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ABSTRACT 

A new inverse diffraction algorithm has been developed 
to estimate the fine-scale ionospheric electron density 
variations that cause equatorial scintillation in GPS 
signals.  This work is part of an effort to image the 
disturbed ionosphere in order to better understand 
scintillation from a scientific standpoint.  The new 
algorithm relies on a physical model of how electron 
density irregularities affect received GPS signals in 
ground-based receivers.  The model is based on a thin 
phase-screen approximation of the ionosphere that 
accounts for non-normal incidence of the GPS signal.  
The heart of the model is a modified Huygens-Fresnel 
integral that is evaluated using FFT-based techniques.  
The forward model computes the received in-phase and 
quadrature accumulations as functions of a "frozen", 
drifting 1-dimensional vertical electron density profile.  
Inversion of this model is performed using nonlinear 
least-squares techniques.  The final algorithm estimates 
electron density profiles based on measured 
accumulations from a dual-frequency GPS receiver.  The 
algorithm has been applied to weak scintillation data.  It 
has demonstrated an ability to fit dual-frequency 
amplitude and phase data based on a single electron 
density profile. 

INTRODUCTION 

Ionospheric scintillation is an important topic both 
technologically and scientifically.  Scintillation is caused 
by irregularities in the ionosphere, and it appears as rapid 
amplitude or  phase fluctuations, or a combination of the 
two, on radio frequency (RF) signals that traverse the 
ionosphere 1.  The present paper concentrates on 
equatorial scintillation, which occurs near the Earth's 
magnetic equator after local sunset at certain times of 
year 2.  Amplitude fades of 30 dB have been recorded 
during equatorial scintillation, and rapid phase changes 
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tend to accompany these deep fades 3,4.  The rapid 
amplitude and phase dynamics tend to cause radio 
receivers to lose carrier lock 1,3,4, which makes 
scintillation a major problem for Global Navigation 
Satellite Systems (GNSS) and for trans-ionospheric radio 
communication. 

The technological importance of the negative impacts of 
scintillation has given rise to scientific interest in 
understanding the physics of the ionospheric irregularities 
that cause scintillation.  These irregularities are caused by 
electron density bubbles that can form due to Rayleigh-
Taylor instability in an inversion that often occurs after 
local sunset 5.  Observational data have been used to 
study the statistical properties of these irregularities 6,7,8,9.  
There remain, however, several important unknowns 
about these irregularities.  Science cannot yet predict 
whether a given inversion will develop into the 
irregularities that cause scintillation, nor does it 
understand the detailed dynamics of how the bubbles 
form or how they give rise to irregularities which have 
length scales that cause scintillation. 

The present study is the first result of an extensive effort 
to use remote sensing techniques in order to image the 
electron density variations that cause equatorial 
ionospheric scintillation.  These techniques are being 
developed based on GPS data.  The goal is to image the 
disturbed ionosphere based on distributed measurements 
of dual-frequency GPS amplitude and phase scintillation 
made by an array of ground-based receivers, as depicted 
in Fig. 1.  This effort's principle goal is to produce a set of 
fine-scale electron density maps, or images, of the 
scintillating equatorial ionosphere.  These maps will 
provide ionospheric physicists with valuable data from 
which they can deduce improved scintillation models.  It 
is hoped that such models will lead to improved abilities 
to predict and monitor scintillation and to operate GNSS 
and RF communication equipment in their presence. 

This first study has the limited goal of developing and 
testing an algorithm that computes a 1-dimensional 
electron density image of the scintillating ionosphere.  It 
does this based on the scintillating signals from a single 
GPS satellite as received by a single ground-based dual-
frequency GPS receiver.  The limitation to one receiver 
and one satellite has been imposed by the currently 
available data 10, not by choice. 

This paper makes 4 contributions to the subject of inverse 
diffraction imaging of the ionospheric irregularities that 
cause equatorial scintillation.  The first is a phase-screen 
model of the effects of a 1-dimensional electron density 
distribution on the amplitude and phase variations of 
received RF signals at multiple frequencies.  The new 
feature of this phase-screen model versus existing models 
(e.g., see Ref. 11), is its ability to deal with non-normal 
incidence of the RF signal on the plane of its ionospheric 

phase screen.  The second contribution is a mathematical 
model of how the disturbed ionosphere affects the group 
delay.  The third contribution is a model inversion 
algorithm that estimates the electron density irregularities 
along with other ionospheric parameters based on 
remotely sensed dual-frequency GPS receiver data.  It 
does this by applying nonlinear least-squares techniques 
to an FFT-based implementation of the forward phase-
screen calculation.  The fourth contribution is the 
application of this model inversion algorithm to actual 
dual-frequency scintillation data and an evaluation of its 
effectiveness. 

 
Fig. 1 Schematic diagram of a GPS remote-sensing array for 

inverse-diffraction imaging of the scintillating 
ionosphere 12. 

The use of the word tomography in this paper's title is an 
unintended misnomer.  The term tomography refers to a 
specific model inversion technique that passes probe 
signals through an unknown medium in two or more 
directions in order to make the characteristics of the 
medium observable.  In the present context, the GNSS 
signal in question passes through the ionosphere primarily 
in a single direction, though satellite motion does cause 
slight directional variations.  The present technique relies 
on the physics of diffraction in order to make the 
ionospheric electron density distribution observable.  It 
does not rely on a multiplicity of signal directions.  A 
better title would have been "Inverse Diffraction Imaging 
of the Disturbed Ionosphere based on GPS Scintillation 
Data."  The current title has been used because this error 
was not realized until after the conference program had 
gone to press.  In the future, this project hopes to use true 
tomography methods by fielding a distributed array of 
receivers which can track signals that pass through a 
given portion of the disturbed ionosphere in multiple 
directions. 

The remainder of this paper consists of 4 main sections 
plus conclusions.  Section II develops the ionospheric 
phase-screen model for a plane wave that can have non-
normal incidence on the phase-screen plane.  It defines 
the "frozen", drifting ionosphere assumption that is 
needed in order to process data from a single receiver, 
and it develops the FFT/inverse-FFT (IFFT) techniques 
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that are needed in order to perform its phase-screen 
calculations.  Section III develops a phase-screen inverse 
diffraction algorithm that is based on the Gauss-Newton 
and Levenberg-Marquardt techniques for solving 
nonlinear least-squares problems.  It also explains how 
the FFT and IFFT phase-screen calculations can be 
efficiently embedded in its least-squares algorithm.  
Section IV describes the collection and pre-processing of 
dual-frequency scintillation data that provide the inputs to 
the model inversion algorithm of Section III.  Section V 
applies the inverse diffraction method of Section III to the 
data of Section IV and discusses the results.  Section VI 
summarizes the main results and presents conclusions. 

II. IONOSPHERIC PHASE-SCREEN MODEL 
WITH NON-NORMAL INCIDENCE 

This section develops a mathematical model of how 
ionospheric electron density variations give rise to 
amplitude and phase scintillation at a receiver.  The 
model used is a phase-screen model, like those described 
in Refs. 6 and 11.  It models the ionosphere as a thin 
plane at which abrupt changes of carrier phase occur.  
The effects of these changes are propagated from the 
ionosphere to a ground-based GPS receiver by using a 
Huygens-Fresnel-type approximation of Kirchhoff's 
boundary integral.  The present section develops a 
generalized phase-screen model that has two new 
features.  One is the ability to model non-normal 
incidence of the RF plane wave on the phase-screen 
plane.  The other is the ability to model the effect on 
group delay of the phase screen's electron density 
irregularities. 

A. Phase-Screen Geometry with Non-Normal 
Incidence 

The phase-screen models of Refs. 6 and 11 deal with the 
case of a plane wave whose direction of travel is exactly 
perpendicular to the phase-screen plane.  The present 
paper needs to work with actual GPS data.  The 
assumption of normal incidence is almost never true when 
using real data.  Therefore, a generalized phase-screen 
model has been developed for the non-normal case. 

The geometry associated with the generalized phase-
screen model is depicted in Fig. 2.  The ionospheric 
phase-screen plane is the x-y plane whose origin is 
defined to lie on the line of sight (LOS) between the 
receiver antenna and the nominal location of the GPS 
satellite that transmits the scintillating signals.  Definition 
of the phase-screen origin relative to WGS-84 coordinates 
is completed by specification of its altitude h above the 
WGS-84 ellipsoid.  This origin is denoted by the WGS-84 
position vector rppnom, with the "pp" subscript being 
shorthand for "pierce point". 

The +y axis of the phase-screen plane is defined to be 
aligned with the local International Geomagnetic 

Reference Field (IGRF) vector at the x-y origin, B(rppnom), 
which points approximately horizontal and approximately 
northward when near the magnetic equator.  The +x axis 
points approximately westward.  The alignment of the +x 
axis relative to local horizontal is defined by the 
ionospheric tilt angle γ.  If γ = 0, then the +x axis is 
exactly horizontal.  If γ ≠  0, then the +x axis is rotated 
about the +y axis to make an angle of γ between it and the 
horizontal axis that is perpendicular to the y axis.  γ > 0 
causes an upward tilt of the +x axis, and γ < 0 causes a 
downward tilt. 

 
Fig. 2. Geometry of phase-screen model. 

A non-zero ionospheric tilt is allowed because this 
possibility may be implied by the observations and 
analyses of Refs. 13 and 14.  One goal of the present 
study is to try to estimate the tilt angle γ along with the 
altitude h. 

The +z axis of the phase-screen coordinate system is 
defined by the right-hand rule.  It points approximately 
towards nadir. 

Two additional geometric quantities of interest are the 
unit direction vector that points from the GPS spacecraft 
to the receiver antenna and the receiver antenna location.  
The unit-normalized LOS direction vector is )(ˆ tk  = 
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and the GPS spacecraft. 

B. Modeling Electron Density Variations and their 
Phase Effects 

The phase-screen scintillation calculations use a modeled 
electron density distribution in the x-y plane in order to 
determine the phase increment that occurs as an RF signal 
crosses that plane.  This density model takes the general 
form VTEC(x,y,t), where VTEC stands for vertical total 
electron content in electrons/m2.  The designation 
"vertical" is not quite accurate.  This density profile 
actually gives the number of electrons in a 1m-by-1m 
column that projects perpendicular from the phase-screen 
plane in the +/- z direction, which normally is not exactly 
equal to true vertical. 

