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ABSTRACT 

A new navigation concept is developed that relies on 
passive one-way ranging using pseudorange 
measurements of High-Frequency (HF) beacon signals 
that are reflected off of the ionosphere.  This concept is 
being developed as a possible alternative to GNSS 
positioning and timing services, with clear benefits where 
it comes to costs and system redundancy.  The proposed 
system’s HF signals are transmitted from ground-based 
beacons. They travel from the known beacon locations to 
the unknown user equipment (UE) location along ray 
paths that reflect off of the Earth and the ionosphere.  This 
reliance on reflected signals allows the beacons to lie 
beyond the receiver’s horizon. If a set of beacon signals 
reaches the UE receiver with sufficient geometric 
diversity, then the three-dimensional position and the 
clock offset of the receiver can be determined.   
Ionospheric modeling uncertainty can cause large errors 
in the deduced UE position and clock offset.  This can be 
compensated by developing a parametric model of 
ionosphere variability and by estimating corrections to 
these parameters as an integral part of the navigation 
solution. A batch filter is developed to estimate the UE 
position, clock offset, and corrections to an a priori 

ionosphere model. This paper presents and initial 
evaluation of this concept. It analyzes the observability 
and possible accuracy of this system. For a case study 
involving significant errors in the a priori ionospheric 
parameters, the total error in position estimate was in an 
order of hundreds of meters in the horizontal plane and a 
couple of meters in the vertical direction. The a posteriori 
estimates for the ionosphere exhibits significantly smaller 
errors compared to the a priori data. 

I. INTRODUCTION 

The use of High Frequency (HF) signals propagating in 
the atmosphere has been widely discussed in the literature 
for communications and over-the-horizon radar.  Signals 
with frequencies in the range 2-10 MHz can bounce 
successively off the ionosphere and the Earth to arrive at a 
receiver along a non-Line-Of-Sight (LOS) path.  Such 
signals have been proposed for geolocation purposes, as 
in Ref. 1.  The present paper represents a further effort to 
use such signals for radio navigation. 

Given perfect knowledge of the ionosphere and of the 
number of bounces between a transmitter and a receiver, 
it is possible to develop a pseudorange model of the 
measured group delay that involves the unknown user 
receiver location and that receiver’s unknown clock 
offset.  Given 4 or more such pseudoranges from 4 or 
more independent transmitters with an appropriately 
diverse geometry, it should be possible to solve for the 
unknown user position and clock offset, similar to GPS.   

The problem with such an approach is that the 
ionosphere’s HF signal propagation/refraction/reflection 
properties are highly uncertain due to the variability of its 
3-dimensional electron density distribution, Ne(r).  The 
approach of Ref. 1 is to use ionosonde data in order to 
refine a local model of Ne(r).  This local model is then 
used to estimate the unknown location of a transmitter.  
The present approach seeks to estimate simultaneously 
the location of an unknown receiver, its clock offset, and 
corrections to the relevant portions of the Ne(r) 
distribution.  Its input data are the measured group delays 
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between an array of transmitters at known locations and 
the user receiver. 

The approach involves several elements.  They are 1) a 
nominal ionosphere model, 2) estimated corrections to 
that model, 3) ray-tracing calculations for the paths of the 
HF signals from the transmitters to the receiver through 
the corrected model, and 4) model inversion calculations 
that update the user receiver position and clock offset 
estimates along with ionosphere correction estimates.  
These model inversion calculations are carried out using 
standard nonlinear least-squares techniques. 

A key question for such an approach concerns 
observability.  Given a limited number of transmitters and 
a limited number of measured group delays/pseudoranges, 
can such a system accurately estimate the many 
unknowns?  The infinite-dimensional nature of 
ionospheric corrections, which exist in Ne(r) function 
space, theoretically dooms such an approach to failure.  In 
practice, however, it may be possible to combine a priori 
information about Ne(r) with measured pseudoranges in 
order to arrive at a reasonable result.  This paper 
represents an initial study of whether this might be 
practically possible. 

One might try to conduct such a study using a 
complicated 3-dimensional electron density profile Ne(r) 
and precise ray-tracing calculations, as in Ref. 2.  For this 
early stage of feasibility analysis, one would like to avoid 
the significant complexity involved in incorporating the 
ray tracing model into both the algorithm and the 
simulation environment.  One would prefer a simplified 
model that retains enough realism in the electron density 
profiles and in the refraction physics in order to yield a 
sensible indication of possible system performance. The 
current study utilizes just such a simplified model.  A 
Chapman vertical profile with horizontal variations of its 
3 parameters is used to model Ne(r).  The ray paths of the 
bouncing HF signals are presumed to be reflected off of 
this ionosphere model when conditions based on Snell’s 
law are satisfied. The bounce height is a function of 
frequency, angle of incidence to a surface of constant 
Ne(r), and the actual Ne(r) value. Based on experience 
using this simplified refraction model as a first-guess 
generation method for ray-tracing solutions, the authors 
expect that a planned later study involving full ray-tracing 
calculations will exhibit performance somewhat similar to 
that achieved by the simplified model of the present 
study.   

