
GPS and Ionosonde Data Fusion for Ionospheric
Tomography

Karen Q.Z. Chiang, Cornell University
Mark L. Psiaki, Cornell University

BIOGRAPHIES

Karen Q.Z. Chiang is a GNC Engineer at MDA Corpora-
tion’s Advanced Space Missions and Robotics Laboratory.
She received a B.S. in applied physics from Columbia Uni-
versity in 2009, and a Ph.D. in Aerospace Engineering from
Cornell University in 2014, specializing in dynamics, sys-
tems, and controls. Her areas of interest include estima-
tion applications for remote sensing, as well as guidance
and navigation systems for autonomous vehicles and space-
craft.

Mark L. Psiaki is a Professor in the Sibley School of Me-
chanical and Aerospace Engineering. He received a B.A.
in Physics and M.A. and Ph.D. degrees in Mechanical and
Aerospace Engineering from Princeton University. His re-
search interests are in the areas of GNSS technology, re-
mote sensing applications, and integrity, spacecraft attitude
and orbit determination, and general estimation, filtering,
and detection.

ABSTRACT

GPS measurements are combined with ionosonde measure-
ments in an estimation problem for the state of the qui-
escent local ionosphere. This estimator has been devel-
oped to remotely sense the ionosphere above the High Fre-
quency Active Auroral Research Program (HAARP) heater
facility in Gakona, AK. The measurement model used by
the estimator consists of a refractive ray-tracing model of
ionosonde measurements for the electron density profile
and of dual-frequency GPS measurements. A set of param-
eter sensitivity calculations augment the ray-tracing solu-
tions in order to facilitate standard estimation-based model
inversion calculations. The resulting algorithm determines
an optimal parameterization of the ionosphere’s electron
density profile. Ionosonde data provide information about
bottomside ionospheric layers, and trans-ionospheric GPS
signal data enable observability of topside structure and a
simple characterization of its variations with respect to lat-
itude and longitude through implicit correlation of slant to-
tal electron content (TEC) integrals with the bottom side
characterization. Experimental ionosonde and GPS data
have been recorded and used to fit the ionosphere models.
The result are ionosonde virtual height measurement fits

within 8km, and frequency-differenced GPS pseudorange
fits within 0.2 TEC units.

INTRODUCTION

Improved methods are sought to map the full altitude, lat-
itude, and longitude electron density profile of the iono-
sphere above a certain locale, especially when the pro-
file has been disturbed by, for example, the High Fre-
quency Active Auroral Research Program (HAARP) heater
in Gakona, AK. This capability would benefit areas of at-
mospheric science where an accurate ionospheric profile
is needed. Ionosonde data may be used to generate suffi-
cient representations of the profile below the peak F2 den-
sity. Until recently, a measurement-based characterization
of the profile above this point could be obtained only from
a space-based topside sounder [1] or from an incoherent
scatter radar. Dual-frequency GPS data, however, makes
topside reconstruction possible, albeit with higher levels of
uncertainty.

Previous work has been performed that approximates
topside behavior with simple model extrapolation, such as
α-Chapman profile matching at the F2 peak [3][4]. Other
authors have fused ionosonde data with GPS TEC measure-
ments, but for the purpose of separating topside and bot-
tomside TEC [5][6] by arithmetic differencing and employ-
ing an empirically determined upper transition height. The
topside TEC determines the topside profile, but in some-
what of an ad hoc manner rather than by using optimal
estimation techniques directly on both the ionosonde and
TEC data.

The present paper’s main contribution is the develop-
ment and testing of a technique that optimally fuses GPS
TEC data and ionosonde data to estimate a single pa-
rameterized local electron density profile. The optimal
states mostly characterize the vertical profile above the
ionosonde/GPS-receiver location, but also include simple
latitude and longitude dependencies.

The ionosphere refracts radio waves propagating through
its magnetoplasma, which affects group delay, carrier phase
advance, and the geometric propagation path. The extent
of each effect is dependent on wave frequency. Given the
design of the dual-frequency GPS signal, the ray-path ge-
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ometry dependency is negligible, and the other two depen-
dencies can be modeled to first order in terms of the slant
total electron content (TEC) along the line-of-sight (LOS)
from a ground receiver to a GPS satellite.

