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ABSTRACT 

Carrier-phase differential GPS techniques are used to 
perform high accuracy relative position estimation for 
pairs of spacecraft that orbit at altitudes above the GPS 
constellation.  These techniques are being developed in 
support of planned high-altitude missions that make high 
resolution science measurements by using data from 
sensors aboard formations of spacecraft.  Precise 
knowledge of relative spacecraft positions within a 
formation constitutes a key ingredient needed for 
feedback control of the formation or for processing of its 
science data.  Kinematic techniques are developed to 
determine relative position.  They use dual-frequency 
signals to remove ionospheric effects, and they use 
LAMBDA/integer-least-squares methods to estimate 
double-differenced carrier phase ambiguities.  A truth-
model simulation is used to evaluate the performance of 
this system at high altitudes.  In geosynchronous Earth 
orbit, the system can resolve ambiguities almost 
instantaneously, and it can achieve relative position 
accuracies of about 0.25 m over short baselines.  At an 
altitude of 17 Earth radii, the resolution of ambiguities 
requires on the order of 500 sec, relative position 
accuracies degrade to about 10 m, and intermittent 
ambiguity errors occur on a small subset of the tracked 
signals.  The largest relative position errors are in the 

altitude direction and result from the large GDOP values 
that are caused by having all available GPS satellites 
below the user spacecraft. 

INTRODUCTION 

Missions that employ formations of spacecraft are 
currently being considered 1.  Formation-based 
interferometry can be used to achieve performance 
comparable to that of a single large reflective mirror for 
missions that study the cosmos using optical wavelengths 
or that monitor the Earth using radar.  A planned science 
application will use a formation of 4 satellites grouped 
about a highly elliptical mean orbit in order to study the 
Earth's magnetosphere 2. 

An important part of formation flying is the determination 
of the relative positions of the formation's component 
spacecraft.  Carrier phase differential GPS (CDGPS) 
techniques have the potential to deliver accuracies on the 
order of 1 cm and to operate autonomously.  This 
potential has been verified by simulation and by post 
processing of flight data for formations that operate in low 
Earth orbit (LEO) 3-7. 

A new goal is to extend the applicability of formation 
flying CDGPS techniques to altitudes above the LEO 
domain.  Geosynchronous (GEO) formations are useful 
for many Earth observing applications, and high-altitude 
Earth orbits (HEO), which lie above GEO, are useful for 
science applications 1.  Reference 8 discusses the 
usefulness of absolute GPS techniques as aids to the 
operation for some of NASA's planned Lunar exploration 
missions.  The use of CDGPS techniques at Lunar 
altitudes, if feasible, might further aid such systems. 

Three significant challenges must be met in order to use 
CDGPS techniques at high altitudes.  A user spacecraft 
falls outside the main transmission lobes of more and 
more GPS satellites as its altitude increases above about 
3000 km.  CDGPS techniques usually require tracking of 
5 or more signals.  The use of weak signals in the 
transmission antennas' side lobes can increase the number 
of available GPS satellites and thereby enable the use of 
CDGPS techniques in these situations.  Therefore, high-
altitude CDGPS can be implemented only if the user 
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receivers implement weak-signal acquisition and tracking 
techniques, as described in Refs. 9-12.  The present study 
presumes the availability and use of receivers that employ 
weak-signal technology *.  It also presumes the availability 
of the GPS signals’ navigation data bits, obtained either 
through a separate data link or though "voting" of bit 
values over multiple repeated data frames. 

The second challenge is that of high geometric dilution of 
precision (GDOP).  The available GPS satellites are 
grouped close together around the nadir direction when 
viewed from a high altitude.  This grouping produces 
GDOP values on the order of 10 in GEO, 100 at a HEO 
altitude of 17 Earth radii, and 1000 at Lunar altitudes if 
the user receiver can process weak side-lobe signals.  The 
potential problem for CDGPS techniques is that the 
double-differenced carrier phase ambiguities may not be 
resolvable as integers.  If the integers can be resolved, 
then the relative position estimation errors will be very 
small, on the order of GDOP × λ × σφ, where λ is the 
carrier wavelength and σφ is the carrier phase 
measurement error standard deviation; λ × σφ is normally 
on the order of 1 cm.  If GDOP is large, then GDOP × σφ 
will be on the order of half a wavelength or more.  
Intuition implies that errors larger than half a wavelength 
would preclude the correct resolution of carrier cycle 
ambiguities as exact integers.  A failure to resolve the 
ambiguities as integers would increase the relative 
position errors far beyond GDOP × λ × σφ.  Therefore, it is 
hoped that intuition is wrong in this case. 