Thus, the basic question of the present study concerns 
whether, and to what extent, the joint estimation of 
position, receiver clock offset, and corrections to 
ionosphere parameters is possible. While it is well known 
that positioning is possible with a minimal number of 
received signals for the simpler satellite-based GPS 
problem, for the problem discussed here the increase in 
the number of unknowns and the convoluted manner 

those unknowns are related to the measured pseudoranges 
makes performance hard to predict based on simple 
analysis.  Instead, performance must be studied using a 
complicated truth model simulation and a corresponding 
batch estimator. 

This paper makes four contributions to the area of radio 
navigation based on bouncing HF signals.  First, it 
develops a simplified measurement model of the group 
delays of multi-bounce HF signal paths from known 
beacon transmitter locations to an unknown user receiver 
location.  This model includes techniques for solving its 
nonlinear bounce conditions and for computing first-
partial derivative sensitivities of the bounces and the 
group delays with respect to the unknown user location 
and the unknown ionosphere parameters. Second, this 
paper develops a batch nonlinear least-squares estimation 
algorithm for determining the unknown user receiver 
position, user receiver clock offset, and ionospheric 
parameter corrections.  This algorithm incorporates a 
priori information about the ionosphere parameters in 
order to compensate for the lack of strict simultaneous 
observability of the location, clock offset, and ionosphere 
corrections.  Third, this paper develops a truth-model 
simulation to test its HF navigation scheme.  Fourth, this 
paper evaluates the potential performance of its proposed 
HF navigation scheme using data from its truth-model 
simulation. 

The remainder of this paper is divided into four sections 
plus conclusions.  Section II presents the physical and 
mathematical models of the ionosphere and the bouncing 
HF signals. It covers the derivation and solution for the 
bounce points equation, the measurement model 
sensitivities, and the stacked measurements model. In 
Section III develops the batch filter that estimates the 
quantities of interest.  It develops two different iterative 
solution strategies, one that applies when the current 
guess is far from the solution and another that applies near 
the solution.  Section IV discusses the truth-model 
simulation used to evaluate this concept, and it presents 
performance analyses for three test cases. The findings of 
these analyses are further discussed in Section V, and 
plans for a follow-on study are outlined. Section VI 
summarizes this paper’s developments, and it draws 
conclusions about the proposed new system.  

II. PHYSICAL AND MATHEMATICAL MODELS 

A. The Earth and the Ionosphere 

Models of the Earth and the ionosphere are needed in 
order to trace HF bounce paths using the geometric optics 
calculations of perfect specular reflection.  The Earth’s 
surface is modeled as being the WGS-84 ellipsoid. 

A three-parameter Chapman electron density model is 
assumed for the ionosphere. This model regards the 
ionosphere as a medium with an altitude-dependent 
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electron density whose altitude density distribution varies 
with latitude and longitude: 
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where ϕ(r), λ(r) and halt(r) are, respectively, the latitude, 
longitude, and altitude above the WGS84 ellipsoid of  the 
Cartesian ECEF position r. hmax[ϕ(r),λ(r)] is a parameter 
representing the altitude at which the maximal electron 
density is obtained. VTEC[ϕ(r),λ(r)] is the vertical total 
electron content – the vertical integral of the electron 
density, and hsf[ϕ(r),λ(r)] is the profile’s altitude scale 
height. 

HF signals are assumed to reflect off of the ionosphere in 
a perfect specular manner. A reflection will occur when 
the angle ψ0 of incidence with respect to the local unit 
normal vector u = -∇Ne(r)/||∇Ne(r)|| and the local index of 
refraction n satisfy Snell’s law such that the angle of the 
refracted signal ψ1 equals 900, thus resulting in reflection 
rather than refraction. This condition incorporates an 
approximation for the vertical variations of n so that it is 
assumed to equal 1 below the reflection point and to 
transition abruptly to its value dictated by Ne(r) at the 
reflection point.  These assumptions lead to the following 
version of Snell’s law for the reflection condition: 

 ( ) ( )0
01 sin sin 90nψ⋅ = ⋅   (2) 

At a reflection point the phase index of refraction depends 
on electron density Ne(r) and on the signal’s frequency ω.  
This dependency takes the form: 

( ) ( )
1 12

1 , 3182.73849408628eN r
n r C C

ω
= − =   (3) 

Where Ne(r) is given in units of electrons/m3 and ω is 
given in units of radians/sec. 

The latitude/longitude variations of the three Chapman 
vertical profile parameters are modeled using bi-quintic 
splines.  The spline nodes are placed at predefined 
latitudes and longitudes with subsets of nodes grouped 
into common small circles of constant latitude. The 
defining parameters for each spline/mesh node are the 
given function’s value and eight partial derivatives with 
respect to latitude ϕ and longitude λ. This a vector of 9 
parameters pi is associated with the ith node and splined 
function a(ϕ, λ) as follows: 
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Given the latitude ϕ0 and the longitude λ0 of a point at 
which one wants to compute the value of a Chapman 
parameter a (and possibly various of its partial 
derivatives), the needed calculations use the nearest four 
bi-quintic spline nodes that lie northwest, northeast, 
southwest, and southeast of (ϕ0,λ0).  Stated differently, 
these 4 points lie on the two small circles of latitude 
which bracket ϕ0.  On each of these two small circles, the 
two chosen node points are those whose longitudes 
bracket λ0. 