One might like to use Ref. [2], however, to show that
even the simplest of vertical electron density parameteri-
zations, the Chapman parameterization, is not observable
through from GPS slant TEC data alone. By including
ionosonde group delay measurements, an optimal approach
can be taken to simultaneously reconstruct both topside and
bottomside.

The remainder of this paper is divided into seven sec-
tions. The first reviews Hamilton’s equations for refrac-
tive ray-tracing of radio waves through a magnetoplasma.
The next describes the parameterization chosen to model
the ionosphere and its layers. The third and fourth sections
discuss the algorithms that are used, in conjunction with the
Hamiltonian ray-tracing equations, in order to model the
ionosonde ray-path and observables and the observables’
GPS integrals given the ionospheric electron density pa-
rameterization. This section also explains how to compute
the partial derivative sensitivities of these observables with
respect to electron density profile parameters. The fifth
section presents the nonlinear optimal estimation methods
used to fuse the ionosonde and GPS data in order to esti-
mate the ionospheric parameterization. The sixth gives the
ionospheric parameter estimation results that are obtained
by this algorithm when using real data from a quiescent
ionosphere. The last section contains the paper’s conclu-
sions.

HAMILTON’S EQUATIONS FOR REFRACTIVE
RAY-TRACING IN A MAGNETOPLASMA

Refractive ray-tracing of a radio wave with frequency ω
entails solving a coupled set of differential equations for
the ray path, r, and the wave-front unit direction vector
k. k0 = ω/c is the free-space wave number. The ray-
tracing equations are expressed with Hamiltonian formu-
lations that are dependent on r, k, and k0 [7]:

dr
dP′

=
− [dH/dk]T

dH/dk0
(1)

dk
dP′

=
[dH/dr]T

dH/dk0
(2)

where P′ = ct is the range-equivalent group delay, chosen as
the independent variable for seamless integration through
any possible spitze’s at the top of an ionosonde path.

The Hamiltonian H is a function that must remain con-
stant along a valid ray path and that can be derived from
rewriting the dispersion relation. Two alternate valid forms
of the Hamiltonian are used in the present study:

H1(r, k;k0, p) =
1
2

[
c2

ω2 ‖k‖
2−n2(r, k;k0, p)

]
(3)

H2(r, k;k0, p) = real

[(U − X)U2 −Y2U
] k4

k4
0

+ X(k ·Y)2 k2

k4
0

+
[
−2U(U − X)2 + Y2(2U − X)

]
k2

k2
0

− X(k ·Y)2 1
k2

0

+
[
(U − X)2 − Y2

]
(U − X)


(4)

Where X(r;k0, p) = ω2
pe/ω

2 is the squared ratio of the
plasma frequency to the radio wave frequency, and
Y(r;k0) = Y b̂ = (ωce/ω)b̂ is a vector with magnitude equal
to the ratio of the electron gyrofrequency to the radio sig-
nal’s frequency and with direction parallel to the local mag-
netic field. U = 1− iZ = 1− iν/ω, where ν is the electron
collision frequency, is taken to be 1 in the assumed lossless
magnetoplasma. p is a vector of parameters that charac-
terize the electron density profile N0(r, p). It is needed to
determine

ω2
pe =

q2
e

meε0
N0(r, p) = 3.183×103N0(r, p) (5)

The specific definition of p will vary depending on the
model used. The parameter vector associated with the
model of the present algorithm will be discussed in a later
section. In Eq. (3), n is the phase index of refraction, given
by the Appleton-Hartree formula for Z = 0 [8]:

n2 = 1−
X

1−
Y2 sin2 θ

2(1−X)
±

√
Y4 sin4 θ

4(1−X)2 + Y2 cos2 θ

(6)

where θ is the angle between wave vector k and magnetic
field direction vector b̂.

The first Hamiltonian, the one in Eq. (3), is appropri-
ate for free space, which may defined as regions where
X ≤ Xmin(Y), with the index of refraction significantly dif-
ferent from zero. For ray-tracing through regions with
higher electron densities and near-zero index of refraction,
that are characterized by X ≥ Xmax(Y), the second Hamilto-
nian formulation is used, possibly with a sign change. H2 is
especially needed in the neighbourhood of a spitze (singu-
lar point of reflection), illustrated in the ray path of Fig. 1,
because this latter Hamiltonian and the corresponding ray-
tracing differential equation in Eqs. (1)-(2) do not become
a singularity in this case.

