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ABSTRACT 

Techniques are developed to identify the net complex 
envelop impulse response function of a GNSS receiver's 
RF filters by comparing received and theoretical PRN 
code auto-correlation functions.  This impulse response 
function can be used to accurately characterize PRN code 
distortion in a GNSS receiver for purposes of designing 
advanced signal processing algorithms.  Such algorithms 
might be used in a narrow-band spoofing detector based 
on P(Y) code signals or in a narrow-band delay-lock loop 
discriminator that mitigates multi-path effects.  The RF 
filter system identification calculations begin by 
computing the distorted cross-correlation between an 
exact replica PRN code and the received signal, as is done 
in a typical delay-lock loop (DLL).  Many more code 
offsets are used than for a typical DLL, on the order of 
hundreds, and this off-line calibration procedure may 
average minutes worth of accumulation data in order to 
deduce highly accurate measures of the distorted cross-
correlation.  The distorted cross-correlation is equated to 
a convolution of the unknown impulse response function 
with the known undistorted PRN code autocorrelation 
function.  The use of this relationship at many code 
offsets provides sufficient observability to estimate the 
nodal coefficients in a spline model of the desired 
impulse response function.  Experimental tests of this 
technique have been conducted on two receiver types.  
The test results exhibit good self-consistency of the 

modeled distortions of multiple signals received by the 
same RF front-end.  They also agree reasonably well with 
manufacturer data sheets for the RF front-end filters. 

INTRODUCTION 

GPS and other GNSS receivers process CDMA spread-
spectrum signals by using models of the received versions 
of their PRN codes.  Simple Delay-Lock Loop (DLL) 
correlators and discriminators presume that the received 
spread-spectrum signal is identical to the original BPSK-, 
BOC-, or AltBOC-modulated code.  Thus, the impact of 
band-pass filtering in the receiver's RF front-end is often 
ignored.  When not ignored, this impact is often 
accounted for by using calibrated distortions of the 
received correlation function, with a different calibration 
needed for each different PRN code. 

In some applications, this approach to dealing with RF 
front-end distortion is insufficient.  For example, the use 
of long spreading codes creates a situation where it is 
impractical to pre-calibrate the distortion for each sub-
section of the code that might be used to form a 
correlation accumulation.  In the application of Ref. 1, 
pre-calibration is virtually impossible because knowledge 
is needed of the actual distorted time histories of packets 
of about 20 P-code chips at the output of a narrow-band 
RF front end.  There are too many unique packets to 
calibrate, 5.24x106 possible combinations.  Furthermore, 
precise data-based calibration using the encrypted P(Y) 
code would be very difficult and expensive for civilian 
receivers. 

System identification of the RF filter's envelop impulse 
response function 2 provides a practical alternative to 
calibration.  Knowledge of the impulse response function 
can be used to mathematically predict the shape of the 
distorted PRN code chips at the output of an RF front-
end.  It can also be used to predict the distortion of the 
cross-correlation between the received code and the 
original wide-band code.  In fact, the latter relationship 
lies at the heart of the system identification calculations 
that this paper uses to estimation the RF filter impulse 
response function. 

System identification of RF filter impulse response has 
been considered by other researchers in their efforts to 
develop receiver signal processing techniques that 
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mitigate multi-path effects 3,4,5,6.  The general goal of 
these efforts has been to characterize the entire 
transmission channel from the satellite to the antenna and 
through the RF front-end.  This characterization includes 
both multi-path effects and the RF filter effects, with 
emphasis placed on the multi-path effects.  The overall 
goal is to use the channel estimates in order to remove the 
multi-path effects from the resulting pseudorange data.  
Therefore, these efforts seek methods that can operate in 
real-time and that can be applied independently to 
different satellite signals.  References 3 and 6 model the 
RF filter effects as being those of a simple "brick-wall" 
filter that passes everything within a certain band with 
zero attenuation and that completely attenuates everything 
outside this band.  In this case, the filter part of each 
channel impulse response function is known a priori to be 
a sinc function.  References 4 and 5 do not make 
assumptions about the RF filter.  Instead, they use 
frequency-domain system identification techniques, 
including Weiner filtering, and they use the known wide-
band broadcast PRN codes as the test inputs.  Special 
efforts are made to compensate for the zero input power 
of CDMA signals at certain frequencies and for the near-
zero power near these frequencies.  For example, BPSK-
encoded signals have zero power at their chipping 
frequency and multiples thereof,  The resulting channel 
models consists of estimated complex-valued frequency 
responses at a grid of frequency points.  If desired, a time-
domain impulse response can be computed by performing 
an inverse Fourier transform. 

Like Refs. 4 and 5, the present paper seeks to 
determine RF filter impulse response functions by 
applying system identification techniques to actual RF 
data, but the previous techniques differ from those 
developed here in several significant ways.  
First, the present goal is to characterize only 
the RF filter's contribution to the channel.  
The target application is to model the 
distortion to the 20.46 MHz bandwidth P(Y) 
code upon passing through an RF filter with 
a bandwidth of about 2.5 MHz 1.  The 
spectrum plot in Fig. 1 depicts the extreme 
narrowing of the P(Y) signal bandwidth in 
this case, which obviously also results in 
extreme signal distortion.  Therefore, the 
characteristics of the receiver's filter are the 
dominant concern, and the effects of multi-
path are less important in this application.  
Characterization of the RF filter can be 
performed once in an off-line calculation that 
applies for all PRN codes.  The system 
identification calculations can combine the 
signals from multiple PRN codes in the same 
calculation, thereby increasing the accuracy 
and reducing any stray multi-path effects. 

Note, however, that the results of such a 

system identification can have benefits for multi-path 
mitigation systems.  They can provide the filter part of the 
real-time channel response function so that the mitigation 
calculations can focus in estimating the reflected signal 
properties.  Thus, the present work will allow the 
mitigation techniques in Refs. 3 and 6 to relax their 
assumptions of sinc filter impulse response functions by 
replacing the sinc functions with filter impulse response 
functions calculated off-line using the techniques of the 
present paper. 

A second difference of the present work from Refs. 4 and 
5 is its use of time-domain system identification 
calculations.  Instead of working with complex frequency 
response phasors at FFT frequency grid points, it works 
with complex spline node parameters of a splined-model 
of the time-domain envelop filter impulse response.  The 
number of spline nodes and the number of parameters per 
node are kept small by design.  This forces a certain 
smoothness on the impulse response function a priori, 
with corresponding implicit constraints on the possible 
frequency-response.  One beneficial feature of this time-
domain spline characterization is that it attenuates the 
impact of measurement noise in regions of the spectrum 
where the input PRN codes have low signal power.  Thus, 
an important goal of the Weiner filter methods of Refs. 4 
and 5 is achieved implicitly through this modeling choice. 

A third difference from the methods of Refs. 4 and 5 is its 
choice of system identification measurement model.  
These two references use the frequency-domain version 
of the direct relationship between the input PRN code and 
the raw RF front-end samples.  The present approach 
inserts a pre-processing step in order to develop an 
alternate "measurement" model.  It computes the cross-
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Fig. 1. The full main lobe of the P(Y) code power spectrum (solid blue) 
and its highly filtered spectrum at the output of an inexpensive 
narrow-band C/A-code RF front-end (dash-dotted red).
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correlation between the received PRN code and the 
original wide-band PRN code, as is done in typical real-
time receiver processing.  It does this for many early and 
late offsets from the prompt tracked PRN code, and it 
averages its results over long data windows, over a 
minute or more.  The calculations may involve hundreds 
of code delay offsets spread over an interval of 5 to 10 
PRN chips.  The system identification "measurement" 
model is the mathematical relationship between this 
"measured", distorted cross-correlation function and the 
convolution of the filter impulse response function with 
the original wide-band PRN code auto-correlation 
function.  This type of model is more suitable for off-line 
calculations.  It removes most of the effects of variable 
PRN code Doppler shift by using a DLL to track the 
prompt PRN code during the entire data window.  A 
second benefit of this approach is that it can compress 
hundreds of millions of raw RF samples into a few 
hundred cross-correlation values prior to the application 
of least-squares system identification calculations.  Direct 
system identification calculations using 5x108 raw RF 
samples would be impractical. 

A fourth difference from Refs. 3, 4, 5, and 6 is that the 
present paper presents system identification results for 
actual live GPS data.  These earlier works concentrate on 
proofs of concept using simulated data.  Given that they 
had more ambitious goals, the characterization of entire 
transmission channels, it is reasonable that they relied on 
simulation because one can know "truth" in that case.  
With this paper's less ambitious goal of characterizing 
only the filter, less rigorous checks suffice, such as 
consistency between multiple channels and effectiveness 
in the P(Y) code semi-codeless processing calculations of 
Ref. 1. 