The a(ϕ0,λ0;p) bi-quintic spline calculations proceed as 
follows:  Suppose that (ϕi,λi) and (ϕj,λj) are the 
neighboring southwest and southeast biquintic spline 
nodes and that (ϕk,λk) and (ϕl,λl) are the neighboring 
northwest and northeast nodes.  Then ϕi = ϕj ≤ ϕ0 ≤ ϕk = 
ϕl, λi ≤ λ0 ≤ λj, and λk ≤ λ0 ≤ λl.  One uses the values of ai, 
(∂a/∂λ)i, and (∂2a/∂λ2)i from the parameter vector pi along 
with aj, (∂a/∂λ)j, and (∂2a/∂λ2)j from the parameter vector 
pj in a 1-dimensional quintic spline calculation in the 
longitude direction in order to determine a(ϕi,λ0) on the 
lower small circle of latitude.  The 9-element vectors pi 
and pj are the subsets of the whole-ionosphere parameter 
vector p, subsets that apply at, respectively, nodes i and j.  
Similarly, two additional 1-dimensional longitude quintic 
spline calculations are used to determine ∂a/∂φ at (ϕi,λ0) 
based on (∂a/∂φ)i, (∂2a/∂φ∂λ)i, (∂3a/∂φ∂λ2)i, (∂a/∂φ)j, 
(∂2a/∂φ∂λ)j, and (∂3a/∂φ∂λ2)j from pi and pj along with 
∂2a/∂φ2 at (ϕi,λ0) based on (∂2a/∂φ2)i, (∂3a/∂φ2∂λ)i, 
(∂4a/∂φ2∂λ2)i, (∂2a/∂φ2)j, (∂3a/∂φ2∂λ)j, and (∂4a/∂φ∂2λ2)j 
from pi and pj.  Corresponding 1-dimensional quintic 
spline calculations are repeated on the upper small circle 
of latitude in order to determine a(ϕk,λ0), ∂a/∂φ at (ϕk,λ0), 
and ∂2a/∂φ2 at (ϕk,λ0).  Finally, a 1-dimensional latitude 
quintic spline calculation is performed between the points 
(ϕi,λ0) and (ϕk,λ0) in order to determine the value of the 
Chapman model parameter at the original point: a(ϕ0,λ0).  
These calculations are facilitated by the fact that any 1-
dimensional quintic spline is completely defined by the 
function, first-derivative, and second-derivative values at 
the spline interval’s two end points. 

B. Bounce Points, Ray-Paths, and the Measurement 
Model 

A ray path is a sequence of ordered line segments. Each 
line segment is defined by its two end points. For a 
connected ray path of n line segments, n+1 points are 
defined as follows: The first point is the location of the 
transmitter, q. The second point is a bounce point located 
on the ionosphere surface. All other bounce points are 
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alternately located on Earth and the ionosphere. The last 
point is the position of the receiver, r. Bounce points are 
defined in their Earth Centered Earth Fixed (ECEF) 
representation, i.e. [Xk;Yk;Zk]. 

Let ρj be the true length of the jth ray path that runs from 
the transmitter, alternately bounces off the ionosphere and 
the Earth, and eventually reaches the receiver. Let Pj be 
the measured pseudorange of that ray path, which equals 
the speed of light c multiplied the difference between the 
measured reception time according to the erroneous 
receiver clock and the true transmission time according to 
a calibrated beacon transmitter clock.  Let δ be the 
receiver clock’s offset. Then the jth measurement equation 
can be written as 

( ) ( ) ( ), , , ,j j j j jP h x p h r p c h r r p cδ η δ = = + = + 


  (5) 

where the computed functions jh


 and jh  both model  the 
true length of the jth ray-path, ηj is a vector containing the 
set of ECEF x-y-z coordinates of the ray-path’s m-1 
unknown bounce points: 

[ ]1 2 1 1 2 1 1 2 1, ,..., , , ,..., , , ,...,
T

j m m mX X X Y Y Y Z Z Zη − − −=  (6) 

and the 4-dimensional unknown vector x = [r; cδ] 
contains the unknown receiver position and length-
equivalent receiver clock offset. 

The pseudorange model in Eq. (5) neglects the fact that 
refraction causes the signal to travel slower than the speed 
of light when near its reflection point in the ionosphere.  
This simplification would be unacceptable if dealing with 
real data.  For purposes of the present study, however, the 
simplification is conjectured to be acceptable.  It is 
conjectured not to degrade seriously this study’s ability to 
test system observability and potential accuracy. 

C. Bounce-Point Equations and Their Solution 

Determination of the bouncing ray path that an HF signal 
traverses from a transmitter beacon to a receiver involves 
solution of coupled nonlinear equations which define the 
physical characteristics of its trajectory. Three equations 
are used to implicitly define each bounce point. For m 
segments there are m-1 unknown bounce points and 
therefore a set of 3(m-1) equations that serve to define 
these points. The set of 3 equations that defines the kth 
bounce point will be written in the form 0 = gk(ηj,p). Each 
of these equations is split into three scalar components, 
components of type A, B, and C, so that gk(ηj,p) = 
[gAk(ηj,p); gBk(ηj,p); gCk(ηj,p)]. 