The bounds for X differ depending on whether the ra-
dio wave is ordinary (O-mode) or extraordinary (X-mode).
For some chosen Hamiltonian transition tuning constants
aX and bX , these limits take the form:

Xmin(Y) =

{
aX if O-Mode or Y > 1
aX(1−Y) Otherwise (7)

Xmax(Y) =

{
bX if O-Mode or Y > 1
bX(1−Y) Otherwise (8)
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Figure 1: Example ray-path solution typical of an
ionosonde signal, with a spitze that occurs at the upper re-
flection point, shown in both normal and magnified views.

where reasonable values for aX and bX are 0.1 and 0.25.
In between these two thresholds, i.e., Xmin(Y) < X <

Xmax(Y), the Hamiltonian used is a linear combination of
Eqs. (3) and (4). Specifically, the transition Hamiltonian is

H12 = H1 [1−λ(α)]±λ(α)H2 (9)

where the H2 term is positive if the quadratic polynomial in(
‖k‖
k0

)2
that is equivalent to the 2nd Hamiltonian in Eq. (4)

has a non-negative slope at the root where
(
‖k‖
k0

)2
= n2. Oth-

erwise, it is negative. This creates a smooth transition, and
avoids the partial derivatives of the two Hamiltonians being
canceled out by each other. The new quantities introduced
in Eq. (9) are defined by

λ(α) = 10α3−15α4 + 6α5 (10)

α =
X−Xmin(Y)

Xmax(Y)−Xmin(Y)
(11)

These quantities combine in Eq. (9) in a way that causes
a smooth transition from the free-space H1 Hamiltonian to
the high-electron-density H2 Hamiltonian. The transition
is a quintic spline in X that transitions from H1 to H2 with
continuous 0th, 1st, and 2nd derivatives in X.

The ray-tracing equations (1)-(11) model electro-
magnetic wave propagation in the zero-wavelength approx-
imation limit of a lossless magneto-plasma, using the loss-
less Appleton-Hartree refractive index equation [8]. The
Appleton-Hartree formula is used directly in the free-space
case of Eq. (3), and effectively in the case of Eq. (4). Both
H1 and H2 are non-dimensional, and are zero-valued along
a valid ray path, as is their linear combination, H12. H1,
H2, or H12 can be substituted into Eqs. (1) and (2) for H.

The magneto-ionic parameters X and Y are required to
complete this system of equations. Y is dependent on the
background magnetic field, which can be obtained from
a model such as the International Geomagnetic Reference
Field (IGRF). X varies with electron density, the model for
which will be covered in the following section.

IONOSPHERIC ELECTRON DENSITY PROFILE
PARAMETERIZATION

There are several potential models that could be used to
describe the ionospheric profile. Any candidate N0(r, p
profile must be continuous in r with continuous first and
second derivatives in order to be useable in the ray-tracing
equations (1)-(11). The need for first derivatives is obvious
from the form of Eqs. (1) and (2). The need for second
derivatives arises for two reasons. The first is the desire
to use a Newton/shooting method to solve the underlying
nonlinear two-point boundary value problem for ionosonde
ray-tracing. The second reason for using second deriva-
tives arises from the need to solve for Jacobian first-partial-
derivative sensitivities of ionosonde ray-tracing solutions
with respect to elements of p.

One of the simplest and most common ionospheric elec-
tron density models that meets the continuity require-
ment is a superposition of Chapman layers. Other com-
posite electron density models, such as the International
Reference Ionosphere (IRI), may also be chosen. While
these models have various advantages, Booker’s “skeleton”
model [9] has been chosen for its balance of simplicity,
flexibility, and physical meaning. These qualities make
it very adaptable to an estimation problem. The Booker
model has a spline-like dependency on altitude when con-
sidered in the ln

[
N0(r, p

]
form, it is based on nodes that

may be placed at a series of critical altitudes. These nodes,
along with transition scale-heights information give rise to
a sufficiently smooth vertical profile. An analysis of this
model can be found in Ref. [9]. Only one convenient adap-
tation will be presented in this paper.