There is strong evidence that ionospheric irregularities 
that cause equatorial scintillation are elongated in the 
direction of the local magnetic field, i.e., in the y direction 
13.  This observation implies that the electron density does 
not vary strongly in the y direction.  Therefore, its y 
dependence has been neglected, and the functional form 
of the distribution has been approximated as VTEC(x,t). 

Another observed property of equatorial scintillation is 
that the irregularities tend to drift from west to east much 
faster than they tend to deform relative to this drifting 
reference frame 13.  Therefore, it might be reasonable to 
model the joint spatial/temporal dependence of the 
"vertical" electron density distribution in the form 
VTEC(x+v[t-t0]), where VTEC(x) is the distribution at 
time t = t0 and where v is the west-to-east drift velocity of 
the electron density irregularities.  This drift velocity is 
depicted in Fig. 2. 

The VTEC(x+v[t-t0]) form of the VTEC(x,t) model is 
called a "frozen", drifting distribution.  It is the model that 
is used throughout the remainder of this paper.  The 
decision to use this model form has been made because 
there is evidence that it is reasonable 13 and because it 
limits the number of unknowns.  If the distribution 
VTEC(x,t) were allowed to deform with respect to itself as 
well as drift, then it is likely that many more GPS 
receivers would be needed in order to make this 
distribution observable.  It is hoped that additional 
receivers will be fielded in future scintillation data 
collection campaigns so that their outputs will enable 
relaxation of this assumption of a "frozen", drifting 
1-dimensional VTEC distribution. 

There is evidence that the scintillation region can have a 
non-zero vertical descent rate 14.  This possibility that h is 
a function of time is not permitted in the current phase-
screen model.  Again, the reason for not including this 
possibility is the increased likelihood that the resulting 
system would not yield a unique best-fit solution to dual-
frequency data from a single GPS receiver.  It is hoped 
that this restriction can be relaxed when dual-frequency 

scintillation data are available from a receiver array. 

Given VTEC(x+v[t-t0]), the phase change that occurs at 
the phase screen can be determined from the usual phase 
advance formula 15: 
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where Δφ(x,t) is the carrier phase advance in radians, 
])[( 0ttvx −+Δφ  is the phase advance that would have 

occurred if the RF plane wave's incidence had been 
normal to the phase-screen plane, )(ˆ/1 3 tk  is the non-
normal-incidence slant factor that converts VTEC to TEC, 
c is the speed of light, and ω is the carrier frequency in 
radians/sec. 
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then its value just below the phase screen is the real part 
of 
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where A0 is the signal amplitude above the phase screen 
and rsc(t) is the location of the GPS spacecraft given in 
Cartesian phase-screen coordinates. 

C. Non-Normal Huygens-Fresnel Propagation of 
Phase-Screen Model 

A physics-based propagation is used to translate the 
signal in Eq. (3) from the bottom of the ionosphere to the 
receiver antenna.  An exact form of this propagation can 
be implemented using Kirchhoff's boundary integral 16 if 
one assumes that that the ionospheric plane is of infinite 
extent and that there is no reflection of the wave from the 
ground.  This propagation takes the form  



 5

×∫∫=
∞

∞−

∞

∞−

− dydxe
A

tu ttj
a na )]([0

4
)( τω

π
 

 ×
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−Δ )},()](

0
[)(ˆ{),(exp T yxty

x
t

c
jtxj apρ

ω
φ scrk  

 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

),(),(),(
)(ˆ

32
3

yx
z

yx
z

yx
tk

c
j

ap

a

ap

a

ap ρρρ
ω  (4) 

where ua(t) is the complex phasor form of the signal at the 
receiver antenna location, za[( 3010

ˆ/ˆ kk );( 3020
ˆ/ˆ kk );1], 

τna(t) is the added signal delay due to the troposphere, and  
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is the distance from the receiver antenna to the 
ionospheric phase-screen location (x,y). 

The last term in Eq. (4) the za/ρap
3 term, is the near-field 

term.  It is typically negligible in comparison to the other 
terms because ρap is on the order of 300 km or more for 
typical ionospheric scintillation altitudes, whereas c/ω is 
typically on the order  0.04 m/rad or less for the L-band 
GPS signals that are considered in this study. 

A Huygens-Fresnel-type approximation has been used in 
order to develop an alternative form of Eq. (4) that is 
amenable to FFT-based calculations.  After neglecting the 
near-field term, the equation is approximated by a Taylor 
series in y expanded about the value of y that minimizes 
the exponential argument in the integrand.  This 
minimizing value is a function of x.  It is 
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The exponential argument is expanded to second order in 
Δy = y - yminarg, and the coefficient of the exponential is 
expanded to first order to in Δy.  The integral with respect 
to y can then be carried out.  The result is expanded in a 
Taylor series about the value of x that minimizes the 
remaining exponential argument terms aside from the 
Δφ(x,t) term.  That minimizing value is  
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The exponential argument terms other than the Δφ(x,t) 
term are expanded to second order in Δx = x - xminarg, and 
the coefficient of the exponential is expanded to first 
order to in Δx.  The resulting approximate formula for the 
received signal is 
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where ρasc(t) is the distance from the GPS spacecraft to 
the receiver antenna.  The quantities As(t) and φs(t) are, 
respectively, the scintillating amplitude and phase of the 
received signal.  They are evaluated using the following 
generalization of the Huygens-Fresnel integral to this 
section's model of non-normal incidence: 
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Note that xpv(t) effectively gives the drifted x location of 
the LOS ionospheric pierce point as measured relative to 
the original "frozen" VTEC(x) vs. x distribution. 

The integral in Eq. (9) reduces to the standard normal-
incidence Huygens-Fresnel integral for a 1-dimensional 
phase screen 6,11 under the right conditions.  These 
conditions are that 10k̂  = )(1̂ tk  = 0 and that 30k̂  = )(ˆ

3 tk  
= 1.  In this case, the formulas in Eqs. (10a)-(10c) 
simplify to ψ = ω/(cza), ζ = 0, and xpv(t) = v(t-t0). 

D. FFT-Based Numerical Evaluation of Huygens-
Fresnel Integral 

The integral in Eq. (9) can be evaluated by using Fourier 
Transform techniques.  Like the technique of Ref. 11, this 
approach relies on the convolution property of the Fourier 
transform and on the Fourier transform pair: 

=+
)(/2

2
1

)(
1)]([1

tj
e

tj
t

ψη

ψ
ημ  

 ∫ ΔΔ−
∞

∞−

Δ−Δ−
xdeetx xjxtj ηψ

ζ
π

2
2
1 )(

)](1[
2
1  (11) 

where η is the independent spatial frequency variable of 
the Fourier transform and where 
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The convolution property of the Fourier transform states 
that the Fourier transform of the convolution of two 
functions is the product of the two functions' Fourier 
transforms.  This property is applied to Eq. (9).  If one 
introduces a sign change in the dummy integration 
variable Δx, then the integral in Eq. (9) is equivalent to a 
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convolution of the function )}(ˆ)/({exp 3 tkxj ΔΔφ  with the 
integrand on the right-hand side of Eq. (11).  xpv(t) is the 
independent variable in this convolution form of Eq. (9).  
Therefore, Eq. (9) can be re-written in the form  
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The formulas in Eqs. (13) and (14) become practical if 
one uses FFT techniques in order to numerically evaluate 
their integrals.  The use of such techniques implies two 
assumptions about the complex form of the phase-screen 
distribution })(ˆ)/(exp{ 3 tkxj ΔΔφ .  The first assumption 
presumes that the signal is band-limited to less than half 
the sampling frequency of the FFT calculations.  That is, 
if the FFT calculations use the phases at grid points iφΔ  
= x)( δφ iΔ  for i = 0, ..., (N-1), then the highest spatial 
frequency magnitude in })(ˆ)/(exp{ 3 tkxj ΔΔφ  is half the 
sampling frequency, ηmax = π/δx.  δx is the FFT grid 
spacing.  The second assumption needed for FFT 
calculations is that )( xΔΔφ  is periodic with period equal 
to Nδx: )( xΔΔφ  = )( xNx δφ +ΔΔ  for all Δx. 

Given these assumptions, Eq. (14) can be evaluated using 
the FFT formula 
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and Eq. (13) can be evaluated using the IFFT formula 
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where the spatial grid of the FFT/IFFT extends from 
–δxN/2 to +δx(N/2 –1), where n is the spatial frequency 
index of the FFT/IFFT operations, and where the nth 
spatial frequency is 
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Standard FFT/IFFT calculations do not need to make the 
distinction between the low-n and high-n frequency 
formulas of Eq. (17).  Normally, ηn only appears in the 
final factor of Eq. (16) where, because of the usual 

aliasing effect, the difference between the two versions of 
ηn has no impact if xpv(t) is a multiple of δx.  Contrary to 
standard IFFT notation, ηn appears explicitly wherever it 
is needed in Eq. (16) because the usual aliasing rules do 
not apply.  The low-n and high-n distinctions in Eq. (17) 
are needed in order to enforce the spatial bandwidth 
limitation assumption about the function 

})(ˆ)/(exp{ 3 tkxj ΔΔφ . 

The time t is a parameter in the calculations of Eqs. (15) 
and (16).  Therefore, these equations need to be re-
evaluated for each measurement sample time tl.  This 
need to re-calculate causes an inefficient use of the FFT 
and IFFT formulas in these equations.  Suppose, on the 
other hand, that the quantities 3k̂ , μ, and ψ did not 
depend on t.  Suppose, also, that the sample times tl had 
been chosen to yield the relationship xpv(tl) = (l-N/2)δx.  
Then a single FFT operation in Eq. (15) and a single IFFT 
operation in Eq. (16) would suffice to determine the 
scintillation phasor As(tl)exp[jφs(tl)] for all sample times l 
= 0, ..., (N-1).  Given the reality, however, the most 
efficient implementation of these operations uses a full 
FFT calculation in Eq. (15) at each sample time tl, but it 
performs the IFFT operations in Eq. (16) only for the 
single spatial point xpv(tl).  That is, only a single brute-
force summation of the form given in Eq. (16) is 
performed.  The usual IFFT algorithm is not used to 
evaluate this sum because its operations are efficient only 
under the assumption that the sum needs to be performed 
for the N evenly spaced pierce-point values xpv(tl) = 
(l-N/2)δx for l = 0, ..., (N-1). 