This paper makes three contributions to modeling and 
system identification of an RF filter complex envelop 
impulse response function.  First, it develops a time-
domain model of the relationship between the impulse 
response function and PRN auto-correlation function on 
the one hand and the distorted cross-correlation of the 
PRN code with the received signal on the other hand.  It 
also develops a practical recipe for computing "measured" 
values of the latter quantity at many code phases and 
averaged over long data batches.  

The second contribution is the definition of a spline-based 
model of the RF filter impulse response function and the 
development of a system identification problem for its 
parameters.  The resulting problem reduces to an over-
determined linear least-squares problem in the unknown 
complex spline node parameters.  An extension of this 
technique enables the simultaneous use of data from 
multiple GNSS signals from the same receiver in a single 
system identification calculation for a single filter impulse 
response function. 

The third contribution is the application of this technique 
to actual GNSS data and an evaluation of its 
effectiveness.  The data are from two distinct GPS C/A-
code receiver designs that have RF front-ends with 
bandwidths on the order of 2 MHz.  The method's 
effectiveness is demonstrated by its ability to accurately 
fit the cross-correlation distortions of multiple PRN codes 
using a single filter impulse response function.  A second 
check compares the corresponding frequency responses to 
gain plots that are available from the filter manufacturers. 

This paper consists of 5 main sections followed by 
conclusions.  Section II presents mathematical models of 
the received signal, of its cross-correlation with the wide-
band transmitted PRN code, and of the relationship 
between the wide-band autocorrelation function, the RF 
filter impulse response function, and the "measured" 
cross-correlation function.  This section develops a recipe 
for computing a normalized "measured" cross-correlation 
function from measured RF data and DLL tracking 
results.  Section III develops the spline model of the RF 
filter's complex envelop impulse response function.  It 
uses this model in the cross-correlation relationship of 
Section II in order to develop an over-determined system 
of linear equations for the unknown spline coefficients.  
These are the basic system identification equations.  
Section IV generalizes the system identification problem 
of Section III in order to handle data from multiple PRNs 
simultaneously.  It develops a technique for solving these 
equations, which are mostly linear but which contain 
small nonlinearities from possible differential delays 
between the different signals.  Section V applies this 
paper's methods to real data and presents results.  Its 
results are based on off-line MATLAB processing of stored 
RF front-end data.  Section VI discusses open questions 
about these methods and suggests future studies that can 
address these concerns.  Section VII summarizes the 
results and presents conclusions. 

II. TIME-DOMAIN MODELS OF SIGNALS, 
FILTER RESPONSES, AND CROSS-
CORRELATIONS 

A. Modeling the Effect of the RF Filter on the 
Received Signal 

Development of the system identification technique starts 
with a model of the received signal.  This model uses the 
RF filter impulse response function in order to 
characterize the relationship of the original wide-band 
PRN code at the input of the RF front-end to the filtered 
PRN code at the output.  It takes the form 

iiiIFifi tttAZy νφω ++= )](cos[)(  (1) 

where yi is the output by the receiver's RF front-end at 
sample time ti, A is the original signal amplitude, Zf(t) is 
the filtered version of the PRN code time history at the 
output of the RF front-end, ωIF is the intermediate 
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frequency to which the RF carrier gets mixed by the RF 
front-end, φ(t) is the negative beat carrier phase, and νi is 
the receiver noise.  This noise is assumed to be white-
noise with statistics: 

liEEE liRFii ≠=== allfor   0}{  ,}{  ,0}{ 22 ννσνν  (2) 

If Δt = ti+1-ti is the RF sample interval, then the received 
carrier-to-noise ratio is C/N0 = )4/( 222 ΔtZA RFf σ , where 

2
fZ  is the average power of the filtered PRN code Zf(t).  

For a wide-band receiver and a BPSK PRN code, 2
fZ  

will equal 1.  In a narrow-band receiver, it will be less 
than 1. 

This part of the analysis ignores the possible presence of 
navigation data bits that modulate Zf(t).  Subsection II.C 
discusses how this paper's methods deal sensibly with 
data bits if they are present in the signal. 

The filtered PRN code time history depends on the 
corresponding wide-band time-history Z(t) and on the RF 
front-end filter's envelop impulse response function h(t).  
This dependence takes the form of a convolution integral: 

∫ +−=
−

t

tt
Df

max

dZthtZ ττττ )()()(  

 ∫ +−=
∞

∞−
ττττ dZth D )()(  (3) 

The quantity τD is the time delay between the arrival of a 
given PRN code chip of Z(t) at the input to the RF front-
end and the replay of that same code chip by the receiver 
DLL's prompt number-controlled oscillator.  This delay is 
needed in Eq. (3) because all times are given as receiver 
clock times.  The system identification calculation can 
trace to this time system all RF data and all Z(t) replicas 
that it uses to compute cross-correlations, but it never 
knows exactly when the received PRN code arrived at the 
RF front-end input.  Therefore, τD is never known 
exactly.  An arbitrary choice of τD, provided that it is not 
too small, will suffice for purposes of this paper's system 
identification calculations.  The particular estimate of the 
impulse response function h(t) will, of course, depend on 
the choice of τD.  Fortunately, it will be possible to use 
the chosen τD and the corresponding estimate of h(t) in 
order to predict the distortion and delay of any other 
arbitrary signal measured with respect to receiver time in 
a way that is insensitive to the particular choice of τD. 

Equation (3) models h(t) as being a finite impulse 
response of duration tmax.  That is, it presumes that h(t) = 
0 for all t > tmax.  This represents an approximation that is 
inexact due to the analog nature of the RF front-end 
filters.  This approximation is needed in order to develop 
a spline model of h(t) for use in the system identification 
problem modeling of Section III.  This approximation 
will not cause any significant loss of fidelity if tmax is 
chosen to be large enough.  Of course, Eq. (3) also 

assumes that h(t) = 0 for all t < 0.  This assumption 
preserves causality. 

The extension of the limits of integration on the extreme-
right-hand side of Eq. (3) is useful for later analysis.  It is 
consistent with the assumption that h(t) = 0 for all t < 0 
and for all t > tmax. 

The impulse response model in Eq. (3) assumes that all 
channel distortion occurs in the RF front-end filter.  In 
reality, distortion also arises due to the transmitter's filter 
and due to multi-path.  This paper's technique will 
identify the full channel response, not just that of the 
receiver's RF filtering.  The target application of these 
techniques is for identification of impulse response 
functions for narrow-band filters in inexpensive GPS 
C/A-code RF front-ends.  Their bandwidths are typically 
on the order of 2 to 3 MHz because the main lobe of the 
C/A code is only 2.046 MHz wide.  Therefore, distortion 
at the transmitter, whose filter bandwidth is at least 20.46 
MHz, will be negligible relative to the distortion caused 
by the receiver's filter.  The isolation of receiver filter 
effects from multi-path effects is more problematic.  As 
discussed below, the use of multiple PRN signals for 
simultaneous system identification should help to mitigate 
any multi-path influence on the resulting h(t) estimate. 

The wide-band Z(t) PRN code used in Eq. (3) could be 
any GNSS signal.  It could be C/A code, P(Y) code, an 
L5 code, or a Galileo code.  The only requirement from 
the standpoint of the present analyses is that it be a known 
code.  Thus, one would need knowledge of the P(Y) code, 
likely only on an after-the-fact bases, in order to carry out 
this paper's system identification calculations based on 
that signal.  C/A code is used in the example applications 
of Section V. 

The filtered, distorted Zf(t) signal and the filter impulse 
response h(t) are both modeled as being complex base-
band signals.  This approach enables the system 
identification calculation to include the possibility of 
asymmetry in the filter's frequency response 

B. Impulse Relationship between Filtered and Wide-
Band Correlation Functions 

The receiver has the capacity to compute the cross-
correlation between a replica of the wide-band PRN code 
Z(t) and the received, filtered version Zf(t).  An analytical 
model of this cross-correlation function takes the form: 

dttZtZ
T

limC
T

T
f

T
ZfZ )()(

2
1)( ηη −∫=

−∞→
 (4) 

One can substitute the Zf(t) model from Eq. (3) into Eq. 
(4) in order to derive a relationship between this filtered 
cross-correlation function and the known wide-band 
autocorrelation function of Z(t).  The latter function is 

dttZtZ
T

limC
T

TT
ZZ )()(

2
1)( ηη −∫=

−∞→
 (5) 
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The derivation of the desired formula goes as follows: 
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The second line of the above derivation follows from the 
first by changing the dummy inner integration variable 
from τ to ξ = t - τ.  The third line changes the order of 
integration from that of the second line and moves the T 
limiting calculation within the outside integral.  These are 
allowable operations for the signals of interest.  The 
fourth line changes the dummy inner integration variable 
from t to γ = t - η.  The fifth line replaces the bracketed 
expression in the fourth line with CZZ(η-ξ+τD).  A careful 
comparison of this bracketed expression with Eq. (5) 
demonstrates the desired equivalence if one recognizes 
that the result in Eq. (5) is independent of any possible 
bias in its limits of integration, such as appears in the 
bracketed expression on the fourth line of Eq. (6).  The 
sixth line of Eq. (6) is derived from the fifth line by 
changing the name of the dummy integration variable 
from ξ to t and by recalling that h(t) = 0 for t < 0 and for t 
> tmax.  The seventh line is derived from the sixth line by 
changing the dummy integration variable from t to τ = - t 
+ η + τD while exploiting the evenness of CZZ(η). 