Booker’s vertical electron density profile can be fully de-
scribed by 3m + 2 parameters, where m is the number of
nodes. By adding two more parameters, this model can
be augmented to include a first-order dependence of verti-
cal total electron content (VTEC) on latitude and longitude.
The total 3m+4 variables comprise the ionospheric Booker
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profile parameter vector:

p =



z1
ln(z2− z1)

...
ln(zm− zm−1)

ln
(

1
Z0,1

)
ln

(
−1

Zm,m+1

)
ln(N01)

...
ln(N0m)
ln(z̃1)

...
ln(z̃m)

∂ ln(VT EC)
dφ

∂ ln(VT EC)
dλ



(12)

where zn is the altitude, N0n is the electron density, and
z̃n is the transition height for node n = 1, . . . ,m. The tran-
sition heights control the intervals over which the Booker
skeleton slope of the ln(N0) versus z function is smoothed
to create an analytic function N0(z, p) that yields electron
density, given an altitude and a parameterization. Z0,1 and
Zm,m+1 are the first and last Booker skeleton signed scale
heights, and φ and λ denote, respectively, latitude and lon-
gitude.

Without smoothing, the skeleton profile between the suc-
cessive nodes n and n + 1 is simply characterized by

1
N

dN
dz

= Z−1
n,n+1;zn < z < zn+1 (13)

with respect to height z that is calculable from r, along with
φ and λ, according to the WGS-84 Earth model. Incorpo-
rating the full set of parameters yields the relations

(14)

ln
[

N0(z)
N00

]
=

z − z0

Z0,1
+

m∑
n=1

(
z̃n

Zn,n+1

−
z̃n

Zn−1,n

)
ln

1 + exp
{

z − zn

z̃n

}
1 + exp

{
z0 − zn

z̃n

}

ln(N00) = ln(N00,nom) +
∂ ln(VT EC)

∂φ
∆φ +

∂ ln(VT EC)
∂λ

∆λ

(15)

where N00,nom is the nominal electron density at reference
height z0, which is a weighted sum of the nodes:

z0 =

m∑
n=1

(
N0n∑m

k=1 N0k

)
zn (16)

The heavy use of natural logarithms in this version of
Booker’s model has the effect of ensuring the sign of vari-
ous quantities or quantity differences that must be positive
for a sensible profile. The ionospheric parameter vector p
consists of the states that the present algorithm estimates.
For each set of parameters, the coupled system of differen-
tial equations, Eqs. (1) and (2), can be solved to give the
ray path, the algorithm for which is given in the subsequent
section.

IONODSONDE RAY-TRACING SOLUTION FOR A
GIVEN PROFILE PARAMETERIZATION

Although the ray-tracing method may be adapted for GPS
signals, it does not produce significant discrepancies from
a straight-line path due to the high frequency of the GPS L-
band signals. The ionosonde ray-tracing case will be pre-
sented because the corresponding ray paths can be compli-
cated and require care solution of Eqs. (1)-(2).

The ray-tracing differential equations in (1) and (2) can
be assembled into a general state-space model that repre-
sents a nonlinear two-point boundary value problem:

dxray

dP′
= f (xray, p) (17)

subject to
[

I 0 0
0 0 1

]
xray(0) =

[
ri
0

]
,[

0 I 0
]

xray(P′f ) = 0,

and H (ri, ki ; k0, p) = 0

where xray = [r k P]T is the state vector, ri is the known
initial transmission point of the ray-path, P′f is the un-
known total range-equivalent group delay from the trans-
mitter to the reflection point, and ki = [0 I 0]xray(0) is
the initial wave vector. P′f may be directly compared to
virtual height data from the ionosonde. The second con-
straint in Eq. (17) is the boundary condition stipulates that
at reflection, the final wave vector is zero.

This nonlinear problem can be solved by first-guessing
the two unknown components of ki, which dictate its off-
zenith and azimuth pointing angles, using the initial con-
dition on the Hamiltonian in Eq. (17) in order to compute
magnitude of ki, and numerically integrating using Runge-
Kutta techniques up to P′f . A wise guess would be an ex-
actly vertical vector. At the end of the integration, the ter-
minal reflection boundary condition is checked. If it has
not been satisfied, then the initial direction of ki and to-
tal group path P′f are adjusted iteratively using Newton’s
method within this shooting scheme for solving the bound-
ary value problem.