Note that the spatial bandwidth limitation assumption of 
the FFT/IFFT calculations must be considered carefully.  
It is a limitation on the bandwidth })(ˆ)/(exp{ 3 tkxj ΔΔφ , 
which is not identical to a bandwidth limitation on 
VTEC(Δx) because })(ˆ)/(exp{ 3 tkxj ΔΔφ  is a nonlinear 
function of VTEC(Δx) even though )( xΔΔφ  is a linear 
function of VTEC(Δx).  The most obvious feature of this 
nonlinear dependence is that a large slope of VTEC(Δx) 
vs. Δx can lead to a large spatial bandwidth of 

})(ˆ)/(exp{ 3 tkxj ΔΔφ  as a result of the cosine and sine 
functions that are involved in the calculation of a complex 
exponential.  This means that a low-bandwidth function 
VTEC(Δx) that has large values, and therefore large 
slopes, can lead to a high bandwidth 

})(ˆ)/(exp{ 3 tkxj ΔΔφ .  Therefore, account must be taken 
of this nonlinear relationship when selecting the FFT 
sample interval δx. 

The impact of the FFT periodicity assumption can be kept 
low by choosing a long enough periodicity interval Nδx.  
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The Huygens-Fresnel integral in Eq. (9) can be thought of 
as a kind of spatial filter that acts on the phase changes 
that are caused by the VTEC(x) distribution.  The 
important filtering term is })({ 2

2
1 xtexp Δ− ψ .  It has the 

effect of passing low frequency phase variations of 
})(ˆ)/(exp{ 3 tkxj ΔΔφ  that occur near the ionospheric 

pierce point of the LOS.  Remote from the pierce point, it 
only allows influence from very high frequency 

})(ˆ)/(exp{ 3 tkxj ΔΔφ  variations.  Given that the actual 
and modeled })(ˆ)/(exp{ 3 tkxj ΔΔφ  bandwidths are 
limited, these limitations translate into limitations on the 
spatial extent from the LOS pierce point of the VTEC(x) 
values that affect the received signal.  Suppose that one 
assumes typical values of ψ in the })({ 2

2
1 xtexp Δ− ψ  

filtering term and that one analyzes the ability of this term 
to transmit the effects of various spatial frequencies at 
points that are more than 25 km removed from the pierce 
point.  Such an analysis shows that the significant 
frequencies of })(ˆ)/(exp{ 3 tkxj ΔΔφ  are greater than 0.1 
cycles/meter in this remote region.  Spatial bandwidths in 
this range are unrealistic.  Therefore, one can be confident 
that the un-physical FFT periodicity assumption will not 
degrade the model fidelity if the FFT window extends 
more than 25 km past either end of the possible xpv(t) 
pierce points. 

E. Calculation of Ionospheric Group Delay using the 
Phase-Screen Model 

The dual-frequency GPS receiver that has been used to 
collect data for this study is capable of measuring the 
differential group delay between the received L1 and L2 
signals.  Therefore, it was thought wise to develop a 
model of how the disturbed VTEC(x) vs. x distribution 
affects group delay.  One might be tempted to use the 
usual formula for a quiescent ionosphere as found in Ref. 
15.  This would work out to τgd(t,ω) = 

)](ˆ)]/[([ 3 tktx pv ωφΔ  because the pierce point relative to 
the convected VTEC(x) vs. x distribution is xpv(t).  
Unfortunately, this formula does not account for the fact 
that VTEC(x) values in the neighborhood of xpv(t) also 
affect the group delay.  Therefore, a new formula is 
needed. 

The needed formula for τgd has been derived by 
recognizing that τgd = ωφ ∂−∂ /  for a dispersive medium, 
where φ is the carrier phase advance that is caused by the 
medium.  In the case of the diffraction calculations of 
Eqs. (15) and (16), the group delay is τgd(t,ω) = ωφ ∂−∂ /s  
with φs being the phase of the phasor that is determined 
by Eq. (16). 

The detailed computation of τgd(t,ω) relies on 

differentiation of the formulas in Eqs. (15) and (16) with 
respect to ω.  Suppose that the bracketed inverse Fourier 
sum on the right-hand side of Eq. (16) produces the result 
a(t,ω)+jb(t,ω), where the functions a(t,ω) and b(t,ω) are 
real-valued.  Then the group delay caused by the phase-
screen model is 

),(),(

),(),(

),( 22
),(),(

ωω

ωω

ωτ ωω

tbta

ω
atb

ω
bta

t tt
gd

+

∂
∂

−
∂
∂

=  (18) 

Computation of the partial derivatives ωa ∂∂ /  and ωb ∂∂ /  
starts with partial differentiation with respect to ω of the 
Fourier sum on the right-hand side of Eq. (15).  It 
depends on ω because the function )( xΔΔφ  depends on 
ω, as per Eq. (1).  This partial differentiation results in a 
sum that is the Fourier transform of a set of partial 
derivatives, and it can be evaluated very efficiently using 
FFT techniques.  The partial derivative calculations are 
completed by differentiation with respect to ω of the 
inverse Fourier sum on the right-hand side of Eq. (16).  It 
depends on ω because the functions ),( tnf , μ(t), and 
ψ(t) depend on ω, as per Eqs. (15), (12), and (10a).  The 
resulting sum is the inverse Fourier transform of another 
set of partial derivatives.  Derivation of the formulas for 
the partial derivative FFT and IFFT sums is 
straightforward.  These derivations have been omitted for 
the sake of brevity. 

III. NONLINEAR LEAST-SQUARES INVERSE 
DIFFRACTION CALCULATIONS 

This section develops techniques to invert the phase-
screen model of Eqs. (1)-(17) so that measurement of 
scintillating })({)( tjexptA ss φ  phasors can be used to 
infer the VTEC(x) distribution that caused them.  This 
technique is developed for use with dual-frequency data 
for the GPS L1 and L2 frequencies.  The model inversion 
technique is based on standard nonlinear least-squares 
methods 17. 

A. Dual-Frequency Accumulation Measurement 
Model 

The GPS receiver measures in-phase and quadrature 
accumulations at the L1 and L2 frequencies.  These 
accumulations are complex phasor representations of the 
received amplitude and phase.  This section models these 
accumulations as functions of the ionosphere geometric 
parameters h and γ, the ionosphere west-to-east drift 
velocity v, the VTEC(x) distribution, and miscellaneous 
"slop" parameters.  These slop parameters are needed in 
order to account for unavoidable real-world effects on the 
data.  These effects include multi-path, antenna gain 
pattern variations, and the residual phase effects of 
modeling errors in the range ρasc(t), in the neutral 
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atmosphere delay τna(t), and in the receiver clock error.  
The nonlinear least-squares algorithm estimates both the 
additional unknown parameters that characterize each 
slop term and the original quantities of interest. 

The primary effects of code multi-path and of antenna 
gain pattern variation are likely to be slow variations of 
the received amplitude of each signal.  Such slow 
variations, as measured relative to the rapid amplitude 
variations that are caused by scintillation, have been 
observed in the recorded data.  The slop parameters that 
model these effects are coefficients in time polynomials 
that characterize the resulting signal amplitude variations.  
These polynomials take the form: 

K+−+−=Δ 2
0122

1
0111 )()()( ttgttgtGL  

 M
MM ttg )( 01!

1 −+  (19a) 

K+−+−=Δ 2
0222

1
0212 )()()( ttgttgtGL  

 M
MM ttg )( 02!

1 −+  (19b) 

where ΔGL1 and ΔGL2 are, respectively, the equivalent L1 
and L2 gain perturbations in dB, g11, ..., g1M and g21, ..., 
g2M are the unknown coefficients in the respective ΔGL1 
and ΔGL2 polynomials, and M is the order of each 
polynomial.  The corresponding amplitude scale factors 
are exp{sΔGL1(t)} and exp{sΔGL2(t)} where s = ln(10)/20.  
If ΔGL1 or ΔGL2 equals 0 dB, then the corresponding 
amplitude scale factor equals 1. 

The carrier phase slop factors include an initial carrier 
phase bias and the effects of residual ρasc(t) and τna(t) 
modeling errors and receiver clock errors.  The 
polynomial that models the last three phase effects is 
given in equivalent time units: 

K+−Δ+−Δ=Δ 2
022

1
01 )()()( tttttna τττ ρ  

 T
TT tt )( 0!

1 −Δ+ τ   (20) 

where Δτρna is the equivalent delay error, Δτ1, ..., ΔτT are 
the unknown delay model polynomial coefficients, and T 
is the order of the delay slop polynomial.  The residual 
phase slop models at the two GPS carrier frequencies are 
then 

1011 )()( LnaLL tt φτωφ ρ Δ+Δ=Δ  (21a) 

2022 )()( LnaLL tt φτωφ ρ Δ+Δ=Δ  (21b) 

ωL1 = 2π×1575.42×106 rad/sec and ωL1 = 
2π×1227.6×106 rad/sec are, respectively, the nominal 
carrier frequencies of the GPS  L1 and L2 signals.  ΔφL10 
and ΔφL20 are the associated initial carrier phase 
ambiguities. 

The slop parameter models in Eqs. (19a)-(21b) along with 

the phase-screen model in Eqs. (1)-(17) can be combined 
in order to form the complete model of the dual-
frequency in-phase and quadrature accumulations.  This 
model takes the form: 

×= Δ )(
101 1)( tGs

LL LeAtI  
 )]}([),()]([),({ 1111 tsintbtcosta LLLL φωφω Δ−Δ  (22a) 

×= Δ )(
101 1)( tGs

LL LeAtQ  
 )]}([),()]([),({ 1111 tcostbtsinta LLLL φωφω Δ+Δ  (22b) 

×= Δ )(
202 2)( tGs

LL LeAtI  
 )]}([),()]([),({ 2222 tsintbtcosta LLLL φωφω Δ−Δ  (22c) 

×= Δ )(
202 2)( tGs

LL LeAtQ  
 )]}([),()]([),({ 2222 tcostbtsinta LLLL φωφω Δ+Δ  (22d) 

where IL1 and IL2 are the in-phase accumulations for the 
L1 and L2 signals and QL1 and QL2 are the corresponding 
quadrature accumulations.  The quantities AL10 and AL20 
are the equivalent L1 and L2 accumulation amplitudes 
that would have been measured if there had been no 
scintillation and no antenna/multi-path gain variations. 