The kth Type-A constraint equation requires that the kth 
bounce point either lies on the Earth surface (even-valued 
k) or satisfies the ionospheric reflectivity condition (odd-
valued k). For an even k, the corresponding equation is 
simply the implicit equation of the earth’s surface in 
ECEF coordinates, 0 = gAk(ηj,p) = hWGS84(Xk,Yk,Zk), where 

hWGS84(X,Y,Z) is the function that calculates the altitude of 
Cartesian ECEF point (X,Y,Z) relative to the WGS-84 
ellipsoid, as in Ref. 3.  For an odd k, the Type-A equation 
considers the reflectivity condition that has been 
previously described. The form of the equation used here: 
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where vk is the incoming kth ray-path line segment.  The 
quantities u, ω and, Ne are as defined earlier, with the 
vector u being directed along the normal to the local 
surface of constant Ne. 

Type-B constraint equations enforce co-planarity for the 
incoming ray segment, the reflected ray segment and the 
normal vector to the Earth or ionosphere surface at the 
bounce point. For the kth bounce point, which links the kth 
ray path line segment and the (k+1)st ray-path line 
segment, the following equation definition for gBk applies: 
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where for even numbered k uk = 
[∂haltk/∂Xk; ∂haltk/∂Yk; ∂haltk/∂Zk]/[(∂haltk/∂Xk)

2 +(∂haltk/∂Yk)
2 

+(∂haltk/∂Zk)
2]0.5 is a unit vector perpendicular to the 

Earth’s WGS-84 ellipsoid.  This vector has previously 
been defined for ionosphere bounce points, i.e., for odd-
numbered k. The vectors vk and vk+1 are the incoming and 
reflected ray segments which are computed from r, p and 

jη . 

Type-C equations constrain the normal vector to the Earth 
or ionosphere surface at the bounce point to bisect to the 
angle between the incoming and reflected ray path line 
segments.  It takes the form 

 
1 1

0 ( , )

( )

Ck j

k k k k k

g p

u v v v v

η

+ +

=

= ⋅ +
  (9) 

The gk(ηj,p) constraint functions for the m-1 bounce 
points can be stacked into a single column vector function 
of dimension 3m-3: g(ηj,p) = [g1(ηj,p);g2(ηj,p); 
g3(ηj,p);…;gm-1(ηj,p)].  This leads to the following 
coupled system of 3m-3 nonlinear equations in the 
unknown 3m-3 elements of ηj:  0 = g(ηj,p).  The final ray-
path direction vector vm depends on the unknown receiver 
position r.  It is important to recognize this r dependence.  
Thus, the final form of these coupled reflection conditions 
is 0 = g(ηj,r,p).   

The final constraint equation can be interpreted as 
defining the vector of unknown intermediate bounce 
points, ηj, as an implicit function of the receiver position r 
and the ionospheric parameter vector p.  The 
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corresponding explicit function can be written formally as 
ηj(r,p). 

The explicit function ηj(r,p) is evaluated numerically 
within this project’s measurement model calculations.  
These calculations involve Newton’s method.  Given 
input values of r and p, a first guess of the bounce points 
in ηj is constructed using the simple geometry of a 
spherical Earth and a constant-altitude ionosphere.  
Newton’s method is then used to solve the nonlinear 
equation 0 = g(ηj,r,p) iteratively.  Newton’s method 
linearizes this equation about a given guessed value of ηj, 
solves this linearized equation for an improved ηj guess, 
performs a line search between the old ηj guess and the 
new guess in order to guarantee a decrease in the sum of 
the squares of the equation errors, and repeats this entire 
procedure until the solution converges. 

It has been demonstrated that for some combinations of q 
(the transmitter location), m, r, and p a feasible solution 
for the intermediate bounce points vector η does not exist. 
For other combinations of q, m, r, and p it is possible that 
multiple solutions exist. In the latter case, an auxiliary 
algorithm is needed in order to determine which of the 
possible solutions corresponds to the actual measured 
pseudorange. 

D. Calculation of Jacobian Matrices 

Various first partial derivative Jacobian matrices of the g 
and jh


 functions are needed for this method’s 

calculations.  For example, the partial derivatives of g 
with respect to the elements of η are needed to implement 
the Newton’s method solution of the equation 0 = g(η,r,p) 
in order to compute the function η(r,p).  

The calculation of many of these partial derivatives is 
straightforward.  Special care should be taken, however, 
with the Jacobian g η∂ ∂ . Since some rows of g contain 
terms defined in Cartesian ECEF coordinates, geographic 
LLA coordinates and the partial derivatives of the 
geographic LLA coordinates with respect to the Cartesian 
ECEF coordinates, it is necessary to deal carefully with 
some entries of the Jacobian matrix. Additional 
complexity arises from the manner in which the g 
functions depend on the unknown p parameters which are 
used to compute the three Chapman profile parameters. 
Odd numbered g equations have been derived using the 
normal vector applying at an ionosphere reflection point 
which is defined as the negative gradient of the electron 
density field with respect to Cartesian ECEF coordinates. 
Computation of many of the needed partial derivatives 
involves partial differentiation with respect to the 
geographic latitude and longitude coordinates followed by 
partial differentiation of these coordinates with respect to 
Cartesian ECEF coordinates and application of the chain 
rule.  The details for these partial derivative calculations 
have been omitted for the sake of brevity. 