This shooting method requires calculating the sensitivi-
ties of the solution to the initial ki direction variables and to
P′f . The sensitivities to each of the two independent initial
directions of ki can be determined by solving the following
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initial value problem:

d
dP′

(
∂xray

∂η

)
=

∂ f
∂xray

∣∣∣∣∣∣xray(P′),p

∂xray

∂η
(18)

where the initial condition
∂xray

∂η

∣∣∣∣∣∣
0

must obey

[
I 0 0
0 0 1

]
∂xray

∂η

∣∣∣∣∣∣
0

= 0 (19)

∂H
∂r

∣∣∣∣∣
0

[I 0 0]
∂xray

∂η

∣∣∣∣∣∣
0

+
∂H
∂k

∣∣∣∣∣
0

[0 I 0]
∂xray

∂η

∣∣∣∣∣∣
0

= 0

Given that Eq. (19) is 5 equations in 7 unknowns,
there are only two possible linearly-independent values of
∂xray

∂η

∣∣∣∣∣∣
0
: The two that correspond to initial directional vari-

ations of ki. Suppose that these are called
∂xray

∂η1
and

∂xray

∂η2
.

The variable η is a placeholder for of these two directional
elements of ki.

The sensitivity differential equations represented by Eqs.

(18)-(19) are integrated twice, once for
∂xray

∂η1
and once for

∂xray

∂η2
, i.e., once for each independent directional sensitiv-

ity of ki. These integrations occur simultaneously with the
numerical integration of Eq. (17). One can use a 4th/5th-
order Runge-Kutta approximations of the solutions for xray
and ∂xray/∂η. This ODE integrator has been augmented
to take advantage of the fact that the Hamiltonian must re-
main zero along a valid ray-path. After each 4th/5th-order
Runge-Kutta step, a numerical solver step is taken back to-
wards the H = 0 manifold along a direction perpendicular
to the local H = constant manifold in the event that the
H 6= 0 at the end of the step due to the build-up of numeri-
cal error in the integrator.

The Newton’s method of solving the shooting prob-

lem works with the final two sensitivities
∂xray

∂η1

∣∣∣∣∣∣
P′f

and

∂xray

∂η2

∣∣∣∣∣∣
P′f

. It also works with
∂xray

∂P′f

∣∣∣∣∣∣∣
P′f

= f
[
xray(P′f ), p

]
.

These three sensitivities can be used in the following lin-
earized version of the terminal boundary condition

(20)

[0 I 0]

xray(P′f ) +
∂xray

∂η1

∣∣∣∣∣∣
P′f

∆η1 +

∂xray

∂η2

∣∣∣∣∣∣
P′f

∆η2 +
∂xray

∂P′f

∣∣∣∣∣∣∣
P′f

∆P′f

 = 0.

Solution of these three linearized terminal boundary con-
ditions for the three unknowns ∆η1, ∆η2, and ∆P′f gives

the Newton increments for these quantities. The new initial

state is xray(0) +
∂xray

∂η1

∣∣∣∣∣∣
0
∆η1 +

∂xray

∂η2

∣∣∣∣∣∣
0
∆η2 with a second-

order adjustment to the length of ki in order to ensure that
the initial value of H is zero, and the new terminal group
delay is P′f + ∆P′f . The iteration is then repeated until the
Newton increments ∆η1, ∆η2, and ∆P′f all approach zero.

An outer step-size control algorithm has been included
in the Newton shooting procedure. It uses the values
αstep∆η1, αstep∆η2, and αstep∆P′f to update xray and P′f for
each Newton increment, with the step length αstep chosen
in the range 0 to 1 in a way that ensures decrease of the
sum of the squares of the errors in the terminal boundary
condition [0 I 0] xray(P′f ) = 0.

Note that it can be helpful to use various non-
dimensionalizations within the numerical integration of
Eq. (17) and within Newton’s method. The version im-
plemented here replaces the ray-path position by its non-
dimensionalized position r/P′f , and it replaces the wave
vector by its non-dimensionalized form k/k0. The corre-
sponding modifications to the other problem equations are
straightforward.

The chosen 4th/5th-order Runge-Kutta method has the
capability to perform automatic step-size adjustment, but
this feature is used only in an outer loop that executes
outside the basic Newton/shooting-method solution of the
nonlinear two-point boundary value problem. Otherwise,
the Runge-Kutta step size adjustment could produce spu-
rious results during the Newton step-size adjustment asso-
ciated with αstep. The Runge-Kutta step size adjustment
is designed to take small steps where there is a signifi-
cant numerical integration error indicated by the 4th/5th-
order comparison or by the Hamiltonian deviations from
0 caused by each step prior to re-enforcement of the H = 0
constraint. Other two-point boundary value solvers are also
possible substitutes for this portion of the algorithm . The
algorithm presented has been found to work very well, usu-
ally converging in a few iterations.