Recall from the discussion of group delay in Section II 
that the quantities a(t,ω) and b(t,ω) are, respectively, the 
real and imaginary parts of the bracketed IFFT sum on the 
right-hand side of Eq. (16).  As appropriate, they are 
evaluated at the frequency ωL1 in the L1 accumulation 
models and at the frequency ωL2 in the L2 accumulation 
models.  Note that these two functions also depend on the 
vertical total electron density distribution VTEC(x) vs. x 
and on the ionospheric altitude h, tilt γ, and drift velocity 
v.  The dependence on h and γ comes through the 
influence of these two quantities on )(1̂ tk , )(ˆ

3 tk , 10k̂ , 
30k̂ , and za.  The dependence on v comes through its 

affect on xpv(t). 

B. Spline Model of VTEC Distribution  

This effort’s main goal is to estimate the vertical total 
electron content distribution VTEC(x) vs. x.  In principle, 
this is an infinite-dimensional estimation problem that is 
not tractable on a finite computer.  Therefore, it is 
necessary to work with a finite-dimensional 
representation of VTEC(x).  The chosen representation is 
a cubic spline.  The function VTEC(x) is parameterized by 
its values and slopes at the spline node points. 

The cubic spline formula for VTEC(x) takes the form: 

=)(xVTEC  
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   for xcmin+iδxc ≤  x < xcmin+(i+1)δxc (23) 

This formula applies for the Nc spline intervals denoted 
by the index i; i can range from 0 to Nc-1.  Each value of 
x in the range xcmin ≤  x < xcmin+Ncδxc lies in one of these 
intervals.  This formula parameterizes VTEC(x) using 2Nc 
parameters, the Nc+1 spline node values Vi for i = 0, ..., Nc 
and the Nc-1 spline node slopes iV ′  for i = 1, ..., (Nc-1).  
The two end-point slopes are constrained to be zero, i.e., 

0V ′  = cNV ′  = 0.  The displacement xcmin is the minimum 
range of the spline, and the increment δxc is the length of 
each spline interval. 

Normally the interval from xcmin to xcmax = xcmin+Ncδxc, 
which is the union of all of the spline intervals, is chosen 
to include all possible pierce point positions as measured 
relative to the drifting VTEC(x) distribution.  In other 
words, it is chosen so that xcmin < xpv(tl) < xcmax for all 
sample times tl for which accumulation data are available.  
In practice, xcmin is normally chosen to be significantly 
lower than the minimum xpv(tl) value, xpvmin, and xcmax is 
normally chosen to be significantly higher than the 
maximum xpv(tl) value, xpvmax. 

As discussed in Section II, there is a need to extend the 
FFT summation in Eq. (15) well below xpvmin and well 
above xpvmax in order to avoid ill effects from the un-
physical FFT periodicity assumption.  In order to do this, 
it is necessary to extend the definition of VTEC(x) below 
xcmin and above xcmax and to make it be periodic of period 
Nδx.  This is accomplished as follows:  Periodicity is 
enforced by making a smooth, cubically-splined transition 
from the high-x value cNV  that occurs at the end of one 
period to the low-x value 0V  that occurs at the beginning 
of the next period.  The spline that accomplishes the 
periodicity transition starts at x = 0.5Nδx-δxper in the high-
x region and extends to 0.5Nδx+δxper.  An identical 
transition occurs in the range -0.5Nδx-δxper ≤  x < 
-0.5Nδx+δxper in the low-x region.  There are two 
additional regions to consider, buffer regions that lie 
between the periodicity transition regions and the regular 
spline region of Eq. (23).  The low-x buffer region covers 

the range -0.5Nδx+δxper ≤  x < xcmin.  In this region, 
VTEC(x) is constant and equals its value at the low end of 
the regular spline region: VTEC(x) = 0V .  The high-x 
buffer region is xcmax ≤  x < 0.5Nδx-δxper, and VTEC(x) = 

cNV  is the constant total electron content in this region.  
The formulas for VTEC(x) in the periodicity transition 
regions are: 

=)(xVTEC  
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  for -0.5Nδx-δxper ≤  x < -0.5Nδx+δxper (24a) 

=)(xVTEC  
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  for 0.5Nδx-δxper ≤  x < 0.5Nδx+δxper (24b) 

An example cubic-spline representation of VTEC(x) is 
shown in Fig. 3.  This distribution includes Nc = 14 spline 
intervals in its central cubic-spline region.  This central 
region extends from xcmin = -25 km to xcmax = +25 km, and 
it uses a spline grid interval of δxc = 3.571 km.  The FFT 
periodicity interval is Nδx = 120 km, which extends out to 
± 60 km, well past the ends of the central spline region.  
The half-width of the lower and upper periodicity-
transition spline intervals is δxper = 10 km.  This spline is 
fully characterized by the 28 estimation parameters V0, ..., 
V14 and V'1, ..., V'13. 

-60 -40 -20 0 20 40 60
10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

x (km)

V
TE

C
(x

) (
10

16
 e

le
ct

ro
ns

/m
2 )

Spline node
Vi values

x = -0.5Ndx
lower limit on
FFT interval

x = 0.5Ndx
upper limit on
FFT interval

V0 located
at xcmin

x = 0.5Ndx-dxper
lower limit of

upper periodicity
transition interval

x = -0.5Ndx+dxper
upper limit of

lower periodicity
transition interval

V14 located
at xcmax

 
Fig. 3. An example cubic spline representation of a 

VTEC(x) vs. x distribution. 

Useful VTEC(x) splines typically have many more spline 
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nodes and a much finer spline grid spacing δxc than are 
depicted in Fig. 3.  The finer grid spacing is needed so 
that the spline will be able to capture the fine-scale 
electron density variations that cause scintillation. 

Note that a reasonable approximation of the maximum 
spatial bandwidth of this spline is 1/δxc cycles/m, i.e., one 
cycle per spline interval. 

C. Estimated Unknowns  

The nonlinear least-squares estimation problem and the 
associated solution algorithm can be discussed more 
easily if one groups the estimated quantities into a single 
vector of unknowns.  This vector takes the form 

X  =  [ 0V ; 1V ; 2V ; ...; cNV ; 1V ′ ; 2V ′ ; 3V ′ ; ...; 1−′
cNV ; 

 h; γ; v; AL10; AL20; ΔφL10; ΔφL20; Δτ1; Δτ2; 
 Δτ3; ...; ΔτT; g11; g12; g13; ..., g1M; g21; g22; 
 g23; ..., g2M] (25) 

It includes the function and slope values of VTEC(x) at its 
cubic-spline nodes, the altitude and tilt of the ionospheric 
phase-screen plane, the west-to-east drift velocity of the 
"frozen" VTEC(x) distribution, the nominal accumulation 
amplitudes at the two GPS frequencies, the carrier phase 
ambiguities at the two frequencies, the coefficients of the 
residual phase/timing slop polynomial, and that 
coefficients of the gain slop polynomials at the two 
frequencies.  This vector has NX = 2Nc+7+T+2M 
elements. 

D. A Priori Information/Soft Constraints 

It was originally unclear whether the vector of unknowns 
in Eq. (25) would be observable based on the 
measurement model in Eqs. (22a) to (22d).  Observability 
is the condition where only a unique value of the X vector 
of unknowns can satisfy all of the measurement 
equations.  Although the measurement equations are non-
linear, one can usually rely in intuition from linear 
equations and draw the immediate conclusion that the 
number of measurements must be greater than or equal to 
the number of unknowns in order for observability to 
hold.  This implies that the number of independent 
measurement samples [IL1(tl); QL1(tl); IL2(tl); QL2(tl)] for l 
= 1, ..., L must obey the relationship 4L ≥  NX. 

Even given enough measurements, the vector of 
unknowns X may not be fully observable.  There may be 
manifolds in X space (i.e., subsets that contain many 
points) that all produce identical dual-frequency 
accumulation measurements at all of the sample times.  In 
this situation, one can add a priori information about the 
unknowns if such information is available.  The hope is 
that this added information will cause the corresponding 
estimation problem to have a unique optimal solution.  In 
some cases, a priori information can be derived directly 
from physical principles or from auxiliary data.  In other 
cases, the a priori information may be somewhat ad hoc.  

In these latter cases, the resulting information acts as a 
"soft" penalty-type constraint on the solution.  The a 
priori information that has been used in the present case 
is primarily of this latter type.  The resulting ad hoc 
constraints have been made rather loose based on an a 
priori sense of what is "reasonable" for this problem. 

The ad hoc a priori information takes the form of a set of 
penalty terms that get added to the squared-error cost 
function.  These penalty terms are as follows: 

The 3rd derivative of the VTEC(x) cubic spline is 
penalized near its ends: 
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where V ′′′σ  is the a priori standard deviation of the 
weighted root mean square of the 3rd derivatives in the 
end regions where the iw ′′′  weightings are non-zero.  This 
weighting factor varies with the spline interval index as 
follows: 
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this weighting scheme applies full weight to the squares 
of the 3rd derivatives in the Nw23 spline intervals at each 
end of the VTEC(x) central cubic spline region, and the 
weighting decays linearly to zero in the ΔNw23 spline 
intervals that lie just inside these outer intervals of full 
weight.  The idea is to select Nw23 and ΔNw23 to be 
relatively small compared to the total number of spline 
intervals Nc and to make the penalized intervals lie 
outside the region of actual pierce points, i.e., outside the 
data interval xpvmin < x < xpvmax.  These penalty terms are 
deemed necessary at spline intervals that lie significantly 
outside of this interval because there is a decaying effect 
of the corresponding VTEC(x) values on the modeled 
accumulations in Eqs. (22a)-(22d).  This reduced 
influence in the measurement models causes the function 
and slope values at the outer spline grid points to be 
nearly unobservable.  The addition of this penalty term 
ameliorates this problematic tendency. 