E. Measurement Model Sensitivity Matrices 

Nonlinear gradient-based estimation algorithms, such as 
traditional batch least-squares, require partial derivatives 
of the measurement model with respect to the unknown 
estimated quantities.  These sensitivities must be 
computed at a succession of improved guesses of the 
optimal estimates of the unknowns.  In the present 
context, the required partial derivatives are those of each 
hj measurement model function with respect to the 
elements of the unknown x and p vectors.  The partial 
derivative with respect to the fourth element of x, the cδ 
element, is 1, consistent with Eq. (5).  The other 
derivatives, those with respect to the elements of r and p 
require special care. 

Recalling the g system of equations ( )0 , , ,jg r p r pη =    

and taking the partial derivative with respect to r while 
accounting for the dependence of η on r yields 
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Then the matrix of sensitivities of the jth measurement 
model group delay to errors in the estimate of the 
receiver’s position is: 

 1

jj j j j

j

j j

j j

h Dh h h

r Dr r r

g gh h

r r

η
η

η η

−

∂∂ ∂ ∂
= = +

∂ ∂ ∂ ∂

 ∂ ∂∂ ∂
= − + 

∂ ∂ ∂ ∂  

  

 
  (12) 

Similarly, taking the partial derivative of the g equation 
with respect to p while accounting the dependence of η on 
p yields: 
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and the matrix of sensitivities of the jth modeled group 
delay to errors in the estimate of the ionospheric 
parameters is 
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F. Stacked Measurement Model  

The measurement model for each individual pseudorange 
takes the form given for the jth pseudorange in Eq. (5).  
For convenience in batch estimation, this model is stacked 
into an N-dimensional vector function model of all N 
measurements.  It takes the form 
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It is straightforward to compute the Jacobian matrix of 
first partial derivatives of this vector function with respect 
to the x and p vectors.  They are simply stacked 
collections of the individual row vectors ∂hj/∂x or ∂hj/∂p 
for j = 1, …, N. 

III. BATCH ESTIMATION OF THE POSITION, 
RECEIVER CLOCK OFFSET AND 
IONOSPHERE PARAMETERS 

A. Nominal Batch Filter Problem and Solution 

A batch filter has been developed.  It estimates x and p by 
minimizing a cost function that includes weighted squared 
differences between the measurements and their modeled 
values and between the estimated p elements and their a 
priori values.  The batch filtering problem seeks the 
values that jointly minimize the cost function 
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where P is the stacked vector of the N measured 
pseudoranges for the N ray paths, R is the square, 
symmetric, N-by-N, positive definite measurement error 
covariance matrix (typically a diagonal matrix), p  is the 
a priori estimate of the ionosphere parameter vector, and 
M is the square, symmetric, positive definite covariance 
matrix that models the uncertainty in the a priori 
ionosphere parameter vector p .  The M matrix has row 
and column dimensions equal to the dimension of p. 

The batch least-squares cost function in Eq. (16) omits a 
priori values of the elements of x = [r;cδ] and penalties 
for differences from those values for the estimated x.  
This means that no prior knowledge about these terms is 
assumed, just as in standard GPS point navigation 
solutions. 

The minimizing solution to the estimation problem in Eq. 
(16) is equivalent to the optimal least-squares solution to 
the following over-determined system of nonlinear 
equations: 

 
1/2 1/2

11/2 1/2

( , )R P R h x p

M p M p
ν

− −

− −

   
= +   

      
  (17) 

where R-1/2 and M-1/2 are the inverses of the Cholesky 
factor square roots of, respectively, the matrices R and M 
and where ν1 is a zero-mean, identity-covariance 
Gaussian random error vector whose norm squared is 
minimized by the solution. 

The Gauss-Newton method has been used to solve this 
estimation problem.  This method is described in Ref. 4.  
It is a gradient-based iterative method.  Each iteration 
starts with guesses of the optimizing values of x and p.  
First it linearizes Eq. (17) about these guessed values.  
Next it solves the resulting over-determined linear least-
squares problem to get candidates for improved solution 
guesses of x and p.  Finally, it searches along the line in 
[x;p] space from the old guess to the candidate new guess 
in order to find a new guess that reduces the cost J1(x,p).  
This process repeats until the cost is minimized.  The line 
search between the old guess and the new candidate 
guess, if implemented well, ensures convergence to a 
local minimum of J1(x,p). 

Recognizing the limitations of the first-order Gauss 
Newton method when it comes to arriving at a solution 
starting from a guess that is far from the receiver’s true 
location, the algorithm distinguishes between two cases. 
In Case 1, the position solution is assumed to be close to 
convergence. In this case the algorithm will consider 
variations in the three components of the ECEF 
representation of the receiver’s location r, variations in 
the range-equivalent receiver clock offset cδ, and 
variations in the ionosphere parameters of all bi-quintic 
spline nodes that affect the bounce points. In Case 2 the 
position solution is assumed to be far from convergence. 
A special algorithm has been developed for this case. 