The last line of Eq. (6) demonstrates that CZfZ(η) is related 
to CZZ(η) via a convolution with h(t).  This relationship is 
similar to the relationship of the filtered PRN code Zf(t) to 
its wide-band counterpart Z(t), as per Eq. (3). 

The most important result of Eq. (6) is its sixth line.  This 
is the relationship that will be exploited for system 
identification purposes.  In order to emphasize this fact, 
the result is repeated below as a distinct equation: 

dttCthC DZZ

t

ZfZ
max

)()()(
0

τηη −−∫=  (7) 

The strategy for using Eq. (7) to perform system 

identification rests on having a priori knowledge of 
CZZ(η) and on an ability to "measure" a scaled version of 
CZfZ(η).  Given multiple "measurements" of CZfZ(ηm) at 
multiple code delay offsets, ηm for m = 1, ..., M, an over-
determined system of M equations can be developed.  
These equations can be used in order to estimate 
parameters that characterize h(t) by solving a least-
squares problem. 

Up to this point, scare quotes have been used to designate 
the "measurement" CZfZ(ηm).  These quotes indicate that 
CZfZ(ηm) is not a raw measurement.  Rather, it is a 
quantity that is derived from raw RF front-samples via 
extensive signal processing calculations.  These 
calculations are the subject of this paper's next sub-
section.  In the interests of simplicity, the scare quotes 
will be dropped from now on with the understanding that 
terms such as "measure" and "measured" are used in a 
loose sense to signify that CZfZ(ηm) has been derived 
based on measured data. 

C. Processing of Receiver Data to Measure the 
Filtered/Wide-Band PRN Code Cross-Correlation 
Function 

The system identification method relies on the ability of a 
GPS receiver to measure the value of CZfZ(η).  This must 
be done at a number of values of the wide-band replica 
code's time offset from the prompt code, η.  The signal 
amplitude A from Eq. (1) is not known a priori.  
Therefore, it is necessary to compute a normalized 
measurement that has an unknown scaling relative to the 
desired measurement CZfZ(η).  Suppose that this 
normalized version is called )(~ ηZfZC .  It is related to the 
cross-correlation as follows: 

)(~)( ηη ZfZcZfZ CAC =  (8) 

where Ac is an unknown constant scaling factor.  This 
factor will be estimated as part of the system 
identification process. 

The choice of scaling for )(~ ηZfZC  and the associated 
value of Ac are somewhat arbitrary, subject to the 
constraint that they be consistent.  A convenient scaling is 
to define these quantities so that )0(~

ZfZC  = 1 identically.  
In this case, the complex value of Ac characterizes the 
correlation amplitude loss of the prompt code and any 
phase rotation that it may undergo.  That is, CZfZ(0) = Ac.  
It is normally a value in the neighborhood of 1.  It 
approaches 1 as the RF filter distortion approaches zero. 

The computation of )(~ ηZfZC  is carried out using receiver 
RF front-end samples.  The initial part of this calculation 
is a set of standard correlation accumulation operations 
that rely on the results of DLL tracking of the PRN code 
phase and PLL tracking of the carrier phase.  The needed 
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in-phase and quadrature accumulations are 

×∑ +−−=
−+

=
])/ˆ1)([()(

1kk

k

Ni

ii
cDkkinomik tZyI ωωητη  

 )](ˆˆ[ kiDkkiIF ttcos τωφω −++  (9a) 
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1kk

k
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ii
cDkkinomik tZyQ ωωητη  

 )](ˆˆ[ kiDkkiIF ttsin τωφω −++  (9b) 

for the kth accumulation interval, which starts at receiver 
time τk and ends at τk+1.  The Doppler-shifted wide-band 
PRN code is replica Z(t) = )]/ˆ1([ cDknom tZ ωω+ , where 
Znom(t) is the known nominal PRN code with no code 
Doppler shift, Dkω̂  is the PLL's carrier Doppler shift 
estimate for this interval, and ωc is the nominal broadcast 
carrier frequency.  The two times τk and τk+1 must be 
chosen by the DLL, and Z(t) must be synchronized by the 
DLL so that Z(t - τk) is the prompt PRN code replica 
during this interval.  The sample index ik is the first 
sample such that τk ≤  ti.  The quantity Nk is the total 
number of samples in the interval so that the terminal 
index ik+Nk-1 is the largest value of i such that ti < τk+1.  
The phase kφ̂  is the estimated negative beat carrier phase 
at the start time τk. 

The accumulations in Eqs. (9a) and (9b) are un-
normalized.  An initial rough normalization is carried out 
on a per-accumulation basis using the following 
operations: 

)(2)0()()0()()( 2 ησηηη ZZIQkkkkk CQQIII −+=
(

 (10a) 

)0()()0()()( kkkkk IQQIQ ηηη +−=
(

 (10b) 

)0(/)()(~
kkk III
((

ηη =  (10c) 

)0(/)()(~
kkk IQQ
((

ηη =  (10d) 

where σIQ in Eq. (10a) is the standard deviation of the 
receiver noise effects on )(ηkI  and )(ηkQ .  This is 
assumed to be constant and independent of the offset η.  
It can be estimated from accumulation data using standard 
techniques, e.g., see Eqs.(23a)-(24b) of Ref. 1.  The 
subtraction term on the extreme right-hand side of Eq. 
(10a) acts to remove the principal bias caused by noise-
correlations between )0(kI  and )(ηkI  and between 

)0(kQ  and )(ηkQ . 

At this point in the calculations, )0(~
kI  = 1 and 

0)0(~ =kQ  are guaranteed.  In additional to normalizing 
)0(~

kI , these computations remove any effects of 
navigation data bits.  Thus, there is no need to consider 
their effects anywhere in the remainder of this paper. 

One might be tempted simply to average the values of 
)(~ ηkI  and )(~ ηkQ  over many accumulation intervals in 

order to determine, respectively, the real and imaginary 
parts of )(~ ηZfZC .  Unfortunately, there would be a 
residual bias in the resulting )(~ ηZfZC  value due to the 
impact on the operations in Eqs. (10c) and (10d) of 
correlations of the measurement noise effects in )0(kI

(
 

with those in )(ηkI
(

 and )(ηkQ
(

.  These biases are 
removed in the following calculation of )(~ ηZfZC  

μ

μηη
η

+

+∑
= =

1

)()(~1

)(~ 1
ZZ

K

k
k

ZfZ

CI
KC  

 
ζ

η
+⎥

⎦

⎤
⎢
⎣

⎡
∑−+
= 1

1)(~11
1

K

k
kQ

K
 (11) 

where K is the total number of accumulations used to 
form )(~ ηZfZC .  The small correction quantities ζ and μ 
are functions of the accumulations' signal-to-noise ratio, 
which equals the carrier-to-noise ratio multiplied by the 
average accumulation interval.  They take on the values: 

accumTNC )/(
1

0
=ζ  (12a) 

)1( ζζμ +=  (12b) 

where 

∑=
=

K

k
kaccum N

K
ΔtT

1
 (13) 

is the average length of an accumulation interval.  The 
correction terms to the in-phase and quadrature averages 
in Eq. (11) are small for a sufficiently high carrier-to-
noise ratio and a sufficiently long accumulation interval.  
The carrier-to-noise ratio of the signal used in Eq. (12a) 
can be estimated from the accumulations using standard 
techniques, e.g., using Eqs. (23a)-(26) of Ref. 1. 

The derivation of Eq. (11) presumes that the wide-band 
autocorrelation function is normalized, i.e., that CZZ(0) = 
1.  This same assumption also applies to Eq. (10a).  
Therefore, the calculations in Eqs. (10a)-(11) enforce the 
normalization )0(~

ZfZC  = 1 regardless of the magnitudes 
of ζ and μ. 