The third challenge is that of slow rates of change in the 
directions of the line-of-sight (LOS) vectors from the user 
spacecraft formation to the tracked GPS satellites.  These 
slow rotations are caused by the relatively slow orbital 
motion of high-altitude spacecraft.  Slow rates of change 
of the LOS directions tend to slow the process of 
resolving double-differenced carrier phase ambiguities as 
integers. 

This study has several goals.  The first is to answer the 
question of whether integer ambiguity resolution is 
possible in the high-altitude situation of weak signals, 
high GDOP, and slow LOS rotations.  If integer resolution 
is possible, then additional questions of interest concern 
the speed of resolution and the resulting accuracy of the 
relative position solutions.  This work is a follow-on to the 
work reported in Refs. 13 and 14, which study estimation 
of the relative positions of two user spacecraft using 

                                                           
* The problem of weak-signal acquisition and tracking 

will be greatly alleviated by the new civilian L2 signals 
that will start to appear soon.  The civilian CL signal 
does not carry data, which allows for longer coherent 
accumulation intervals and, therefore, higher 
processing gains that enable the acquisition and 
tracking of weaker signals 11. 

kinematic techniques with L1 signals.  The GEO results of 
Ref. 13 show that ionospheric errors can have a significant 
impact on accuracy.  The present study expands on the 
work of Refs. 13 and 14 to include dual-frequency 
measurements in the hope of estimating the ionospheric 
total electron content (TEC) and removing its effect on the 
differential position solutions.  The challenge in doing this 
is that integer ambiguities become more difficult to 
resolve when using dual-frequency carrier phase 
measurements to estimate and correct for differential 
TEC 15,16. 

References 3-7 and 14 characterize the state of the art of 
CDGPS for estimation of relative spacecraft positions, 
and this paper makes two main contributions to this 
subject area.  First, it develops a new relative position 
estimation algorithm for a pair of Earth-orbiting user 
receivers.  This algorithm resolves double-differenced 
carrier phase ambiguities for the L1 and L2 signals as 
integers.  The only other estimators that successfully 
resolve integer ambiguities are reported in Refs. 7 and 14, 
and only Ref. 7 works with dual-frequency ambiguities.  
The present work develops an alternative dual-frequency 
algorithm that is based on kinematic methods.  One 
similarity between the new algorithm and those of Refs. 7 
and 14 is its resolution of integers using a least-squares 
ambiguity decorrelation adjustment (LAMBDA) method 
and an integer least-squares solver 17,18. 

This paper's second contribution is its study of the 
effectiveness of its ambiguity resolving CDGPS algorithm 
at high altitudes, i.e., above the GPS constellation.  This 
study is based on a high-fidelity truth-model simulation.  
It considers cases ranging from GEO to Lunar altitudes. 

The remainder of this paper presents its designs, analyses, 
results, and conclusions in 6 sections.  Section II defines 
the estimator state and presents its models of the 
measurements and dynamics.  Section III describes and 
explains the new estimation algorithm.  Section IV gives a 
brief overview of the truth-model simulation.  Section V 
presents performance results for the estimator when 
operating on data from the truth-model simulation.  
Section VI makes recommendations concerning further 
improvements to the estimator and further evaluation 
studies.  Section VII gives the paper's conclusions. 