A second set of penalties that serve a similar purpose are 
placed on the discontinuities of the VTEC(x) 2nd 
derivatives that can occur at spline node points outside of 
the data interval xpvmin < x < xpvmax.  The sum of these 
terms takes the form: 
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where V ′′Δσ  is the a priori standard deviation of the 
weighted root mean square of the 2nd derivative 
discontinuities in the end regions.  The weighting factor 

iw ′′  varies with the spline node index as follows: 
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which is similar to the variation of the iw ′′′  weighting 
factor, except that iw ′′  is defined over a set of spline 
indices that has one less element. 

The third a priori weighting term penalizes non-zero 
values of the time-equivalent common-mode phase slop 
from Eq. (20).  This penalty term takes the form 
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where σΔτ is the a priori standard deviation of the root 
mean square of the time-equivalent common-mode slop 
as averaged over the data sample times. 

The fourth a priori weighting term penalizes non-zero 
time derivatives of the antenna-gain/multi-path slop 
functions for the two frequencies.  Recall that these 
functions have been defined in Eqs. (19a)-(19b).  This 
penalty term is 
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where σΔG' is the a priori standard deviation of the root 
mean square of the time derivative of each gain slop 
factor averaged over the data samples. 

The remaining a priori penalty terms can be lumped 
together to form 

2

02
1

2
1)( ⎥

⎦

⎤
⎢
⎣

⎡
∑−=Δ
=

cN

i
i

c
nom

V
vhV V

N
VXJ

σγ  

 [ ] [ ]22
2

2 2
1

2
1

γγ
σσ γ

−+−+ nomnom
h

hh  

 [ ]222
1 vvnom

v
−

σ
 (32) 

where nomV , hnom, γnom, and vnom are the a priori estimates 
of, respectively, the mean of VTEC(x) at the spline node 
points and the ionosphere's altitude, tilt angle, and drift 
velocity.  The corresponding a priori standard deviations 
are Vσ , σh, σγ, and σv. 

Of all of the a priori penalty terms, the first one in Eq. 
(32), the nomV  term, is the only one that is known 
definitely to be needed in order to make the estimation 
problem observable.  Without this term, the mean VTEC 
mean value V  and the phase ambiguities ΔφL10 and ΔφL20 
can vary together in a way that leaves all of the 
accumulations in Eqs. (22a)-(22d) unaffected for all 
sample times.  This fact seems obvious in hindsight, but it 
was not discovered until after initial attempts had been 
made to perform estimation without this term. 

All of the a priori standard deviations that are used in 
Eqs. (26), (28), and (30)-(32) are set to relatively large 
values.  This strategy biases the nonlinear estimation 
algorithm toward letting the accumulation data determine 
the values of all observable elements of X. It relegates the 
a priori penalty terms to two roles.  One role is to keep 
any unobservable or nearly unobservable modes in X 
space from taking on ridiculous values.  The other role is 
to keep the optimal estimation search directions from 
taking on unreasonable values that would tend to retard 
the progress of the nonlinear least-squares solution 
algorithm. 

E. Least-Squares Cost Function and Minimization 
using Gauss-Newton and Levenberg-Marquardt 
Algorithms 

Estimation of the vector of unknowns X is accomplished 
by batch minimization of a squared-error cost function.  
The following cost function is minimized: 
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 )()( XJXJ vhVG γΔ+Δ+ Δ  (33) 

σIQL1 and σIQL2 are the standard deviations of the 
measurement errors in the measured in-phase and 
quadrature accumulations at the L1 and L2 frequencies.  
The corresponding measured accumulations are IL1meas(tl), 
QL1meas(tl), IL2meas(tl), and QL2meas(tl).  The associated 
modeled values of these accumulations, IL1model(tl;X), 
QL1model(tl;X), IL2model(tl;X), and QL2model(tl;X), are computed 
as functions of the elements of X by using the phase-
screen model equations of Section II.  They are equal to 
the right-hand-side expressions in Eqs. (22a)-(22d). 

Note that the squared-error cost function in Eq. (33) does 
not include the ionospheric group delay at either 
frequency.  That is, it does not include terms involving 
either τgd(t,ωL1) or τgd(t,ωL2) as modeled by Eq. (18).  
Measurements of these quantities have been omitted 
because consideration of the actual receiver data indicated 
that the quality of the group delay data was poor.  The 
estimation problem would need to estimate an L1/L2 
differential line bias, which would mean that only high-
frequency variations of the group delay would affect the 
VTEC(x) estimate.  These high-frequency estimates would 
have little impact due to the relatively high noise level in 
the associated group delay measurements.  Given that the 
inclusion of τgd(t,ωL1) and τgd(t,ωL2) doubles the 
computational burden of solving the nonlinear estimation 
problem, the added burden was not deemed to be 
worthwhile and the group delay data have been omitted.  
Section II documents the group delay model primarily to 
serve as a guide to any future efforts that may have access 
to better quality group delay measurements. 

If one recognizes that the a priori penalty terms in Eq. 
(33) can be expressed as a sum of squared residuals, then 
one can re-cast the squared-error cost function in the 
standard form: 

[ ] [ ])()(
2
1)( T XXXJ hyhy −−=  (34) 

where y is a normalized measurement vector and where 
the vector function h(X) constitutes the nonlinear 
measurement model.  This formulation treats a priori data 
as though they constitute measurements.  The elements of 
y are [IL1meas(t1)/σIQL1, QL1meas(t1)/σIQL1, IL2meas(t1)/σIQL2, 
QL2meas(t1)/σIQL2, IL1meas(t2)/σIQL1, QL1meas(t2)/σIQL1,...], and 
the elements of h(X) are [IL1model(t1;X)/σIQL1, 
QL1model(t1;X)/σIQL1, IL2model(t1;X)/σIQL2, QL2model(t1;X)/σIQL2, 
IL1model(t2;X)/σIQL1, QL1model(t2;X)/σIQL1, ...]. 

The optimal estimate of the X vector is the value that 
minimizes the cost function given in Eq. (34).  Standard 
methods exist to perform a gradient-based iterative search 
for this minimum.  One is the Gauss-Newton method, and 
another is the Levenberg-Marquardt method 17.  Both of 
these methods start with a guess, call it Xg, and linearize 
the problem model about this guess in order to calculate 

an improved guess.  The squared-error cost function 
associated with the linearized problem takes the form 

[ ] [ ] yyyy ΔΔ−Δ−ΔΔ−Δ=ΔΔ TT
2
1

2
1)( XHXHXJ  (35) 

where ΔX = X - Xg, Δy = y - h(Xg), and H = X∂∂ /h . 

The Gauss-Newton method solves for the optimal ΔX 
increment that minimizes the cost in Eq. (35).  It is ΔX = 
(HTH)-1HTΔy.  The standard Levenberg-Marquardt 
method adds a penalty term of the form (0.5/α)ΔXTΔX to 
the cost in Eq. (35) before computing the optimal ΔX 
increment.  The positive parameter α effectively 
determines the step size of the increment.  A small α 
value yields a very small increment that tends towards the 
steepest descent direction and that is guaranteed to 
produce a cost decrease, though it may not be much of a 
decrease.  A large α value allows ΔX to approach the 
Gauss-Newton increment.  It is very useful to be able to 
control the step size in this fashion in order to guarantee 
that the algorithm will converge at least to a local 
minimum of the cost function. 

For the present estimation problem, it is helpful to use a 
modified form of the Levenberg-Marquardt penalty term.  
This term takes the form (0.5/α)ΔXTDΔX.  The diagonal 
positive definite matrix D is formed by taking the matrix 
HTH and setting all of its off-diagonal elements to zero.  
The resulting solution increment is ΔX = α(D + αHTH)-1 

HTΔy.  Note that the matrix inversions needed in order to 
compute ΔX in the Gauss-Newton and Levenberg-
Marquardt methods can be implemented using matrix 
square-root techniques and the stable orthogonal/upper-
triangular (QR) factorization 17. 

The nonlinear least-squares algorithm executes a 
rudimentary line search in order to determine its step-size 
parameter α.  It starts by trying α = ∞ , that is, by trying 
the Gauss-Newton ΔX increment.  If that step produces a 
cost such that J(Xg+ΔX) - J(Xg) is negative not too much 
greater than the predicted cost decrement ΔJ(ΔX) from 
Eq. (35), then the Gauss-Newton increment is used to 
compute Xgnew = Xg+ΔX, and the algorithm repeats itself 
starting from the new guess Xgnew. 

If J(Xg+ΔX) - J(Xg) is not small enough, then the line 
search algorithm tries α = 1 in its modified Levenberg-
Marquardt method and calculates a new ΔX increment.  
At this point, it is helpful to think of ΔX as being a 
function of α, ΔX(α).  Next, the line search algorithm 
constructs a quadratic model of the cost variations with α 
that is based on the known values at α = 0, J(Xg), and at α 
= 1, J[Xg+ΔX(1)], and on the known derivative of J with 
respect to α evaluated at α = 0, dJ/dα|0 =  -ΔyTHD-1HTΔy.  
This quadratic cost increment model is used to make a 
new prediction of the optimal step-length parameter α if 
the quadratic model's second derivative is positive.  This 
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involves scalar optimization of a quadratic in α.  The new 
J[Xg+ΔX(α)] value at the new α guess is used to refine 
the quadratic model and produce further changes in the 
proposed α until a reasonable decrease of J[Xg+ΔX(α)] 
below J(Xg) is achieved.  If the initial quadratic model of 
J vs. α has a negative second derivative after the search-
step and cost-function evaluation at α = 1, then 
J[Xg+ΔX(1)] < J(Xg).  This step is acceptable, but an ad 
hoc method is used in an attempt to find a larger α value 
that produces a lower value of the resulting J[Xg+ΔX(α)].  
Regardless of the sign of the second derivative of the 
initial quadratic model of J vs. α, the final solution 
increment ΔX(α) yields a reasonable cost decrease.  The 
Levenberg-Marquardt step finishes by computing Xgnew = 
Xg+ΔX(α) in order to prepare for another iteration. 

The major iterations are terminated and the problem is 
declared "solved" after appropriate termination conditions 
have been satisfied.  These conditions involve checks of 
whether ΔX is small, checks of whether |ΔJ(ΔX)| is small, 
and checks of whether α is large, i.e., whether the 
algorithm uses a ΔX increment that is nearly equal to the 
Gauss-Newton step. 