Formulation of the system identification problem requires 
that computations in Eqs. (9a)-(11) be repeated M times, 
once for each distinct PRN code phase offset ηm for m = 
1, ..., M.  Typically M on the order of 300 offsets might 
be used.  The values of ηm might range from -5 code 
chips to + 5 code chips.  Recall that negative ηm values 
correspond to early code replicas in the Eqs. (9a) and (9b) 
accumulation calculations.  Positive values correspond to 
late replicas. 
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III. SYSTEM IDENTIFICATION OF A SPLINE 
MODEL OF THE IMPULSE RESPONSE 

Given the model in Eqs. (7) and (8) and the 
measurements that are synthesized using Eqs. (9a)-(11), it 
is possible to formulate a linear system of equations that 
form the bases of determining the h(t) impulse response 
function.  As a first step in developing a feasible 
computation procedure, the infinite-dimensional unknown 
h(t) function must be represented approximately by a 
finite set of parameters.  Afterwards, the system 
identification problem can be formulated in terms of those 
parameters. 

A. Spline Model of h(t) 

The choice of a finite-dimensional representation of h(t) 
is somewhat arbitrary.  The form used here is that of the 
first derivative of a quintic spline.  A quintic spline can be 
represented by its function values and their first and 
second derivatives at a set of spline node points.  It is 
continuous with continuous first and second derivatives.  
The quintic spline, being the integral of the impulse 
response, is the envelop filter's step response. 

The derivative-of-a-quintic-spline modeling approach 
simplifies enforcement of the following unit 
normalization constraint: 

1)(
0

=∫
maxt

dth τ  (14) 

Enforcement is achieved automatically by requiring that 
the corresponding step response be a unit step response.  
This constraint is needed in order to preserve 
simultaneous observability of the spline parameters and 
the cross-correlation scaling parameter Ac.  Without such 
a constraint, the value of Ac and of the spline node 
parameters could be increased by any arbitrary common 
factor without affecting the relative accuracy with which 
the measurement model in Eq. (7) was satisfied.  The 
choice of unit normalization of h(t) is equivalent to 
normalizing the frequency-response model of the filter to 
have a gain of 0 dB at its center frequency.  Thus, it is a 
reasonable choice. 

The spline-based parametric model of h(t) takes the form: 

);(
);(

p
p

tdt
dgth =  (15) 

where g(t;p) is the filter's unit impulse response function.  
The spline is defined using Ls+1 equal-length quintic 
intervals that cover the range from t = 0 to t = tmax.  The 
spline node points at the ends of these intervals are tsl = 
lΔts for l = 0, ..., (Ls+1) where Δts = tmax/(Ls+1).  The 
elements of p are the values of g and its first and second 
time derivatives at the internal spline node points tsl for l 
= 1, ..., Ls.  The g(t;p) values at the end nodes of the 

spline are pre-defined to enforce smoothness and the unit 
normalization: g(0;p) = 0, g(tmax;p) = 1, and the first and 
second time derivatives of g(t;p) are zero at both t = 0 and 
t = tmax.  These definitions translate into the following 
spline parameter vector definition: 
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where the parameters gl, hl, and lh&  are, respectively, the 
values g(t), h(t), and dh/dt evaluated at the spline node 
point tsl for l = 1, ..., Ls.  The full spline definition uses an 
extension of this parameter set to include the pre-defined 
end node values g0 = 0, h0 = 0, 0h&  = 0 at ts0 = 0 and 

)1( +sLg  = 1, )1( +sLh  = 0, and )1( +sLh&  = 0 at )1( +sLst  = tmax. 

The splined h(t;p) function can be defined in terms of the 
derivative of a generic quintic spline derivative function 
that is defined over an interval of unit length.  This 
generic spline derivative function is 

=),,,,,;( '
1

'
01010 hhhhggh τ  

 )306030)(( 432
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 )1532181( 432
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 )152812( 432
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 )5.265.4( 432'
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 )5.245.1( 432'
1 τττ +−+ h  (17) 

Using this function, the definition of the impulse response 
becomes: 
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 (18) 

where the middle condition in Eq. (18) is valid for all 
spline indices l in the range 0 to Ls. 

Figure 2 plots example g(t;p) and h(t;p) functions for a 
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spline with Ls+1 = 5 quintic intervals that span from 0 to 
tmax = 5 μsec.  The top graph plots the real and imaginary 
parts of g(t;p) as, respectively, dash-dotted blue and green 
curves.  The bottom graph plots the real and imaginary 
parts h(t;p) as, respectively, solid blue and green curves.  
The parameter vector p has 3Ls = 12 elements in this case.  
The real and imaginary parts of the first 4 elements of p 
are the spline node values shown on the upper g(t;p) plot 
at the points t = 1, 2, 3, and 4 μsec as, respectively, the 
red squares and the brown diamonds.  Similarly, the real 
and imaginary parts of elements 5 through 8 of p are the 
spline node values shown on the lower h(t;p) plot at the 
same 4 time points and using the same symbol 
definitions.  The values of elements 9 through 12 of p are 
not directly plotted on Fig. 2.  Their real and imaginary 
parts constitute the slopes of the lower h(t;p) real and 
imaginary plots at the 4 node points. 

The system identification calculation needs to be able to 
compute the partial derivatives of h(t;p) with respect to 
the elements of p.  These can be characterized in terms of 
the six partial derivatives of the generic quintic spline 
derivative function in Eq. (17) with respect to its 
parameters.  These are 
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Using these functions, the parameter partial derivatives of 
h(t;p) are 
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where Eqs. (20a)-(20c) are valid for all spline parameter 
indices l in the range 1 to Ls. 

An important property of these partial derivative 
functions is that none of them depends on any of the 
parameter values in p.  This property arises from the 
linear dependence of h(t;p) on p as dictated by the model 
definition in Eqs. (17) and (18).  The linearity of the 
dependence on the values in p causes the underlying 
parameter identification problem to be linear, which is a 
great advantage in terms of ease of solution.  Because of 
this linearity, it is possible to express h(t;p) in the linear 
form 

p
p

p
t

hthth
∂
∂+= )0;();(  (21) 

where the needed partial derivative row vector is 
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As stated in the introduction, an important property of 
this spline model is that it can help to smooth out the 
effects of measurement noise on the estimate of h(t;p).  
This occurs because the number or parameters used to 
model h(t;p), which equals 3Ls, i.e. three times the 
number of non-end-point spline nodes, is normally small 
compared to the number of data points.  Therefore, the 
estimate of each parameter effectively averages the 
information of many measurements.  This is in stark 
contrast with the spectral estimation methods of Refs. 4 
and 5.  Those methods effectively use a large number of 
parameters to represent h(t): all of the complex phasors of 
an FFT of h(t) on a dense grid of frequency points.  This 
large number of parameters has the effect of passing 
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much of the measurement noise through to the resulting 
h(t), making it much less smooth and likely more noisy. 

Of course, this advantage of the present method comes 
with a risk.  If the parameterization of h(t;p) does not 
provide for a sufficient richness of possible impulse time 
histories, then it may be impossible to accurately 
represent the true h(t) in this manner, and the accuracy of 
h(t;p) will be poor.  Therefore, the practitioner must make 
a trade-off:  One must make Ls large enough to allow 
h(t;p) to approximate the true impulse response 
accurately, but one must not make Ls too large; otherwise 
the resulting h(t;p) will use its extra degrees of freedom 
primarily to fit measurement noise that is not 
representative of the true impulse response. 

B. Linear Parameter Identification Problem for the 
Spline Node Values and the Scaling Factor 

The spline-based model of h(t;p) from the previous sub-
section can be combined with the cross-correlation model 
in Eq. (7) and the re-normalization correlation 
measurement model in Eq. (8) to develop a system of 
equations for the unknown elements of the vector [p;Ac].  
Using the linear form of the spline impulse response 
model in Eq. (21), the resulting equations take the form: 

∫ −−=
maxt

DmZZmZfZc dttCthCA
0

)()0;()(~ τηη  
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0
τη  

 for m = 1, ..., M (23) 

These equations can be formed into a standard over-

determined matrix-vector linear system of equations.  In 
order to do this, define the following row vectors and 
scalars: 

⎥
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 for m = 1, ..., M (24a) 

∫ −−=
maxt

DmZZm dttCthc
0

0 )()0;( τη  

 for m = 1, ..., M (24b) 

The row vector T
mc∂  has 3Ls elements, the same number 

as in the column vector p. 