Sensitivities with respect to aiming parameters and P′f
are needed first to solve shooting problem for increments
to aiming parameters and P′f . Once the nonlinear shooting
problem is solved, then the linearized two-point boundary
value solution is used to derive sensitivities of observables
with respect to ionosphere model parameters. To this end,
the elements of p may also be substituted in for η in Eq.
(17). The sensitivities to p are needed in order to find its
optimal values. The constraint for this version of Eq. (17)
is

(21)[0 I]

 ∂xray

∂p

∣∣∣∣∣∣
P′f

+ f [xray(P′f ), p]
∂P′f
∂p

 = 0

The same principles that solve the nonlinear shooting prob-

lem are applied to solve for
∂xray

∂p
for P′ ranging from 0 to
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P′f and for
∂P′f
∂p

. The latter is used in the estimation prob-

lem for p.

GPS INTEGRAL SOLUTION FOR A GIVEN PRO-
FILE PARAMETERIZATION

Although the same ray-tracing principles may be applied to
GPS signals traversing the ionosphere, due to the relatively
small deviation of the ray path from the direct (LOS), only
perturbations to group delay integrated along the straight-
line path between transmitter and receiver need be consid-
ered. These perturbations occur when the group-delay in-
dex of refraction differs from 1, and can be integrated over
the path s to give the total effect [10]:

δP′fGPS (ω, p) =

∫
n′(ω, p)−1 ds (22)

=

∫
n(ω, p) +ω

∂n(ω, p)
∂ω

−1 ds

The total perturbation will depend on the GPS broadcast
frequency. The start of the path can be found by deter-
mining the satellite’s position in its orbit with broadcast
ephemerides, and the end of the path is at the receiver. As
before, the sensitivities of these variables can also be cal-
culated by numerically integrating them concurrently with
Eq. (22). ∂(δP fGPS )/∂p and ∂(δP′fGPS )/∂p are required to
optimally estimate the ionospheric electron density distri-
bution parameter vector p using the group delay measure-
ments differenced between the L1 and L2 frequencies.

KALMAN FILTER DATA FUSION FOR OPTIMAL
ESTIMATION OF IONOSPHERIC PARAMETERS

In order to find the optimal estimates of the profile pa-
rameters in p, data from the ionosonde and dual-frequency
GPS are fused using a Square Root Extended Kalman Fil-
ter (SREKF). The SREKF is known to be a numerically
stable form of the extended Kalman filter (EKF), which is
itself an approximation of the optimal Bayesian filter for
nonlinear estimation problems. For details of the EKF and
Square Root Information Filter, see Refs. [11], [12], and
[13]. Only the models and initialization procedures for the
filter will be given.

Measurement and Dynamic Models

The ray-traced ionosonde virtual heights and the integrated
GPS L1/L2 frequency-differenced group delays, which are
all functions of the state vector p, are stacked as the vec-
tor of measurements that define the nonlinear measurement

function h:

h(p,DCBRX) =



P′1f (ω1, p)
...

P′nI
f (ωnI , p)

∆P′1fGPS (p)
...

∆P′nGPS
fGPS (p)


(23)

where DCBRX is the unknown inter-frequency GPS re-
ceiver bias. The quantities P′ if (ωi, p) ; i = 1, . . . ,nI are the
virtual heights from the ionosonde, modeled by numerical
integration of Eq. (17) for each sounding frequencyωi. The
frequency-differenced GPS group delay observables are:

∆P′ j
fGPS (p) = P′ j

f L2− P′ j
f L1 ; j = 1, . . . ,nGPS (24)

= ∆Ψ j(p)− c(DCB j + DCBRX) +∆w j
Ψ

where the vectors indicate the possibility of stacking of
multiple samples in time. Each satellite may have its
own time series of measurements; the bookkeeping of time
is only necessary for determining satellite location – the
starting point of path integration. The vector ∆Ψ j(p) =

δP′ j
fGPS (ωL2, p)− δP′ j

fGPS (ωL1, p) contains the differences
in group delay between the L1 and L2 GPS frequencies
for satellite j as modeled using Eq. (22). These differ-
ential quantities are used for the GPS data because dif-
ferencing removes the unknown effects of satellite to re-
ceiver geometry, receiver clock error, and satellite clock er-
ror. These differences only contain total electron content
(TEC) information. Moreover, it is assumed that the differ-
ential pseudoranges have undergone carrier-smoothing, via
one of the many existing methods [14],[15], such that the
measurements entering into Eq. (24) are both precise and
ambiguity-free.