F. FFT-Based Computation of Problem Jacobian 

The problem model Jacobian H = X∂∂ /h  includes 
derivatives of the measurement model functions on the 
right-hand sides of Eqs. (22a)-(22d).  The measurement 
model functions, in turn, are defined using the bracketed 
expression on the right-hand side of Eq. (16).  The real 
part of this expression is defined to be a(t,ω), and its 
imaginary part is defined to be jb(t,ω); thus, the entire 
bracketed term in Eq. (16) equals a(t,ω)+jb(t,ω).  It would 
actually be more informative to write these two functions 
as a(t,ω;X) and b(t,ω;X) because they also depend on the 
following elements of X: 0V , ..., cNV , 1V ′ , ..., 1−′

cNV , h, 
γ, and v. 

The computation of X∂∂ /h  involves computation of the 
derivatives of a(t,ω;X) and b(t,ω;X) with respect to the 
aforementioned elements of X.  The required partial 
derivatives of a(t,ω;X) and b(t,ω;X) can be determined by 
differentiating Eqs. (15) and (16) with respect to each 
element of X, applying the chain rule for differentiation 
wherever appropriate.  The dependence of a(t,ω;X) and 
b(t,ω;X) on the elements 0V , ..., cNV , 1V ′ , ..., 1−′

cNV  
enters through the function )(xφΔ  in Eq. (15) because 
this phase increment function is proportional to VTEC(x).  
The dependence on h and γ enters through the quantities 

)(ˆ
3 tk , μ(t), ψ(t), and xpv(t), with the last 3 of these 

quantities depending on h and γ because they depend on 
one or more of the quantities )(1̂ tk , )(ˆ

3 tk , 10k̂ , 30k̂ , and 
za.  The dependence on v enters through xpv(t). 

Differentiation of the FFT summation in Eq. (15) and of 
the IFFT summation in Eq. (16) with respect to an 
element of X results in a new pair of FFT and IFFT 
operations.  The derivative calculations can be carried out 
by using an FFT operation for the derivative of Eq. (15) 
because each derivative of Eq. (15) retains the FFT form.  
One should use the brute-force sum that results from 
differentiation of Eq. (16) instead of an IFFT operation 
because the result is needed only at one xpv(tl) value.  
When differentiating with respect to a spline node value 
Vm or with respect to a spline node derivative value mV ′ , it 
will normally be efficient to evaluate the differentiated 
summation in Eq. (15) using brute-force techniques rather 
than FFT techniques.  This is true because the derivative 
of })(ˆ)/]2/([{ 3 tkxNijexp δφ −Δ  with respect to Vm or mV ′  
will be zero for all but a few values of the FFT grid 
sample index i.  This is the case for all spline nodes 
except m = 0 and m = Nc.  V0 and cNV  affect many FFT 
sample points because of the method by which the 
definition of VTEC(x) has been extended past the spline 
limits xcmin and xcmax.  Recall that this extension is 
discussed after Eq. (23) and in connection with Fig. 3. 

G. Computed Estimation Error Covariance 

The nonlinear least-squares estimation equations can be 
used to compute a covariance matrix for the error in the 
optimal estimate of X.  Suppose that one uses the 
linearized measurement model implied by the cost 
function approximation of Eq. (35), Δy = HΔx.  Suppose 
that the only sources of error in the estimate are the errors 
in the measurement equations and the errors between the 
various a priori values and their true values.  Suppose, 
also, that these errors are zero-mean, Gaussian, and 
uncorrelated and that they have the standard deviations 

V ′′′σ  in Eq. (26), V ′′Δσ  in Eq. (28), σΔτ in Eq. (30), σΔG 
in Eq. (31), Vσ , σh, σγ, and σv in Eq. (32), and σIQL1 and 
σIQL2 in Eq. (33).  Then the linearized estimation error 
covariance of the optimal X estimate will be 18 

1T ][ -
XX HHP =  (36) 

with the Jacobian matrix H evaluated at the optimal X 
estimate.  PXX can be calculated in a numerically stable 
manner by using a QR factorization 17 of H and a matrix 
square-root computation. 

H. Generation of the First Guess 

The nonlinear least-squares iterative minimization 
algorithm must be started with a first guess of the 
solution, Xg0.  It is important to use a fairly good first 
guess for two reasons.  First, a poor first guess can cause 
the algorithm to converge to a local minimum of the 
squared-error cost function that is not the global 
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minimum and, therefore, not optimal.  Such a sub-optimal 
solution could be a very poor estimate of the scintillation 
conditions.  Second, even if the algorithm eventually 
converges to the global minimum, a better first guess can 
reduce the number of iterations required for convergence, 
thereby reducing the computation time.  Given that 
typical execution times for this paper's algorithm are on 
the order of 4 hours per Gauss-Newton or Levenberg-
Marquardt iteration, the importance of saving iterations is 
obvious. 

The first-guess procedure that has been used for this 
analysis starts by guessing reasonable values for the 
altitude, the tilt angle, and the west-to-east drift rate of the 
ionospheric phase screen.  These lie in the ranges 300 km 
≤  h ≤  400 km, -5o ≤  γ ≤  5o, and 100 m/sec ≤  v ≤  200 
m/sec.  These h and v ranges are roughly consistent with 
observations and analysis reported in Refs. 13 and 14.  
This γ range is purely an educated guess. 

The first-guess procedure uses the measured carrier 
phases at the GPS L1 and L2 frequencies in order to 
develop a guess of the TEC value based on the usual 
ionospheric carrier phase advance model for a uniform 
ionosphere 15.  This TEC estimate is 
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where φL1meas(tl) = atan2[QL1meas(tl),IL1meas(tl)] +2πnL1l and 
φL2meas(tl) = atan2[QL2meas(tl),IL2meas(tl)] +2πnL2l.  In these 
expressions, atan2[,] is the usual 2-argument arctangent 
function, nL1l is an integer cycle ambiguity that unwraps 
the 2π ambiguity of the atan2 function in a way that 
makes φL1meas(tl-1) and φL1meas(tl) differ by no more than 
±  π  radians, and nL2l is an integer cycle ambiguity that 
serves a similar unwrapping purpose for φL2meas(tl).  The 
constant TECΔ  in Eq. (37) is chosen to cause the mean 
of TEC(tl) for l = 1,..., L to equal the mean that is 
predicted by the standard GPS Klobuchar model 15 for the 
given LOS path. 

Each TEC value is multiplied by the inverse slant factor 
in order to form the VTEC estimate 

)(ˆ)()]([ 3 lllpv tktTECtxVTEC =  

 for l = 1, 2, 3, …, L (38) 

These initial estimates apply at the x locations xpv(t1), 
xpv(t2), xpv(t3), ..., xpv(tL).  These estimates are then linearly 
interpolated onto the subset of the FFT grid points 
(-0.5N)δx, (-0.5N+1)δx, (-0.5N+2)δx, ..., (0.5N-1)δx that 
lie between the minimum and maximum values of the 
time-sampled pierce points xpv(t1), xpv(t2), xpv(t3), ..., 
xpv(tL).  At the remaining FFT grid points, the VTEC(x) 

function is extended as a constant value, as in Fig. 3, 
except that a straight-line fit is made between the high-x 
and low-x constants in order to force this VTEC(x) 
estimate to be periodic with period Nδx.  Thus, the 
periodicity preserving cubic sections of at either end of 
Fig. 3 are replaced by straight-line sections.  The first-
guess procedure next uses FFT techniques in order to 
filter the resulting VTEC(x) vs. x. function in a way that 
eliminates all frequencies above the sampling frequency 
of the cubic spline, all frequencies above 1/δxc 
cycles/meter.  This process takes the FFT of the VTEC(x) 
points, it applies a filter that zeros the FFT outputs 
associated with all frequencies whose magnitudes exceed 
1/δxc while leaving all other FFT outputs unchanged, and 
it takes the IFFT of the result.  It yields the distribution 
VTECbl(x) vs. x,  The subscript ()bl stands for “band 
limited.”  This distribution is linearly interpolated onto 
the spline grid points xcmin, xcmin+δxc, xcmin+2δxc, ..., 
xcmin+Ncδxc in order to produce the first guesses of the 
spline node values 0V , 1V , 2V , ..., cNV .  The same 
process is modified in order to produce the first guesses 
of the spline node derivative values 1V ′ , 2V ′ , 3V ′ , ..., 

1−′
cNV .  This modification involves multiplication of the 

FFT of the VTECbl(x) vs. x distribution by the 
corresponding spatial frequencies before application of 
the IFFT.  The result is [dVTEC(x)/dx]bl vs. x, and this 
result gets linearly interpolated in order to yield the iV ′  
first guesses. 

A linear least-squares fit of the residual phases is used in 
order to generate first guesses of the phase ambiguities 
ΔφL10 and ΔφL20 and of the phase slop polynomial 
coefficients Δτ1, Δτ2, Δτ3, ..., ΔτT.  The following phase 
model equations are solved in a least-squares sense in 
order to determine these first guesses: 
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Solution of this over-determined system of linear 
equations is carried out using standard QR-factorization-
based methods 17. 

The first guess of the amplitude AL10 is computed by 
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solving the following systems of 2L linear equations in 1 
unknown: 

)]([)( mod1101 lLLlmeasL tcosAtI φ=  
 for l = 1, ..., L (40a) 

)]([)( mod1101 lLLlmeasL tinsAtQ φ=  
 for l = 1, ..., L (40a) 

with 
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where the values of ΔφL10 and of Δτ1, Δτ2, Δτ3, ..., ΔτT in 
this definition are the first-guess values that have been 
derived by solving the least-squares problem in Eqs. (39a) 
and (39b).  A similar method is used to determine the first 
guess of AL20 with the only difference being the 
substitution of L2 data and estimates for L1 data and 
estimates in Eqs. (40a)-(41). 

The first guesses of the gain perturbation polynomial 
coefficients are set to zero.  That is, the first guesses of 
the polynomial coefficients in Eqs. (19a) and (19b) are g11 
= g12 = g13 = ... = g1M = g21 = g22 = g23 = ... = g2M = 0.  
These guesses complete the definition of the first guess of 
the entire X vector. 