The integrals in Eqs. (24a) and (24b) can 
be evaluated exactly for typical PRN 
codes.  This is true because the known 
wide-band PRN code autocorrelation 
function CZZ(t) is typically piecewise 
linear in t, while the nominal impulse 
response function h(t;0) and its vector of 
partial derivative functions th p∂∂ /  are 
both piecewise quartic.  Therefore, each 
integrand is piecewise quintic, and it can 
be integrated exactly by performing 
polynomial integration over each of its 
quintic intervals.  Note that the 
individual intervals of piecewise 
quinticity may be smaller than the 
intervals of piecewise linearity of CZZ(t) 
and the intervals of piecewise quarticity 
of h(t;0) and th p∂∂ / .  This happens 
because the intervals over which CZZ(t) is 
linear are not necessarily the same 

intervals as those over which h(t;0) and th p∂∂ /  are 
quartic.  It is not very difficult to determine the proper 
intervals for performing each polynomial sub-integral.  
The ability to evaluate these integrals exactly is a 
significant benefit of having chosen a spline-based 
parametric model for h(t). 

Given the definitions in Eqs. (24a) and (24b), the M 
instances of Eq. (23) can be lumped into the following 
over-determined system of equations: 
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 (25) 

This problem can be recast into the following form 
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g(t;p) (nondimensional) 
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t (microsec)

h(t;p) = dg(t;p)/dt (1/microsec) 

  

 Real part of unit impulse
Imaginary part of unit impulse
Real part of unit impulse spline node
Imaginary part of unit impulse spline node

Real part of unit step 
Imaginary part of unit step 
Real part of unit step spline node 
Imaginary part of unit step spline node 

Fig. 2. Example quintic-splined g(t;p) unit step response (top plot) and the 
corresponding h(t;p) unit impulse response (bottom plot). 
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pcc HAcmeas += 0
~  (26) 

if one defines the M-dimensional column vectors 
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and the M-by-(3Ls)-dimensional matrix 
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Equation (26) can be re-cast into the following standard 
linear least-squares form 
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⎤
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⎡
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c
meas A

H
p

cc ]~,[0  (29) 

This equation is the principle system parameter 
identification equation of this paper.  The M-dimensional 
column vector on its left-hand side is known as is the M-
by-(3Ls+1) matrix on its right-hand side.  The unknown 
vector [p;Ac] on the right-hand side has 3Ls+1 elements.  
If M ≥  (3Ls+1) and if the matrix on the right-hand side 
has linearly independent columns, then the parameters are 
observable, and the vector [p;Ac] can be determined using 
standard matrix techniques for solving over-determined 
linear least squares problems, techniques such as QR 
factorization 7. 

The lower limit on M requires that the number of PRN 
code timing offsets used to generate )(~

mZfZC η  
measurements be no less than thrice the number of spine 
intervals less 2.  Thus, one must be careful to calculate a 
sufficient number of independent )(~

mZfZC η  correlations 
for a given number of spline elements in the h(t;p) model. 

The measurements )(~
mZfZC η  for m = 1, ..., M appear in 

the final column of the matrix on the right-hand side of 
Eq. (29).  This represents a somewhat unusual situation 
from a least-squares estimation standpoint.  Normally the 

measurements would enter the problem linearly as part of 
the known vector on the left-hand side of the equation.  
They enter the matrix in this case because of the need to 
estimate the re-scaling factor Ac that is introduced in Eq. 
(8).  This fact has interesting consequences for the issue 
of how the measurement noise affects the solution 
accuracy.  This question has been left for investigation at 
a later date. 

One must be careful to solve this least-squares problem 
using linear algebra routines that are able to deal properly 
with complex numbers.  Complex numbers arise in the 
problem because the measured correlations )(~

mZfZC η  
can be complex.  As a result, the optimal estimates of p 
and Ac will be complex-valued. 

One would expect Ac to be nearly real and somewhat near 
1 for a filter that passes most of the Z(t) PRN code.  
Therefore, the actual estimated value of Ac can give an 
indication of whether the problem and its solution make 
physical sense. 

IV. SYSTEM IDENTIFICATION WITH 
SIMULTANEOUS PROCESSING OF DATA FOR 
MULTIPLE SIGNALS 

The system identification problem in Eq. (29) can be 
generalized to handle multiple signals for multiple PRN 
codes simultaneously.  The basic idea is to solve several 
versions of Eq. (29) simultaneously, one for each PRN for 
which )(~

mZfZC η  correlation measurements are available.  
Of course, these measurements must come from the same 
receiver and ideally from the same data span.  They differ 
in their underlying PRN codes, in their cross-correlation 
measurements, and in their code Doppler shifts. 

This multi-signal approach has several advantages.  First, 
it probes the filter with additional data.  It is always better 
to have more data in any estimation problem if there is a 
suitable model for the additional data.  Second, the 
additional signals are likely to have different multi-path 
errors from each other.  Given that the estimated h(t) will 
include any multi-path effects, the simultaneous use of 
multiple signals provides a strategy for trying to attenuate 
the multi-path effects by averaging them over a number 
of signals. 

A third advantage of using multiple signals is that any 
resultant diversity of their code Doppler shifts should 
enhance the problem observability.  Recall from the 
introduction that Refs. 4 and 5 took pains to compensate 
for the fact that PRN codes have power nulls which cause 
their FFT-based filter models to have poor frequency 
response accuracy in the portions of the spectrum near 
these nulls.  Although the present spline-based time-
domain model has no direct analog of this problem, it is 
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believed that its frequency-domain equivalent may suffer 
some ill effects in these same low-power portions of the 
spectrum.  Code Doppler shift diversity will place the 
nulls of different PRN codes in slightly different parts of 
the spectrum.  This will enhance estimation accuracy 
because there will not be any portion of the spectrum 
where there is zero power to probe the filter response. 

A. Independent Equations for Each Signal 

The combined estimation problem with multiple signals is 
based on multiple independent versions of Eq. (29), one 
for each signal.  Suppose that there are N signals.  Then 
the multiple equations are  

⎥
⎦

⎤
⎢
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⎡
−=− n

c

n
meas

n
D

nn
D

n
A

H
p

cc ]~),([)(0 ττ   for n = 1,...,N (30) 

where the superscript ()n indicates the signal number, not 
the quantity in question raised to the nth power.  The M n-
by-1 vector )(0

n
D

n τc  is the vector of nominal computed 
cross-correlations as defined in Eq. (27b) for the nth 
signal.  Its cross-correlation elements are computed using 
Eq. (24b) at the code delay offsets n

mη  for m = 1, ..., M n 
and at the time delay n

Dτ .  The M n-by-(3Ls) matrix 
)( n

D
nH τ  is the matrix of cross-correlation derivatives 

with respect to p as defined in Eq. (28) for the nth signal.  
Its cross-correlation derivative rows are computed using 
Eq. (24a) at the code delay offsets n

mη  for m = 1, ..., M n 
and at the time delay n

Dτ .  The M n-by-1 vector n
measc~  is 

the vector of measured normalized cross-correlations as 
defined in Eq. (27a) for the nth signal.  Its measured cross-
correlation elements are computed using Eqs. (9a)-(11) at 
the code delay offsets n

mη  for m = 1, ..., M n. 

The unknown correlation amplitude loss factor n
cA  

applies to the nth signal.  A unique value applies to each 
signal because of the uniqueness of each signal's wide-
band autocorrelation function.  Each different distorted 
cross-correlation shape can have a different loss of 
prompt correlation amplitude when filtered through 
h(t;p). 

There is an important reason that the vectors )(0
n
D

n τc  for 
n = 1, ..., N and the matrices )( n

D
nH τ  for n = 1, ..., N are 

modeled as having different delays n
Dτ  for n = 1, ..., N 

that have the potential to vary with n.  Recall from 
Subsection II.A that this delay is a measure of the time 
between the arrival of a particular PRN code chip at the 
input to the RF front-end and the time when its prompt 
replica is replayed by the DLL number controlled 
oscillator.  This delay is unknown, but it can be guessed, 
and h(t;p) can be estimated in a way that is self-consistent 
for purposes of predicting signal distortion according to 
the receiver's DLL-relative time base.  There is one 

caveat, though.  The self-consistency of this calculation 
applies only to one signal at a time.  For a given fixed 
h(t;p), this delay may vary for different PRN codes.  Such 
variations can be caused by the differing effects of 
coupling between the way that h(t;p) distorts the PRN 
code's cross-correlation function and the way that the 
DLL discriminator operates on the distorted function to 
yield a code phase estimate or a proxy thereof. 

Therefore, the multi-signal system identification 
procedure must allow for different delays of its different 
signals.  The differential delays are estimated in an outer 
optimization that holds one of them fixed while varying 
the others in order to minimize the sum of the least-
squares costs over all of the independent system-
identification equations for all of the signals. 

