to derive. 

Summary of Assumptions of FFT-Based Phase Screen 
Scintillation Model 
A number of assumptions have been made in order to use 
FFT-based techniques to carry out the computations 
defined by the phase screen scintillation model in Eqs. 
(24)-(27).  Some of these assumptions have already been 
stated.  They are summarized and discussed here in order 
to ensure that they are clearly understood. 

The first two assumptions are needed in order to use FFT 
computations.  One assumes that the spatial variations in 
TEC(x) are periodic with period NΔx.  The other assumes 
that the spatial bandwidth of the TEC(x) variations is 
limited to the Nyquist band -π/Δx ≤  Ω ≤  π/Δx rad/m.  

These assumptions allow the Fourier transform of TEC(x) 
to be represented by a finite series of Dirac delta 
functions of the form δ(Ω - Ωn) for n = 0, ..., N-1.  The 
coefficients of these delta functions are the outputs of the 
FFT operation. 

A typical grid spacing that has been used is Δx = 0.7 m.  
The corresponding spatial frequency upper limit allows 
power content at frequencies that are 2 orders of 
magnitude above the frequency associated with the 
Fresnel length scale.  Therefore, the frequency restriction 
imposed by sampling does not constitute a significant 
source of modeling error. 

A third assumption is that the computed )( ω;I~ nsc x  and 
)( ω;Q~ nsc x  samples from the central usable region of the 

FFT grid are not significantly influenced by the 
periodicity assumption for TEC(x) or by the low levels of 
TEC(x) variation power that exist in the outer four buffer 
zones of Table A.1.  This assumption will be valid if the 
inner buffer zones around the central usable regions are 
wide enough, i.e., if , NTΔx >> λz , and if there is not 
too much power content in TEC(x) at high spatial 
frequencies.  This latter condition will normally be 
satisfied due to the filtering of TEC(x) that is defined by 
Eq. (28). 

A fourth assumption is that the temporal variations of the 
scintillations, as detected by a ground-based receiver, are 
the result of drift of a "frozen" TEC(x) past the 
ionospheric pierce point of the LOS vector from the 
receiver to the GPS spacecraft.  This assumption correctly 
describes a significant percentage of the observed 
scintillation dynamics of a signal, but it is not entirely 
valid because the TEC(x) profile deforms over time even 
when viewed in a coordinate system that drifts with the 
average ionospheric velocity  7.  This assumption is used 
because it simplifies the calculations and yields results 
that retain a reasonable degree of realism. 

A fifth assumption is that the cubic spline interpolation 
defined in Eq. (A.9) accurately reproduces the band-
limited signal.  This assumption is not strictly valid 
because a cubic spline is not a perfect band-limiting 
interpolation filter.  The additional "soft" band-limiting 
inherent in Eq. (28), if coupled with a sufficiently small 
choice of the FFT grid spacing Δx, will make the cubic 
spline in Eq. (A.9) approximate any band-limited signal 
to a degree of accuracy that is more than sufficient for the 
purposes of the present study. 
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