IV. COLLECTION AND PRE-PROCESSING OF 
DUAL-FREQUENCY SCINTILLATION DATA 

Scintillation data have been collected and used to 
generate the IL1meas(tl), QL1meas(tl), IL2meas(tl), and QL2meas(tl) 
accumulation "measurements" that constitute the principal 
inputs to this paper’s inverse diffraction algorithm.  The 
raw data were collected in Jan. 2007 in Cachoeira 
Paulista, Brazil.  They were recorded using a dual-
frequency wide-band digital storage receiver.  
Afterwards, a MATLAB software receiver was used in an 
off-line mode to acquire and track the C/A code on the L1 
frequency and the new civilian L2C CL code on the L2 
frequency.  These data and the methods used to process 
them are described in Ref. 10, especially in Section IV of 
that work. 

A batch of the Ref. 10 data has been used to test the 
present inverse diffraction algorithm.  It was recorded on 
17 Jan. 2007 starting at about 00:15 UT.  Its duration is 
10 minutes.  The signal from PRN 12, which as a Block 
IIR-M satellite that broadcasts the new L2C signals, 
experienced scintillation during this data interval.  Its L1 
S4 index ranged as high as 0.4 during the batch, and its L2 
S4 index reached a peak value of 0.5. 

The MATLAB software receiver methods of Ref. 10 have 

been used to acquire and track the L1 and L2 civilian 
signals of PRN 12, and 100 Hz I and Q accumulations 
have been computed for both frequencies.  After having 
been derived using fairly standard reception techniques, 
these accumulations have been rotated in the [I;Q] plane 
in order to remove the effects of satellite motion, neutral 
atmosphere delay, transmitter clock error, receiver clock 
error, and phase-lock loop tracking error.  The satellite 
motion effects and the transmitter clock error effects have 
been removed by using the known antenna location in 
conjunction with the broadcast ephemeris and clock 
corrections for PRN 12 for the period in question.  The 
neutral atmosphere delay has been removed by using the 
Hopfield model as described in Ref. 19. 

The receiver clock error has been removed by using 
signals from a satellite with minimal scintillation, PRN 
26.  This satellite's signals had all other errors than 
receiver clock errors removed from its phase outputs by 
using the receiver position along with satellite ephemeris 
and clock information and models of the ionosphere and 
neutral atmosphere.  The remaining phase variations were 
assumed to be the result of receiver clock error.  These 
variations were fit to a straight line, and the resulting 
straight line has been used as the receiver clock error 
model.  Note that it contains a bias that does not affect 
anything other than the slop factors ΔφL10 and ΔφL20 in the 
estimator of Section III. 

The resulting rotated, dual-frequency, 100-Hz I and Q 
accumulations for PRN 12 could be used directly in the 
Eq. (33) cost function, but down-sampled versions have 
been used instead.  The required computation time per 
major Gauss-Newton or Levenberg-Marquardt iteration is 
proportional to the number of measurement samples L.  
Therefore, it is beneficial in terms of computation time to 
increase the sample interval Δt = tl+1 - tl as much as 
possible without losing information.  Review of the 100 
Hz IL1meas(t), QL1meas(t), IL2meas(t), and QL2meas(t) time 
histories revealed that a 1 Hz sampling rate would suffice 
to capture all of the dynamic amplitude and phase 
variations that had been caused by the scintillation *. 

The down-sampling from 100 Hz accumulations to 1 Hz 
accumulations has been carried out using a data fitting 
scheme.  For a given accumulation type, I or Q on L1 or 
L2, this scheme fits all of the accumulations within 0.5 
seconds of a desired interpolated sample time using a 
quadratic polynomial.  It then uses that value of that 
polynomial at the target sample time as its interpolated 
accumulation.  This procedure has the beneficial effect of 
averaging the 100 Hz accumulations as well as 
interpolating them in a way that produces very little 
                                                           
* The ability to capture the full scintillation dynamics 

using a 1 Hz sampling rate indicates that this weak 
scintillation had relatively slow time variations 
according to criteria defined in Ref. 4. 
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distortion of the signals’ scintillation characteristics.  The 
beneficial averaging process reduces the measurement 
error standard deviations in the 1 Hz accumulations by a 
factor of 6.67 from the corresponding standard deviations 
for the 100 Hz accumulations. 

V. APPLICATION OF INVERSE DIFFRACTION 
ALGORITHM TO MEASURED DATA 

The algorithm of Section III, which uses the phase-screen 
model of Section II, has been applied to the dual-
frequency I and Q scintillation data that are described in 
Section IV.  A number of optimal estimation runs have 
been made, but most of them had to be discarded due to 
the discovery of a sign error in one of the underlying 
model equations.  Although the erroneous term is small 
and does not have large effect, the only results that are 
presented are those that are completely consistent with the 
models that have been derived in Section II.  This 
restriction, the slowness of the computations, and this 
paper’s publication deadline left the project with only one 
good case that was ready for discussion at the time of this 
writing.  Nevertheless, this case offers encouraging 
results, and therefore, it is worthy of discussion. 

A. Results for One Estimation Case 

Consider the run whose results are presented in Figs. 4-6.  
Figure 4 presents three versions of scintillating phase time 
histories φs(t) at each of the two GPS frequencies.  The 
L2C phase time histories are artificially offset below the 
L1 time histories in order to avoid confusion on the plot.  
Figure 5 presents the corresponding plots of the As(t) 
scintillating amplitude times histories of the I and Q 
accumulations.  These amplitudes have been normalized 
by the average values of the data amplitudes and then 
offset by +0.5 for the L1 signals and by -0.5 for the L2 
signals.  Figure 6 presents two estimates of the underlying 
VTEC(x) vs. x distribution that gave rise to the measured 
scintillation.  The line types of the curves on Figs. 4 and 5 
are the same.  The green dotted curves are the initial 
estimates as computed using the method described at the 
end of Section III, the solid blue curves are the data taken 
directly from the measured accumulations, and the red 
dash-dotted curves are the optimal estimates.  The line 
types of the two curves on Fig. 6 are related.  The green 
dotted curve gives the standard quiescent ionosphere 
value as computed using Eqs. (37) and (38), and the red 
dash-dotted curve gives the optimal cubic spline estimate 
of VTEC(x) vs. x.  Thus, the green dotted curve has been 
used to generate the first guess of the splined estimate. 

The following parameters characterize various x spacings 
that have been used to generate Figs. 4-6:  The spline grid 
spacing is δxc = 171 m and there are Nc = 326 regular 
cubic spline intervals, which cover a range of 55.746 km.  
The minimum and maximum xpv(tl) convected ionospheric 
LOS pierce points cover a range of 41.804 km.  The 

spline extends 6.971 km past either end of these data 
points.  The respective average and maximum intervals 
between pierce points, xpv(tl+1) - xpv(tl), are 70 m and 76 m. 
The number of FFT points is N = 215 = 32768, and the 
FFT grid spacing is δx = 7.805 m.  The FFT periodicity is 
Nδx = 255.746 km, and the FFT interval extends 100 km 
beyond either end of the central VTEC(x) vs. x cubic 
spline grid.  The region of splined periodicity-preserving 
variations at the lower and upper ends of the FFT interval, 
as shown at either end of the plot in Fig. 3, has a length of 
δxper = 6.394 km. 

The following a priori information has been used in the 
estimation run associated with Figs. 4-6.  The a priori 
altitude, tilt angle, and drift velocity are: hnom =  350 km, 
γnom = 0o, and vnom = 170 m/sec.  The associated a priori 
standard deviations are σh = 10 km, σγ = 5o, and σv = 30 
m/sec.  The spline smoothness a priori standard 
deviations are V ′′′σ  = 4.77×108 electrons/m5 and V ′′Δσ  
= 8.79×109 electrons/m4.  The a priori mean VTEC, 
which is based on the Klobuchar broadcast model that 
was valid at the time of the observations 15, is nomV  = 
12.998×1016 electrons/m2, and its standard deviation is 

Vσ  = 1×1016 electrons/m2.  As defined in Eqs. (27) and 
(29), the full iw ′′′  and iw ′′  weights for these smoothness 
penalties apply for the outer Nw23δxc = 4.617 km of the 
regular spline interval, and the neighboring regions where 
the weights decay linearly to zero have length ΔNw23δxc = 
1.197 km.  The Δτρna common-mode phase slop 
polynomial in Eq. (20) has order T = 16, and its 
associated a priori RMS value is σΔτ = 1.987×10-10 sec.  
The ΔGL1 and ΔGL2 gain variation slop polynomials in 
Eqs. (19a) and (19b) have order M = 6, and their 
associated a priori RMS slopes are σΔG' = 0.100 dB/sec. 

Altogether there are 687 unknown elements in the X 
vector for the estimation problem associated with Figs. 4-
6.  There are 599 dual-frequency I/Q data samples, which 
translates into 4×599 = 2396 independent measurements.  
Thus, the estimation problem is over-determined as it 
should be. 

The optimal solutions as shown by the red dash-dotted 
curves have been computed using 11 Levenberg-
Marquardt iterations.  These iterations took a total of 
about 48 hours to complete when run in MATLAB on one 
core of a 3 GHz Windows XP workstation. 

If one compares the phase and amplitude fits to the data 
in Figs. 4 and 5, one finds that they are both better for the 
optimal estimate than for the initial estimate, i.e., the first 
guess.  This is fairly obvious for the amplitude plots on 
Fig. 5:  Notice how virtually every spike on a blue curve 
has a corresponding spike on the associated red curve of 
nearly equal magnitude while the green curve can have 
spikes in odd places or with the wrong magnitude.  One 
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can see this same trend on Fig. 4, but the differences 
between the green, red, and blue curves seem less 
pronounced.  In truth, the levels of the optimal and the 
first-guess fit errors on Fig. 4 are roughly commensurate 
with the levels on Fig. 5.  In order to see this, note that a 
relative amplitude error of 0.25 on Fig. 5, which seems 
large on that figure, is comparable to a phase error of only 
0.25/(2π) = 0.040 cycles on Fig. 4.  An error of only 
0.040 cycles is deceptively small relative to the large low-
frequency phase variations that occur on Fig. 4. 
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Fig. 5. Accumulation amplitude time histories for 

scintillating L1 C/A and L2C CL signals. 