B. Iterating When Position Solution is Far From 
Convergence  

In Case 2 the algorithm only considers variations in the 
receiver position’s latitude and longitude and variations of 
clock bias.  Variations of altitude and of ionospheric 
model parameters are excluded.  The authors’ experience 
has demonstrated that this ad hoc fix, when starting far 
from the solution, tends to ensure convergence.  The 
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simplified cost function for this simplified search takes 
the following form: 

 T 11
2 2( ) [ ( , )] [ ( , )]J x P h x p R P h x p−= − −   (18) 

The corresponding over-determined system of equations 
in linearized latitude/longitude form is 

1/2

1/2
2
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0

0 0 1 ( )g

g

x p

R P h x p

Δr r
h

R Δ
x

Δ c

φ
φ λ λ ν

δ

−

−

− =

∂ ∂   
∂   ∂ ∂ +  ∂

     

  (19) 

where xg = [r(ϕg,λg,haltg);(cδ)g] is the guessed solution 
vector for the receiver position and clock offset, with the 
position being dictated by the guessed WGS-84 latitude 
ϕg, longitude λg, and altitude haltg.  The latter quantity 
remains fixed during this initial part of the optimization, 
but ϕg and λg get updated as does (cδ)g.  Their updates are 
the increments that are solved for in the over-determined 
linearized system of equations in Eq. (19).  Re-scaled 
increments are used, if necessary, in order to ensure that 
J2(x) from Eq. (18) decreases for each increment. 

C. Theoretical Estimation Error Covariance 

The use of inverse covariance matrixes in the cost 
function in Eq. (16) implies that its second derivative 
Hessian matrix at the truth solution can be inverted in 
order to compute the Cramer-Rao lower bound for the 
estimation error covariance.  This matrix characterizes the 
potential accuracy of a very good estimator.  It is useful 
for determining whether the proposed system has any 
potential to produce accurate navigation solutions.  If the 
square roots of the diagonal elements of this covariance 
lower-bound are too large, then this system will not work 
well.  If they are small, then the system has the potential 
to work well.  This covariance lower bound takes the 
form: 

1
1

0

0

T

T

x x
E

p p

Rh h h h

Mx p x p

−
−

 Δ Δ    ⋅   Δ Δ     

     ∂ ∂ ∂ ∂ =      ∂ ∂ ∂ ∂        

  (20) 

The 3x3 top left block of this matrix represents the 
covariance associated with the position estimate in ECEF 
coordinates. With the appropriate transformation it can be 
converted into errors in the north-east-vertical 
coordinates.  The 4x4 top left block represents the 
covariance associated with x = [r;cδ].  An appropriately 
normalized square root of its trace constitutes this 
system’s geometric dilution of precision (GDOP). 

IV. SIMULATION AND PERFORMANCE 

A. Truth-Model Simulation 

A MATLAB truth-model simulation has been developed 
for algorithm assessment and performance analysis. It 
enables testing any desired combination of ground 
stations array, ray-path characteristics, measurement error 
models, and other parameters. It should be noted, 
however, that not all such combinations are physically 
feasible. For some cases, trying to solve for the η terms 
given p and r would result in no valid solution. Feasibility 
of the given configuration is tested during the first stage 
of the simulation execution. 

Computation for an Ne(r) truth model utilizes a Chapman 
profile that is fit to the International Reference Ionosphere 
(IRI) model for a particular time and date.  This manner 
of generating a truth electron density model is thought to 
be reasonably representative of a possible real spatial 
electron density distribution. 

The simulation uses “truth” values of the x and p vectors 
in the vector pseudorange measurement model of Eq. 
(15).  It adds to these measurements a random error vector 
that is sampled from a zero-mean Gaussian distribution 
with covariance matrix R, consistent with the batch least-
squares problem definition. 

The simulation also generates an a priori estimate of the 
ionosphere parameter vector for use in the cost function 
of Eq. (16).  This a priori p  vector differs from the 
“truth” p vector in significant ways.  The method of 
generating appropriate differences, perhaps differences 
that are even a bit larger than one would be expect in a 
real situation, is to use the IRI model with a 3-6 months 
date difference to generate p  via Chapman-profile fitting 
versus the date used to generate the “truth” p using the 
same fitting technique.  Such a choice ensures that the 
truth-model simulation is not using an unreasonably 
optimistic model of how well the filter’s known p  would 
approximate the truth ionosphere.  The corresponding M 
parameter uncertainty covariance matrix has been sized to 
be consistent with the difference between the filter’s a 
priori p  and the “truth” p that has been used to generate 
the simulated measurements. 

B. Test Case A Results 

Test Case A considers an array of eleven ground stations 
spread at various locations across the US. A receiver, 
located at latitude/longitude/altitude (LLA) [400,-
950,10000m], i.e., at the center of the green spider-like 
object in Fig. 1.  It receives three signals from each 
ground station to yield a total of thirty three signals 
received. The true ionosphere surface is based on IRI data 
computed for Jan. 23, 2010 at UTC 2:22 p.m.  The a 
priori model is based on data computed for Oct. 23, 2009 
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at the same hour. The HF signals for this case have 
frequencies in the range 4.6-5.4 MHz. 