The set of evaluations of Eqs. (24a) and (24b) and the set 
of correlation measurement calculations in Eqs. (9a)-(11) 
for the nth signal will involve the use of the PRN code for 
signal n, Z n(t) and its corresponding wide-band 
autocorrelation function )(ηn

ZZC .  The definitions of 
these functions must account for the average code 
Doppler shift of the signal and its effect on their nominal, 
un-Doppler-shifted versions.  As per the discussion of 
after Eqs. (9a) and (9b), the Doppler-shifted versions of 
these functions are: 

)]
ˆ

1([)(
c

n
Dn

nom
n tZtZ

ω
ω+=    for n = 1, ..., N (31a) 

)]
ˆ

1([)(
c

n
Dn

ZZnom
n
ZZ CC

ω
ωηη +=    for n = 1, ..., N (31b) 

The functions ][tZ n
nom  and ][ηn

ZZnomC  are the known 
nominal PRN code and autocorrelation functions, 
respectively, for the nth signal, and n

Dω̂  is its estimated 
carrier Doppler shift. 

It is desirable to have significant frequency diversity 
among the N different Doppler shifts n

Dω̂  for n = 1, ..., N.  
Frequency diversity will increase the observability of the 
impulse response in the spectral regions near the PRN 
code power nulls.  This will happen because frequency 
diversity will cause the nulls for the different signals to 
occur at different frequencies. 

B. Penalty Terms to Favor Impulse Response 
Smoothness 

The multi-signal system identification problem includes 
additional terms that penalize the third and fourth time 
derivatives of h(t;p) at the mid points of the (Ls+1) spline 
intervals.  These penalty terms take the form of additional 
equations in the over-determined system of equations: 
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 for l = 0, ..., Ls (32b) 

where the positive constants ρ3 and ρ4 provide a way of 
tuning the weights of these penalty terms in the overall 
sum-squared-error cost function.  The quantity Mtot = M 

1+M 2+...+M N is the total number of code-phase offsets 
whose cross-correlation measurements are considered for 
the N signals. 

The complicated factors in front of the two h(t;p) time 
derivatives in Eqs. (32a) and (32b) are reasonable 
normalizing terms.  They allow for an "apples-to-apples" 
comparison between correlation errors in Eq. (30), third 
time derivatives of h(t;p) in Eq. (32a), and fourth time 
derivatives in Eq. (32b). 

The final system identification problem appends Eqs. 
(32a) and (32b) to the system of equations whose sum-
squared-error cost function is minimized.  The inclusion 
of these terms acts to reduce the high-frequency 
oscillations of h(t;p).  Higher weighting values ρ3 and ρ4 
will tend to smooth out any roughness on the estimated 
h(t;p), but at the possible expense of degraded fit to the 
correlation relationship in Eq. (7). 

The spline model of h(t;p) in Eq. (18) can be used to 
express the third and fourth derivatives in Eqs. (32a) and 
(32b) in forms that are linear in p: 

]0),5.0[(
3

3

]),5.0[(
3

3

sslssl ΔttΔtt dt
hd

dt
hd

++

=
p

 

 p
p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂+

+ )5.0(

33 )/(

ssl Δtt

dthd  

  for l = 0, ..., Ls (33a) 
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These formulas are similar to the linear-in-p formula for 
h(t;p) given in Eq. (21).  The formulas for each term in 
Eqs. (33a) and (33b) can be derived by appropriate 
differentiation of the spline formula in Eq. (18), much as 
Eq. (21) has been derived from Eq. (18).  The details of 

this derivation have been omitted for the sake of brevity. 

The 2(Ls+1) individual penalty formulas in Eqs. (32a) and 
(32b) can be combined with the linear model forms in 
Eqs. (33a) and (33b) in order to produce a system of 
penalty equations of the form: 

pc penpen H+=0  (34) 

where cpen is the column vector of dimension 2(Ls+1): 
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and Hpen is the matrix of dimension 2(Ls+1)-by-(3Ls): 
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C. Combined Linear Least-Squares Problem 
Formulation with Penalty Terms 

The cross-correlation measurement models for the N 
signals in Eq. (30) and the penalty terms in Eq. (34) can 
be combined into the following over-determined system 
of linear equations: 
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This is a system of Mtot+2(Ls+1) equations in the 3Ls+N 
unknown elements of the vector [p; 1

cA ; 2
cA ;...; N

cA ].  If 
there are enough cross-correlation time offsets to yield an 
over-determined system identification problem for each 
signal taken individually, then each M n value is greater 
than 3Ls+1.  In this case Mtot > 3Ls+N also holds true, the 
above problem will be over-determined, and it would 
have been over-determined even if there had been no 
penalty terms on the third and fourth time derivatives of 
h(t;p). 

The unknown vector [p; 1
cA ; 2

cA ;...; N
cA ] can be 

estimated by solving Eq. (37) using standard linear least-
square matrix calculations 7.  As with the least-squares 
problems for the individual signals, the solution 
calculations must be able to handle complex arithmetic 
properly because the measured n

measc~  vectors will be 
complex.  The solution vector [p; 1

cA ; 2
cA ;...; N

cA ] will 
also be complex. 

The minimum lest-squares cost associated with Eq. (37) 
equals half the sum of the squares of the absolute values 
of the errors in each scalar equation.  This cost will be a 
function of the chosen delays for the signals.  Let this cost 
be Jopt( 1

Dτ , 2
Dτ ,..., N

Dτ ).  This will be a scalar, non-
negative, real number for a given set of delays. 

D. Outer Optimization of Differential Signal Delays 

The system identification procedure must estimate N-1 of 
the delays 1

Dτ , 2
Dτ , ..., and N

Dτ  in addition to the spline 
coefficients in p and the correlation amplitude loss factors 

1
cA , 2

cA , ..., N
cA .  This is true because only one of the 

delays is independent.  Without loss of generality, 1
Dτ  is 

held fixed at an a priori assigned value, and the values of 
2
Dτ , ..., N

Dτ  are estimated by choosing the combination of 
these delays that minimizes Jopt( 1

Dτ , 2
Dτ ,..., N

Dτ ). 

The underlying problem of estimating 2
Dτ , ..., N

Dτ  is a 
non-linear problem because the n

Dτ  values do not enter 
the problem model in Eq. (37) linearly.  Therefore, the 

method used to minimize Jopt( 1
Dτ , 2

Dτ ,..., N
Dτ ) is Newton's 

method, which is appropriate for nonlinear problems 7. 

Newton's method requires a first guess of the solution, 
and it computes improved guesses by using the gradient 
and Hessian of Jopt at its current guess.  The estimation 
procedure initializes its guess by setting all of the 
estimated delays to the pre-defined value for signal 1: n

Dτ  
= 1

Dτ  for n = 2, ..., N.  It then uses the finite-difference 
increment δτD and central differencing in order 
approximate the gradient and Hessian components: 
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  for n = 2, ..., N (38a) 
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DD

n
DD

l
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  ])2/(1[ 2
Dδτ   

 for l = 2,..., (N-1) and n = (l+1), ..., N (38c) 

One must be careful to choose the finite-difference step 
size δτD wisely.  If it is too large, then these 
approximations will be poor due to truncation error, but 
they will have too much error due to computer round-off 
if δτD is too small 7. 

These second derivative calculations require 2(N-1)2 extra 
evaluations of Jopt( 1

Dτ , 2
Dτ ,..., N

Dτ ) at various 
combinations of 1 or 2 perturbed values of the quantities 

2
Dτ , ..., N

Dτ .  Each such evaluations requires a solution of 
the linear least-squares parameter identification problem 
in Eq. (37).  Fortunately, each linear solution can be 
computed quickly because it involves only standard linear 
algebra.  Therefore, the finite-difference computations in 
Eqs. (38a)-(38c) are practical. 

Increments to the delay estimates are computed using the 
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standard Newton's method formula: 
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  (39) 

These increments are added to existing estimates to 
produce the new estimates: 

n
D

n
Dnew

n
D Δτττ +=)(   for n = 2, ..., N (40) 

The process is repeated as needed until the increments 
n
DΔτ   for n = 2, ..., N are negligible.  In the authors' 

experience, the initial guesses of 2
Dτ , ..., N

Dτ  are 
normally close to the optimal values, and only one 
iteration of this procedure is needed in order to achieve 
accurate delay estimates. 

V. EXPERIMENTAL APPLICATION AND 
RESULTS FOR TWO NARROW-BAND RF 
FRONT-ENDS 

A. Cases Considered and Their Input Parameters 

The system identification calculations of this paper have 
been applied to two different RF front-end designs.  One 
is the Zarlink/Plessey GP2015 8.  The other is custom-
designed RF front-end.  Both of them are narrow-band 
GPS L1 RF front-ends.  Their filters have bandwidths on 
the order of 2 MHz wide in order to capture the main lobe 
of the GPS C/A code, and they both produce 2-bit RF 
samples at the sampling frequency 5.714 MHz.  System 
identification experiments and calculations have been 
carried out for two units of each design.   