The improvement of the optimal fit can be quantified:  
The RMS error between the optimal modeled L1 I and Q 
accumulations and the L1 accumulation data is 3.0 times 
smaller than the RMS error between the data and the L1 
accumulations that are calculated based on the first guess 
of X.  Similarly, the optimal estimate of X produces 
modeled L2 accumulations that fit the L2 data with an 
RMS error that is 2.6 times smaller than the 
corresponding RMS error for the initial guess of X. 

Note that the increased level of improvement for the L1 
signal probably is the result of the optimal solution's 
ability to model the low-frequency amplitude hump that 
occurs between t = 50 sec and t = 200 sec.  This ability 
comes from the gain perturbation model in Eqs. (19a) and 
(19b), which is sensible given that this hump is likely the 
result multi-path or antenna gain variation, not of 
scintillation. 
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Fig. 6. Initial guess and optimal estimate of "frozen", 

drifting VTEC(x) vs. x distribution. 

The improved fit of the optimal amplitude and phase 
curves is remarkable.  The L1 and L2 fit improvements 
result from an identical estimate of the VTEC(x) vs. x 
profile, the one shown as the red dash-dotted curve in Fig. 
6.  This result implies that the physics embodied in the 
phase-screen model and in the Huygens-Fresnel integral 
have the power to describe actual scintillation data.  Also 
remarkable are the significant differences in the green and 
red phase and amplitude estimates of Figs. 4 and 5 that 
are caused by small differences in the corresponding 
VTEC(x) vs. x distributions of Fig. 6. 

B. Questions about Estimation Results 

Although the optimal estimate shows significant 
improvements in its dual-frequency amplitude and phase 
fits, several aspects of its solution give cause for concern.  
First, the RMS errors between the red dash-dotted optimal 
estimate curves of Figs. 4 and 5 and the corresponding 
blue data curves are about 8-13 times larger than they 
would be if the differences were due purely to random 
measurement error.  This fact suggests that there is some 
sort of modeling error.  The power spectra of the 
measurement residuals, which are defined to be the 
differences between the measured and modeled 
accumulations, do not reveal any obvious frequency 
structure of the modeling error. 

Any one of several modeling assumptions may have 
given rise to the observed discrepancy in the power of the 
residual errors.  The assumption of a "frozen", west-to-
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east-drifting VTEC(x) vs. x distribution may cause some 
of the systematic error as may the assumption of a 
constant drift velocity.  The assumption of a constant 
ionospheric altitude may cause additional error.  Another 
possible source of error is the assumption of a thin phase 
screen rather than an ionosphere with finite thickness.  
Unfortunately, the availability of data from only a single 
receiver limits the type of physical model that can be used 
while maintaining observability of the unknown model 
parameters in the estimated X vector.  

In the future, it is planned to collect data using an array of 
receivers.  This type of data collection campaign will 
allow some of these restrictive assumptions to be relaxed.  
It is hoped that such an approach will eventually lead to 
better fits to the observed data. 

Another unusual feature of the optimal estimate is the 
presence of high-frequency variations of VTEC(x) vs. x in 
the regions -24 km < x < -21 km and 21.5 km < x < 24 
km.  These are evident in the red dash-dotted curve of 
Fig. 6.  These variations appear to be unphysical.  They 
lie outside the region of xpv(tl) data points, as indicated on 
the figure.  Less obvious, however, is the fact that these 
variations lie within the central region of zero iw ′′′  and 

iw ′′  weightings in the a priori penalty terms of Eqs. (26) 
and (28).  These penalty terms have been specifically 
designed in order to avoid such un-physical estimates in 
regions where the VTEC(x) vs. x distribution is not 
adequately constrained by the accumulation data.  It 
appears, therefore, that the regions of non-zero iw ′′′  and 

iw ′′  weightings need to be extended towards the center of 
the spline through an increase of Nw23 or ΔNw23. 

C. The Problem of Altitude, Tilt, and Drift Velocity 
Estimation 

A significant concern about the estimator is its ability to 
determine the ionospheric altitude, h, tilt angle, γ, and 
drift velocity, v.  The optimal estimates of these quantities 
differ from their initial guesses only by small increments.  
The initial and optimal altitude estimates are, 
respectively, 350 km and 349.995 km.  For tilt angle the 
initial and optimal estimates are 0o and -0.0074o and for 
ionospheric drift velocity they are 170 m/sec and 
170.0077 m/sec.  The corresponding computed estimation 
error standard deviations from the Eq. (36) PXX 
covariance matrix are 0.756 km for altitude, 0.0693o for 
tilt angle, and 0.1059 m/sec for drift rate.  Each of these a 
posteriori standard deviations are at least an order of 
magnitude smaller than the a priori values of σh (10 km),  
σγ (5o), and σv (30 m/sec) that have been used in the 
corresponding Eq. (32) penalty terms.  It is unlikely that 
the estimator would be able to determine these three 
quantities to the high levels of precision indicated by their 
computed a posteriori standard deviations without 

modifying them from their initial guessed values.  One 
normally cannot make such good first guesses of 
estimated quantities. 

These counter-intuitive results may be explainable in 
terms of nonlinear estimation.  Perhaps the nonlinearities 
in the phase-screen model of Section II lead to the 
existence of multiple local minima of the squared-error 
cost function J(X).  Perhaps the estimates discussed above 
lie near a local minimum that is not the global minimum, 
i.e., that is not truly the optimal estimate.  Such a situation 
might also help to explain the relative poorness of the fits 
in Figs. 4 and 5 relative to the RMS level of the random 
errors in the accumulation measurements. 

The possibility of multiple local minima has been 
investigated by starting the optimal estimation algorithm 
from a variety of first guesses of h, γ, and v.  The cases 
that have been considered lie on a 3-dimensional grid in 
(h, γ, v) space.  The altitude guess grid values are 300, 
325, 350, 375, and 400 km.  The tilt angle grid values are 
-5, 0, and +5 deg.  The drift velocity grid values are 110, 
135, 160, and 185 m/sec.  Altogether, 60 distinct first-
guess combinations of h, γ, and v have been tried.  This 
use of many different first guesses in the optimization 
algorithm represents a "brute-force" attempt to deal with 
the possibility of multiple local minima.  Unfortunately, 
these results are not completely reliable because they 
contain the sign error that has been mentioned at the 
beginning of this section.  Nevertheless, because the 
effect of the sign error is not large, tentative conclusions 
may be drawn from these results.  

These tentative results indicate that the altitude and tilt 
angle have very weak observability for the case of a 
single receiver, but the drift velocity observability is not 
quite as weak.  Strong observability corresponds to there 
being a well-defined minimum with respect to the 
quantity in question. 

Another tentative indication of these results is that there 
can be multiple local minima.  At the highest 2 altitudes, 
there were 2 distinct local cost minima with respect to γ 
and v. 

A very puzzling aspect of these preliminary results has to 
do with the low levels of curvature on plots of J versus 
these 3 variables.  These low levels of curvature give rise 
to the indistinctness of the minima and the corresponding 
weak observability of h and γ and moderate observability 
of v.  As an example, the computed a posteriori 
estimation error standard deviation of h should be roughly 
proportional to 22 //1 dhJd , which represents a scalar 
version of the generalization of Eq. (36) to the case of a 
general negative-log-probability-density cost function.  
Therefore, the low standard deviations of h, γ, and v as 
computed based on PXX from Eq. (36) imply that the cost 
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variations found in the present study should have far more 
curvature than they do and that the cost function should 
have very distinct local minima. 

It is unclear why there is a large discrepancy between the 
curvature of the cost contours found in this preliminary 
study and the inverse of the PXX covariance matrix of Eq. 
(36).  There are several possible explanations.  One is that 
a finer scale of sampling needs to be performed in this 
type of study in order to see the high curvature.  This 
possibility rests on the idea that there may be many local 
minima in a jagged cost contour that can have a locally 
large curvature even though its "averaged" curvature may 
be low. 

An alternative possibility is that the PXX from Eq. (36) is 
misleading.  It is based on a linear approximation of the 
underlying measurement model equations.  This 
linearization neglects a quadratic term in the computation 
of the true PXX.  Often this quadratic term is insignificant.  
If it is significant, however, then consideration of this 
term may resolve the paradox.  It is planned to investigate 
these issues via further research. 

VI. SUMMARY AND CONCLUSIONS 

A method of inverse diffraction has been developed as a 
means for estimating the variations of the vertical total 
electron content distributions that give rise to equatorial 
ionospheric scintillation.  These estimates are made based 
on in-phase and quadrature accumulation data that have 
been collected using a dual-frequency GPS receiver.  The 
inverse diffraction algorithm is based on a diffraction 
model that uses a phase-screen approximation and a 
modified Huygens-Fresnel integral, one that accounts for 
non-normal incidence of the diffracted wave on the 
phase-screen plane.  This model computes the effects of 
1-dimensional fine-scale electron density variations on 
the received amplitudes and phases of GPS signals.  The 
relevant direction of the electron density variations is the 
east-west direction as measured relative to the local 
magnetic field.  This model makes several simplifying 
assumptions that are deemed necessary in order to 
maintain problem observability when using data from the 
line of sight between a single receiver and a single GPS 
satellite.  The diffraction model is inverted using standard 
nonlinear least-squares techniques.  These techniques 
start from an initial guess based on a bulk ionosphere 
model, and they perform gradient-based iterations that 
improve the fit between the modeled and measured 
accumulations. 

The new algorithm has been applied to dual-frequency 
GPS data that have been collected in Brazil during a time 
of weak scintillation.  The scintillation intensity reached 
an S4 value of 0.4 on the L1 C/A signal and a value of 0.5 
on the new L2C CL signal.  The estimation algorithm 
decreased the RMS values of its residual measurement 

errors by factors of 3 and 2.6, respectively, for the L1 and 
L2 signals.  The resulting fits clearly show that the phase-
screen approximation and the Huygens-Fresnel integral 
provide an ability to model the effects at multiple 
transmission frequencies of actual weak scintillation.  
Despite this success, the inverse diffraction results 
contain several puzzling features.  These features require 
further investigation before full confidence can be placed 
in this new method's ability to image fine-scale electron 
density variations in the disturbed, scintillating 
ionosphere. 
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