 
Figure 1: Setup and convergence of position solution 

for Case A. 

Figure 1 illustrates the setup for Test Case A. The blue 
circles denote ground stations (with the corresponding 
broadcast signals’ identifying j indices). The segmented 
green lines are the true ray-paths computed by the 
simulation. The magenta diamonds denote ionosphere bi-
quintic spline nodes (with their identifying numbers). The 
North American coastline is shown as a thin blue line.  

The red line shown on Fig. 1 illustrates the Gauss Newton 
algorithm’s convergence performance.  It plots a history 
of successive receiver position solution guesses.  It is 
evident that the position estimate converges from an 
initial guess with a significant error to the receiver’s true 
position. A closer look at the estimated values indicates 
that the final position error in this case is 203 meters in 
the local north direction, 600 meters in the local east 
direction, and 5 meters in the vertical direction. The error 
in the estimate of the receiver clock bias is equivalent to 
1015 meters. At the same time, the computed Cramer-Rao 
covariance matrix lower bound contains 1-σ errors of 
5468 meters north, 4776 meters east, and 177 meters 
vertical.  One would expect larger actual estimation errors 
with such large computed σ values.  The relative 
smallness of the actual errors may indicate that the chosen 
a priori error covariance for the ionospheric parameter 
vector, the matrix M, is too large. 

Figure 2 plots errors between the a priori (top) and a 
posteriori (bottom) estimates of the ionospheric peak 
electron density altitude hmax parameter and the true 
ionosphere hmax parameter. The red square indicates the 
true position of the receiver. Blue circles with white edges 
denote the locations of the ground stations. Magenta 
diamonds denote the locations of the predefined grid 
nodes. The green dots mark computed ionospheric bounce 
points. North America’s coastline is shown in white with 
the borders of the states shown in gray. 

It is evident that the initial errors in hmax have been 
reduced dramatically, from up to 18 km to less than five 

kilometer above the majority of the continental US. At the 
same time, significant errors of up to 7 km for the 
ionospheric scale height parameter hsf have been reduced 
at the expense of some degradation near the true position 
of the receiver, as demonstrated in Fig. 3. 

 
Figure 2: A priori (top) and a posteriori (bottom) 

errors for the ionospheric hmax parameter for Case A. 

 
Figure 3: A priori (top) and a posteriori (bottom) 

errors for the ionospheric hsf parameter for Case A. 

Finally, a significant reduction in errors for the VTEC 
parameter have been achieved, as shown on Fig. 4. Note, 
however, that for the given ray-path length measurements, 
VTEC errors are observable only at heights that are less 
than the height for which maximal electron density is 
obtained, i.e. hmax.  In other words, the observable part of 
VTEC is only that part of the VTEC integral up to the 
altitude of peak electron density. 

C. Test Case B Results 

In Test Case B greater initial errors for the a priori 
ionosphere model have been used.  The a priori vector p 
has been computed using IRI data applying on Sept. 23, 
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2009, while the truth-model ionosphere p vector still 
comes from Jan. 23, 2010. Thus, the seasonal discrepancy 
has been increased from 3 months to 4 mouths.  This case 
also uses a wider range of frequencies, 4.2-7.8 MHz. 

 
Figure 4: A priori (top) and a posteriori (bottom) 

errors for the ionospheric VTEC  parameter for 
Case A. 

Final positioning errors for this case were 519 meters 
north, 511 meters east, and 20 meters in the vertical 
direction. This case’s performance for estimating two of 
the three Chapman profile parameters is shown in Figs. 5 
and 6.  A comparison of Figs. 2 and 5 shows that the a 
priori hmax errors are larger for this case relative to Case A 
(top plots of the two figures), while the final estimates for 
Cases A and B have roughly comparable accuracies 
(bottom plots of the two figures).  A comparison of Figs. 
3 and 6 yields similar conclusions for the a priori and 
final estimates of the hsf errors for Cases A and B. 

 
Figure 5: A priori (top) and a posteriori (bottom) 

errors for the ionospheric hmax parameter for Case B. 

 
Figure 6: A priori (top) and a posteriori (bottom) 

errors for the ionospheric hsf parameter for Case B. 

D. Test Case C Results 

In Test Case C fewer ground stations and fewer received 
signals have been considered. All other parameters 
including signals’ frequencies are unchanged from Test 
Case A. Fig. 7 illustrates the setup for this case. 

 
Figure 7: Setup and convergence of position solution 

for Case C. 

Positioning errors for this test case were 1327 meters 
north, 1526 meters east, and 171 meters vertical. The 
error in the estimate for the receiver clock offset is 
equivalent to 5828 meters. The computed Cramer-Rao 
standard deviations for the positioning error components 
are 9823 meters north, 11238 meters east, and 442 meters 
vertical.  Again, the computed σ values are significantly 
greater than the actual errors, indicating a possible 
conservatism with the covariance matrix M of errors in 
the a priori ionosphere parameter estimate p.  Note, 
however, that the simulated actual errors and the 
corresponding Cramer-Rao σ values are larger for this 
case in comparison to Case A.  This makes sense based on 
the use of fewer ground stations and fewer received 
signals.  Conversely, one would expect to achieve better 
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performance than in Case A if one were to increase the 
number of ground stations and the number of signals. 