The system identification procedure started by collecting 
raw RF samples and storing them to disk.  The data were 
collected in Sept. 2010 using roof-mounted antennas.  
Three of the RF front-ends and digital storage devices 
were located in Ithaca, NY.  One of the custom-designed 
units was located in Austin, TX.  The two Zarlink/Plessey 
RF front-ends collected data at the same time.  The two 
custom-designed RF front-ends also collected data 
simultaneously, but at a different time than the 
Zarlink/Plessey units. 

Signal acquisition and tracking operations for a number 
of GPS C/A PRN codes were carried out using MATLAB 

software receiver code on an off-line basis.  These 
tracking results were used to compute normalized cross-
correlation measurements as per Eqs. (9a)-(11).  All four 
system identification cases computed cross-correlation 
measurements using data batches of 91 seconds duration. 

For each signal, M n = 341 ηm offsets that range from -5 
C/A code chips to + 5 C/A code chips.  Three different 
spacings were used between the ηm offsets.  Spacings of 
ηm+1-ηm were set to 0.05 chips for |ηm| in the range 2 to 5 
chips, to 0.02 chips for |ηm| in the range 0.2 to 2 chips, 
and to 0.01 chips for |ηm| < 0.2 chips.  Thus, the finest 
spacing was used near the cross-correlation peak at η = 0. 

The maximum non-zero durations used for the two 
different RF front-end's impulse responses were tmax = 
5.65 μsec for the Zarlink/Plessey devices and tmax = 2.90 
μsec for the custom devices.  The shorter duration for the 
latter RF front-end was deemed reasonable given its 
somewhat higher bandwidth.  The preset delays were 
chosen to be 1

Dτ  = 2.13 μsec for the Zarlink/Plessey RF 
front-ends and 1

Dτ  = 0.78 μsec for the custom RF front-
ends.  The finite-difference increments used to compute 
derivatives with respect to 2

Dτ , ..., N
Dτ  in the outer 

Newton optimization were δτD = 5.65 nsec for the 
Zarlink/Plessey units and δτD = 2.90 nsec for the custom 
units. 

The following values were used for the smoothness-
inducing penalty weights of Eqs. (32a)-(36): ρ3 =  1000 
and ρ4 = 100.  These values were use for both RF front-
end types. 

The number of spline intervals used for all cases was Ls+1 
= 21.  Thus, there were 3Ls = 60 elements in the unknown 
p vector. 

The system identification calculations for the 
Zarlink/Plessey RF front-ends used N = 3 signals, those 
of PRN numbers 08, 11, and 28.  The total number of 
cross-correlation measurements was Mtot = 3x341 = 1023 
for these cases, and each over-determined linear least-
squares problem in Eq. (37) consisted of 1065 equations 
in 63 unknowns.  Thus, the parameter identification 
problem was highly over-determined.  The respective 
average carrier Doppler shifts for PRNs 08, 11, and 28 
were 265 Hz, 1517 Hz, and 2052 Hz for one of the 
Zarlink/Plessey cases and -426 Hz, 825 Hz, and 1362 Hz 
for the other case.  Thus, there was some Doppler 
diversity, but not as much as might be had for a terrestrial 
receiver. 

The system identifications calculations for the custom 
front-ends used signals from the N = 4 PRN numbers: 04, 
08, 17, and 28.  Mtot = 4x341 = 1364, and each system 
identification problem consisted of 1406 equations in 64 
unknowns, which was even more over-determined than 
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for the Zarlink/Plessey RF front-ends.  These four PRN 
codes' corresponding carrier Doppler shifts were 3572 
Hz, -3826 Hz, 913 Hz, and -509 Hz for one case and 
3000 Hz, -3426 Hz, -654 Hz, and -329 Hz for the other 
case.  Thus, the cases for the custom RF front-end have 
significantly more Doppler shift diversity than those for 
the Zarlink/Plessey front-end. 

B. Impulse Response Data and Results 

Example correlation measurement data for PRN 08 and a 
Zarlink/Plessey RF front-end are shown in Fig. 3.  The 
figure plots Ac )(~ ηZfZC  vs. η with Ac being the value that 
has been computed in a subsequent system identification 
calculation.  The real part of Ac )(~ ηZfZC  is the dash-
dotted red curve, and the imaginary part of Ac )(~ ηZfZC  is 
the dashed green curve.  Also shown in the figure is the 
theoretical wide-band autocorrelation function for this 
signal, CZZ(η), which is the sold blue curve.  The system 
identification problem defined by Eq. (7) is to find the 
complex h(t) function that, when used to evaluate the 
right-hand side of the equation in conjunction with the 
given solid blue CZZ(η) plot in Fig. 3, yields the other two 
plots in the figure.  If the receiver had a very wide 
bandwidth, then h(t) would be approximately a Dirac 
delta function, the dash-dotted red curve would closely 
approximate the solid blue curve, and the dashed green 
curve would be nearly zero.  Figure 3 shows that this is 
not the case, but it also shows that the filter bandwidth is 
wide enough so that the red and green curves are not 
terrible approximations of the wide-band case.  This level 
of distortion of the narrow-band cross-correlation 
function is representative of all the data sets. 

Figure 4 shows an example of the fit between the 
measured cross-correlation function and its corresponding 
modeled value from Eq. (7) after estimation of h(t;p).  
These plots are for PRN 28 and the custom-designed RF 
front-end.  The solid red curve in the figure is the 
measured real part of Ac )(~ ηZfZC , and the solid green 
curve is the measured imaginary part.  The dotted 
turquoise curve is the real part of the modeled CZfZ(η) as 
computed using h(t;p) with the estimated p in Eq. (7).  
The dotted grey curve is the imaginary part of the 
modeled CZfZ(η).  As is obvious from the figure, the two 
modeled curves lie right on top of the measured curves.  
The dash-dotted brown curve plots the error absolute 
value |CZfZ(η) - Ac )(~ ηZfZC |.  It is nearly zero.  Its 
maximum value is 0.003, which is only 0.33 % of the 
maximum cross-correlation.  Thus, this system 
identification model fit is very accurate. 
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Fig. 3. Measured cross-correlation data for PRN 08 as 

received by a Zarlink/Plessey RF front-end 
along with theoretical wide-band 
autocorrelation. 
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Fig. 4. Measured and estimated cross-correlation 

functions for PRN 28 as received by a custom-
designed RF front-end along with absolute 
values of estimation error residuals. 

The fit accuracy of Fig. 4 is typical of all cases that have 
been processed.  The maximum fit error maximized over 
all the cases and all η values was 0.77% of the 
corresponding peak cross-correlation.  Root Mean Square 
(RMS) fit errors were all in the range 0.09% to 0.29% of 
the peak cross-correlation.  These good fits indicate that 
the method works well, especially when one considers 
that these close fits occur with a single estimated h(t;p) 
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impulse response function accounting for the shapes of 3 
or 4 different distorted cross-correlation functions. 

It is interesting to note that RMS errors for positive η 
were uniformly larger than those for negative η values.  
Averaged over all 14 measured cross-correlation cases, 
the RMS errors in the -η range are only 46% of those in 
the +η range.  Given that the +η range corresponds to late 
correlations, this is consistent with the idea that part of 
this discrepancy is caused by multi-path because multi-
path errors should be larger in this region.  Given the 
good simultaneous fits for 3 to 4 signals that arrived 
along 3 to 4 independent lines of sight, one suspects that 
the multi-path effects on each h(t;p) estimate are small.  
Also, it is reasonable to expect that the averaging across 
signals inherent in this procedure will tend to reduce 
multi-path errors in h(t;p) further. 

The estimated inter-channel time offsets, n
Dτ - 1

Dτ  for n = 
2, ..., N, were all small.  They ranged from -0.76 nsec to + 
1.04 nsec. 

The estimated h(t;p) impulse response functions for the 4 
system parameter identification cases are plotted in Fig. 5.  
The upper panel plots the impulse responses for the two 
Zarlink/Plessey units.  The lower panel plots them for the 
two custom-designed units.  Both real and imaginary 
parts are plotted.  Both plots show the entire non-zero 
portions of the corresponding finite responses.  Both sets 
of curves show the functions settling down to near zero at 
both ends of each non-zero range.  This indicates that the 
choices of tmax and 1

Dτ  provided adequate margins to 
capture the important variations of the functions.  Another 
interesting feature of these plots is the close similarity 
between the two units of each design, especially the real 
parts:  Note how the dotted red curves in each panel, the 
real parts for unit B of the given design, closely match the 
solid blue curves, the real parts for unit A of the same 
design. 