Equation (24) includes real-world effects on its right-
hand side that model the ways in which actual receiver-
generated frequency-differenced group delay varies from
their theoretically modeled values in ∆Ψ j(p). These dif-
ferences arise from various instrument biases and noise
terms. DCB j is satellite j’s (inter-frequency) differential
code bias, which can be obtained from the Center for Orbit
Determination in Europe (CODE) [16]. DCBRX , as before,
is the differential code bias of the receiver. ∆w j

Ψ
and ∆wΦ is

a general white measurement noise term for the jth satellite.
DCBRX is unknown and needs to be estimated along

with p. Therefore, an augmented state vector xk =

[p DCBRX]T
k is constructed for the SREKF measurement

model, which takes the final form:

yk = h(xk) + wk (25)

where yk is a stacked vector consisting of the raw
ionosonde virtual height data and frequency-differenced
pseudorange and carrier phase data from GPS, at filter step
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k. The zero-mean Gaussian white-noise vector wk is com-
prised of the ionosonde virtual height measurement noise
components for the sounding frequencies ω1, ...,ωnI , and
the frequency-differenced GPS pseudorange measurement
noise components ∆w1

Ψ
, ...,∆wnGPS

Ψ
. This noise vector has

an associated covariance matrix

R = diag
(
σ2

1, . . . ,σ
2
nI
,σ2

Ψ1I, . . . ,σ2
ΨnGPS

I
)

(26)

which has diagonal entries comprised of the variances of
the measurement noise terms. Ionosonde precision is typi-
cally within a few kilometres, and therefore a standard de-
viation around σ = 1km would be a good choice. Simi-
larly, each σΨ = 0.01m are reasonable values to use for the
measurement uncertainty in frequency-differenced, carrier-
smoothed GPS pseudorange.

This effort seeks to estimate snapshots of the ionospheric
background electron density profile that span the order of a
few minutes. Therefore, the dynamic model for the param-
eter vector p is assumed to be a random walk model:

pk+1 = pk + vk ; v ∼ N(0, εI) (27)

where ε is on the order of 10−6. This small value of white
process noise covariance has the effect of modeling the pa-
rameters in p as being nearly constant over the data spans
of interest.If a longer span is needed, a Markov-process dy-
namic model for the p vector like that in Ref. [2] might
prove useful.

The inter-frequency GPS receiver bias is modeled as be-
ing constant. Thus, its dynamic model takes the form:

DCBRX,k+1 = DCBRX,k (28)

Filter Initialization

The initial guess for the ionospheric parameter vector p is
generated by utilizing the auto-scaled numerical real height
function from the ionosonde’s software, ARTIST-5. Figure
2 is an example ionogram processed by ARTIST-5. The
real heights are used in a Levenberg-Marquardt algorithm
that minimizes the cost

(29)J(p) =
1
2

M∑
i=1

[
NRi−N0(zi, p)

]2
+

1
2

w
m∑

n=1

[
zng− zn(p)

]2

where NRi for i = 1, . . . ,M is the electron density at the real
height zi determined by the ionosonde’s software. This
is compared to the aforementioned Booker density model
N0(zi, p). zng is an input guess of the nth node altitude
zn. Examples of node placement can be found in Ref. [9]
and in Fig. 3, where the blue curve denotes the logarith-
mic skeleton profile that simply joins the nodes without
smoothing, i.e., only uses the zn and N0n terms of p. To
avoid an ill-conditioned problem, the nodes are typically
the approximate inflection points in the real density func-
tion. The red dashed curve is the full logarithmic profile

Figure 2: Example ionogram with virtual and real height
profiles auto-scaled by ARTIST-5. Virtual heights are au-
tomatically fitted to the lowest echoes.

that incorporates the Z0,1, Zm,m+1, and z̃n terms as well. w
is a positive scalar that weights the cost contributions of
the differences between each final optimized altitude node
value and zng. First guesses of other ionospheric parameters
in the p vector used to initialize this Levenberg-Marquardt
algorithm are produced by polynomial fitting and interpo-
lation.

Figure 3: Example log of density vs. height function with
nodes.