V. DISCUSSION AND FUTURE DIRECTIONS 

The results for the three test cases presented in this paper 
suggest that the problem is sufficiently observable to 
make this a candidate for navigation.  That is, a position 
solution can be obtained to a reasonable level of accuracy 
despite uncertainty about the ionosphere.  At the same 
time, the filtered estimates of the ionosphere electron 
density profile parameters have significantly reduced 
errors in comparison to the a priori estimates. 
Unsurprisingly, improved results have been observed 
when more measurements are available, and a better 
match has been achieved along ray paths in this situation. 
The impact of having a wide range of signal frequencies 
is also evident. 

In all cases, actual positioning errors are smaller than the 
corresponding σ values from the Cramer-Rao lower 
bound for the estimation error covariance matrix. This 
discrepancy is probably due to some of the terms of M 
being too big in an attempt to allow significant 
corrections to the parameters of the ionosphere model. An 
additional effort should be put into considering cross-
correlation between the various terms of M.  For example,  
the altitude perturbations of peak electron density at 
neighboring nodes are likely to be correlated. 

Further investigations have shown that in all cases the 
solutions for the minimization problem indeed converge 
to their global minimum.  Thus, the presence of 
nonlinearities in the problem model does not pose a 
significant challenge to solving the underlying batch 
estimation problem. 

The cost function considers both measurement errors and 
normalized corrections to the ionospheric parameters.  
The latter cost terms are included in order to preclude the 
filter from making unreasonably large modifications to its 
a priori ionosphere model for the sake of achieving a 
better fit to the measured pseudoranges.  Consequently 
small corrections to the ionospheric electron density 
distribution are favored over big corrections, potentially 
resulting in less accurate results for the position solution.  
The batch filter could be tuned to allow very large 
corrections to the ionosphere parameters by making its M 
matrix very large.  Such a tuning would result in a very 
low optimal cost and in a good fit to the measured 
pseudoranges.  The authors’ experience with similar 
estimation problems, however, indicates that the resulting 
position/clock estimates in the x vector could become 
highly inaccurate. 

These results answer this study’s initial feasibility 
question in the affirmative:  The proposed technique can 
be used to navigate while simultaneously estimating 
corrections to the ionosphere.  This answer suggests that 

this should project proceed to its next planned study.  
That study is slated to use a more realistic ionosphere 
model and a precise ray-tracing engine for modeling the 
refractive propagation of the RF signals through the 
ionospheric medium. During this planned study, truth-
model simulation tests could be supplemented with tests 
involving actual data from a network of HF beacons and 
receivers.  Such a network is being deployed in South 
America. 

The propagation model of the next study will have 
advantages and disadvantages relative to the simplified 
model of the present study. A greater physical fidelity will 
be achievable using the enhanced ionospheric model and 
ray-tracing calculations. On the disadvantage side, the 
enhanced 3-dimensional nature of the Ne(r) distribution 
will increase the number of estimated ionosphere 
parameters that will be needed in order to characterize 
differences between the a priori model and the true 
ionosphere.  This increased number of parameters will 
complicate the filter task of simultaneously estimating 
receiver position, receiver clock offset, and ionosphere 
corrections.  The authors conjecture that the advantages 
and disadvantages of the proposed new models will 
balance out and that similar or possibly better 
performance will be found in the planned more-realistic 
follow-on study. 

The project may consider augmenting the estimation 
problem with additional types of fused data.  For 
example, data from ionosondes or GPS slant TEC data 
from a network of receivers might help to improve the 
estimates of the ionosphere model corrections.  Any such 
improvements should also improve the receiver position 
and clock offset estimates.  Of course, such a system 
would need a method of communicating the independent 
ionosphere data to the user receiver, which would 
complicate its infrastructure. 

VI. SUMMARY AND CONCLUSION 

A batch filter algorithm has been developed that utilizes 
pseudorange measurements from HF signals propagating 
in the ionosphere to solve a combined positioning/ 
ionosphere-corrections problem. These HF signals are 
transmitted from stationary ground-based beacons at 
known locations.  They propagate to an over-the-horizon 
user receiver at an unknown location via multiple bounces 
off of the ionosphere and the Earth.  The navigation filter 
estimates user position, user clock error, and corrections 
to parameters that characterize the ionosphere’s 3-
dimensional electron density profile.  The performance of 
this system has been investigated using a truth-model 
simulation. The simulation and the corresponding filter 
use a simplified model of the refractive bounces of the HF 
signals off of the ionosphere.   

Three simulated test cases have been considered. With a 
relatively dense array of transmitters and a corresponding 
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large number of received signals, positioning errors are on 
the order of hundreds of meters.  Vertical position 
accuracy is the best.  With about half the original number 
of signals, the total position error grows to about 2000 
meters. In 3 all cases, errors in the a priori model for the 
ionosphere are reduced dramatically by the filter. These 
results indicate that the problem is observable and that 
navigation accuracy might be reasonably accurate given 
sufficient availability of received HF signals. 
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