Another interesting feature of Fig. 5 is the close 
alignment of the real-part peaks with the corresponding 
pre-specified 1

Dτ  delays.  Recall that these values are 1
Dτ  

= 2.13 μsec for the upper Zarlink/Plessey plot and 1
Dτ  = 

0.78 μsec for the lower custom-design plot.  This seems 
sensible because 1

Dτ  is defined to be the nominal delay 
from when the prompt code enters the RF front-end's 
analog input to when the code appears in its output 
sample stream. 

The frequency-response gains of the estimated envelop 
impulse response functions are plotted in Fig. 6.  The 
frequency response transfer function is computed from 
the impulse response function as follows 

dtethdtethjG tj
t

tj ωωω −−∞
∫=∫=

max

00
);();()( pp  (41) 

where j = 1−  in this equation.  This integral can be 
evaluated exactly because h(t;p) is quartic in t over each 
of the Ls+1 spline intervals and because functions of the 
form tncos(ωt) and tnsin(ωt) can be integrated in closed 
form for any integers n.  Figure 6 plots 20log10|G(jω)| vs. 
ω for the 4 estimated  impulse response functions.  Note 
how each plot passes through 0 dB at the center 
frequency.  This feature is a consequence of the unit-
normalization constraint in Eq. (14). 
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Fig. 5. Estimated envelop impulse response functions 

for 4 RF front-ends: two Zarlink/Plessey units 
(top plot) and two custom-designed units (bottom 
plot). 

The plots in Fig. 6 have been compared with the RF filter 
frequency response plots that have been provided by the 
relevant manufacturers, e.g., see Ref. 8.  Both sets of 
plots in the figure agree reasonably well with the 
manufacturers' data sheets.  This agreement further 
confirms the efficacy of the new filter system 
identification method. 

A counter-intuitive aspect of Fig. 6 is the apparent 
accuracy of the frequency response plots at certain 
frequencies.  The vertical dash-dotted brown lines are 
plotted at +/- 1.023 MHz.  These are the nominal points 
of the first nulls of the C/A code power spectrum.  If 
using the methods of Refs. 4 or 5, one would expect large 
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frequency response errors near these frequencies, but the 
curves shown in Fig. 6 match the manufacturer data 
reasonably well in these regions.  This good performance 
of the estimator is probably the result of two features of 
the new system identification method.  First, the use of a 
time-domain spline model of the impulse response should 
tend to generate a smooth frequency response function in 
regions of the spectrum where the input signal is weak.  
Second, the frequency diversity caused by code Doppler 
shift avoids the possibility of a complete lack of input 
signal power at any one frequency. 

The second counter-intuitive aspect of Fig. 6 is the 
apparent ability to resolve the correct frequency response 
at frequencies outside the Nyquist aliasing band.  The 
Nyquist bandwidth equals half the RF sampling 
frequency of 5.714 MHz 2, and it is centered on the plot.  
The Nyquist band is the set of frequencies between the 
dashed green vertical lines on the plot.  Again, based on 
comparisons with manufacturer's data sheets, the 
frequency response curves in Fig. 6 seem reasonable in 
areas outside this Nyquist zone, though the low gains far 
outside this zone make all estimates, both these and the 
manufacturers', suspect.  Nevertheless, it seems surprising 
that the new method has any ability to resolve the 
frequency response outside the Nyquist band.  It is 
conjectured that this ability is a result of the fact that the 
RF sampling frequency is not an integer multiple of the 
C/A-code chipping frequency.  This unusual relationship 
and the fact that the input signal has known wide-
bandwidth frequency characteristics may enable the 
system identification algorithm to circumvent the issue of 
aliasing. 

Another important result of the present paper has been the 
ability to use its estimated h(t;p) impulse response 
functions in support of semi-codeless P(Y) signal 
processing in a spoofing detection application 1.  The goal 
in this case is to model the distortion caused by h(t;p) on 
groups of about 20 actual known P code chips.  Each 
group corresponds to a single one of the encryption chips 
that modulate the P code to create the P(Y) code.  Figure 
7 shows examples of this type of distortion calculation for 
one of this paper's custom RF front-end h(t;p) estimates.  
The lower distorted curves in the figure are derived from 
the upper wide-band sets of P-code chips by using the 
estimated h(t;p) response function in Eq. (3).  The Z(t) 
functions input on the right-hand side of the Eq. (3) 
calculation are the wide-band Pwj(t) P-chip profiles shown 
in the upper panel of the figure.  The Zf(t) functions that 
are output on the left-hand side of Eq. (3) are the 
corresponding distorted Pfwj(t) functions in the lower 
panel of Fig. 7. 

Of course, generation of a set of distorted Pfwj(t) functions 
is not a proof that the h(t;p) used to generate them is an 
accurate model of the actual narrow-band RF filter.  The 
evidence for the accuracy of the various h(t;p) estimates 

lies, rather, in the success of the semi-codeless spoofing 
detection test that has been developed based on them.  
Reference 1 demonstrates good agreement between the 
predicted mean and variance of its semi-codeless 
spoofing detection statistic on the one hand and its 
experimentally determined fluctuations on the other hand.  
It seems unlikely that this level of agreement could have 
been achieved based on poor h(t;p) estimates.  
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Fig. 6. Estimated frequency responses for 4 RF front-

ends: two Zarlink/Plessey units (top plot) and 
two custom-designed units (bottom plot). 
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Fig. 7. Wide-band (top) and filtered (bottom) P-code 

chips of 5 successive W encryption chips, 
distortion modeled by the h(t;p) function for one 
of the custom-designed RF front-ends (courtesy 
of Ref. 1). 
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VI. SUGGESTIONS FOR FURTHER STUDY 

Although the results of Section V are encouraging, there 
remain some open questions about this technique.  They 
all revolve around the effects of noise and other possible 
limits on its accuracy.  One worthwhile study would be to 
model the effects of receiver-noise-induced random errors 
in the measured accumulations )(~ ηZfZC .  Standard 
linearization techniques could be used to propagate these 
effects through the system identification calculations.  
The result would be an estimation error covariance matrix 
for the spline parameter vector p.  This estimation error 
covariance could be propagated through the frequency 
response calculations in order to determine whether there 
are frequency ranges with poor estimation accuracy.  This 
calculation would shed light on the two questions 
associated with Fig. 6:  How much frequency response 
uncertainty exists near the C/A code power nulls?  Does 
accuracy degrade outside the Nyquist bandwidth because 
of aliasing? 

A second test of the issue of aliasing could try estimating 
h(t;p) from truth-model simulation data.  The "truth" 
h(t;p) would be given significant main-lobe gain and 
some side-lobes outside the Nyquist band.  If the 
estimated h(t;p) were able to reproduce these features of 
the "truth" h(t;p), then the question of Nyquist limitations 
would be settled. 

Another issue concerns the effect of multi-path on the 
accuracy of h(t;p).  The heuristic strategy of using 
multiple signals in one large system identification 
calculation has been employed in hopes of reducing the 
multi-path effects on the estimated h(t;p).  No analysis of 
the efficacy of this approach has been conducted.  Such 
an analysis should be carried out. 

VII. SUMMARY AND CONCLUSIONS 

A new system identification method has been developed 
to estimate the envelop impulse response function of an 
RF front-end filter.  This method estimates the node 
coefficients of a complex time-domain impulse response 
function that takes the form of a 4th-order spline.  The 
estimation problem definition relies on measurements of 
the distorted cross-correlation function between an 
original wide-band PRN code and its received version.  
This cross-correlation function is calculated at many 
code-phase shifts relative to the prompt code of a 
receiver's DLL, perhaps hundreds of phase shifts spread 
over 5 to 10 code chips.   The distorted cross-correlation 
function is modeled as being the convolution between the 
unknown impulse response function and the known 
autocorrelation function for the undistorted wide-band 
version of the PRN code.  The resulting system-

identification problem is linear in almost all of its 
unknowns, and it can be formulated to use data from 
multiple PRN codes simultaneously. 

The new method has been applied experimentally in an 
off-line mode to calibrate the impulse response functions 
of two narrow-band RF front-end designs.  These designs 
are geared for reception of the GPS L1 C/A code.  The 
system identification results showed good agreement 
between multiple signals for a single impulse response 
model in a given receiver.  Corresponding frequency 
response functions have been computed from the 
estimated impulse responses, and they agree favorably 
with experimental gain plots from manufacturer data 
sheets.  As a further testimony to the fidelity of the 
estimated impulse responses, they have been successfully 
applied to develop a spoofing detection system that relies 
on semi-codeless matched-filter processing of P(Y) code 
signals in a narrow-band receiver. 
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