The resulting guess xg = [p 0]T , optimized to minimize
the cost function in Eqn. (29) for p, is typically close to
the optimal estimate of x produced by the SREKF of the
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previous section for the bottom-side ionosphere, i.e. be-
low the peak density altitude. However, the top-side car-
ries higher uncertainty because only ionosonde information
is incorporated into xg, and the topside distribution from
the ionosonde data is based on a number of assumptions
that are only rough approximations of reality. This discrep-
ancy can be accounted for by a higher variance attributed to
the initial electron density for the node in the top-side and
attributed to the NRi vs. zi ionosonde values for i values
from the topside model. The initial state covariance matrix
would then be

Pxx = diag
(
σ2

z1
,σ2

z2−z1
, . . . ,σ2

zm−zm−1
,σ2

Z0,1
,σ2

Zm,m+1
,σ2

N01
, . . .

,σ2
N0m

,σ2
z̃1
, . . . ,σ2

z̃m
,σ2

dVT ECφ
,σ2

dVT ECλ
,σ2

DCB,σ
2
ρamb

)
(30)

where each σ is the associated standard deviation for each
state. Then σN0m may be made a few orders of magnitude
larger than the other p states.

IONOSPHERIC PARAMETERIZATION KALMAN
FILTER RESULTS

This section presents results that have been produced by ap-
plying the ionosonde-GPS SREKF algorithm on ionosonde
virtual height data and dual-frequency GPS pseudorange
data for quiescent conditions. The data were collected on
May 13, 2013, at the High Frequency Active Auroral Re-
search Program (HAARP) at Gakona, Alaska. The virtual
heights have been extracted from the HAARP digisonde,
developed by the University of Massachusetts at Lowell,
and fitted with ARTIST-5 software. GPS data is retrieved
from Miami University’s Novatel OEM4 receiver at the
HAARP facility.

Each measurement batch k = 1, ...,20, at 1s intervals,
contains the frequency-differenced pseudoranges of 8 GPS
satellites, as well as a set of ionosonde virtual heights
recorded at the start of the first interval. This particu-
lar set spans sounding frequencies between 1.475MHz to
5.725MHz, and is fitted to the refractive ray-tracing model
outputs P′f (ωi, pk) at each k. The initial state standard de-
viations used are given in Table 1.

State Standard Deviation Value
σz1 1m
σz2 , . . . ,σzm 10−3 ln(m)
σZ0,1 ,σZm,m+1 10−3 ln(m−1)
σN01 , . . . ,σN0m−1 10ln(e−/m3)
σN0m 35ln(e−/m3)
σz̃1 , . . . ,σz̃m 10−3 ln(m−1)
σd lnVT ECφ ,σd lnVT ECλ 1rad−1

σDCB 10−9s

Table 1: Initial SREKF standard deviations for each state.

Figures 4 and 5 show a typical fit of the data produced
by the SREKF and its final parameterization p at the end
of the 20s filtering run, at the end of which the increments
to p are small. The discrepancies between the model and
ionosonde data virtual heights are within a few kilome-
tres for most points on Fig. 4, while data-model differ-
ences for the GPS slant TEC values are within 0.2 TECU
(1016e−/m2) on Fig. 5. The TEC latitude and longitude
variations are d lnVT EC

dφ = 0.5rad−1 and d lnVT EC
dλ = 0.2rad−1.

The final estimated profile is presented in Fig. 6, along with
the ARTIST-5 automatic profile from the ionosonde. Note
the difference in the top-side profile, due to the additional
information from the GPS TEC measurements.

Figure 4: Final Kalman filter fitting of ionosonde virtual
heights.

Figure 5: Final Kalman filter fitting of slant TEC for 8 GPS
satellites. The satellite locations are shown on an elevation-
azimuth polar sky-plot, with PRN numbers in blue.
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Figure 6: Final Booker profile and ARTIST-5’s profile.

Conclusion

Refractive ray-tracing simulations of ionsonde ray paths
that implement Hamilton’s equations are combined with
GPS phase and psuedorange perturbation integrations in
a predictive measurement model. The model is used as
the measurement model within a fairly standard optimal
estimation/Kalman-filtering framework to fuse data from
these two sources in order to estimate the parameters that
characterize a profile. The particular estimator used is
a nonlinear Square Root Information Filter. A test case
shows that the filter produces good fits of ionosonde virtual
height, to within a few kilometres. Slant total electron con-
tent (TEC) for eight satellites have also been fit to within a
few tenths of TEC units.
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