II. ESTIMATOR STATE, MEASUREMENT 
MODELS, AND DYNAMICS MODELS 

A. Pseudo-Range Measurement Model and Coarse 
Pseudo-Range Solution 

A standard pseudo-range measurement model has been 
used to provide a coarse solution for linearization 
purposes and to provide a soft bound on carrier phase 
integer ambiguity estimates.  The model takes the form 13: 
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where the four P values are pseudo-range measurements.  
The superscript ()j denotes the signal from GPS satellite j, 
the 1 or 2 subscript denotes the GPS signal on the L1 or 
the L2 frequency, and the A or B subscript denotes space-
borne user receiver A or B.  A similar subscripting and 
superscripting scheme is used throughout this paper, 
unless otherwise noted.  The distance j

Aρ  = 
50T )]()[( .j

A
j

A rrrr −−  is the true range between GPS 
spacecraft j's location at the time of signal transmission, 

jr , and user spacecraft A's location at the time of signal 
reception, Ar , and the distance j

Bρ  is defined similarly 
for user spacecraft B.  The clock errors δtRA, δtRB, and jtδ  
apply, respectively, to user receivers A and B and to GPS 
spacecraft j.  The quantities j

ATEC  and j
BTEC  are the 

ionospheric total electron contents along the LOS vectors 
from user receivers A and B to GPS spacecraft j expressed 
in equivalent distance units at the L1 frequency.  The 
noise terms j

APn 1 , j
BPn 1 , j

APn 2 , and j
BPn 2  include the 

effects of receiver thermal noise and multi-path.  The 
parameters fL1, fL2, and c are, respectively, the L1 and L2 
carrier frequencies and the speed of light.  The geometry 
associated with these measurements for GPS spacecraft i 
and j is depicted in Fig. 1. 

 
Fig. 1. Geometry of CDGPS measurements for two GPS 

satellites and two user receivers. 

The new estimation algorithm starts by computing the 
point pseudo-range solutions for the positions, clock 
errors, and TEC values for user receivers A and B.  For 
receiver A, this procedure involves an iterative nonlinear 
least-squares solution of eqs. (1a) and (1c) repeated for all 
j ∈  SA = { 1Aj ,..., AAnj }.  SA is the set of indices of the nA 
GPS signals that are tracked by receiver A.  The solutions 
that get determined by this procedure are denoted by the 
()pr subscript; they are rApr, cδtRApr, and 1Aj

AprTEC , ..., 
AAnj

AprTEC .  A corresponding solution of eqs. (1b) and 

(1d) is carried out in order to determine coarse position, 
clock correction, and TEC values for user receiver B. 

B. State Vector of Differential GPS Solution 
Algorithm 

The CDGPS algorithm estimates the following vector of 
unknowns: 
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The vectors x(tk), T(tk), and e(tk) apply at sample time tk, 
and they can vary with time.  Each of these vectors 
consists of perturbations, as denoted by the ∂  prefix.  The 
8-dimensional vector x(tk) consists of the perturbations of 
the true positions and the true range-equivalent clock 
corrections for receivers A and B from their pseudo-range-
based solutions.  The position perturbations are given in 
Earth-centered inertial coordinates (ECIF).  The (nA+nB)-
dimensional vector T(tk) consists of the perturbations of 
true TEC values from their pseudo-range-based estimates.  
These values correspond to integrated electron densities 
along LOS vectors from receiver A to nA GPS satellites 
and from receiver B to nB GPS satellites.  The CDGPS-
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based estimates of the perturbation in x(tk) and T(tk) are 
added to the corresponding pseudo-range-based estimates 
in order to compute these quantities' absolute CDGPS 
estimates.  The 4n-dimensional vector e(tk) contains the 
ECIF position perturbation vectors )( k

j tr∂  and the 
range-equivalent clock perturbations )( k

j ttc δ∂  for GPS 
satellites j = 1, ..., n.  These quantities are corrections to 
the position vectors and transmitter clock errors as 
determined from the broadcast ephemerides of each GPS 
spacecraft. 

The (nA+nB)-dimensional vectors aL1 and aL2 contain the 
ambiguities for the L1 and L2 carrier phase 
measurements, respectively.  The aL1 components i

Aa1  
and j

Ba1  are the L1 carrier phase ambiguities of, 
respectively, GPS satellite i as tracked by receiver A and 
GPS satellite j as tracked by receiver B.  The aL2 
components i

Aa2  and j
Ba2  are similar, except that they 

are L2 carrier phase ambiguities.  These quantities are 
usually denoted by N rather than a.  The current 
designation is used in order to emphasize the fact that 
these quantities are not necessarily integers 13.  These 
ambiguities should be constants 13, and the estimator treats 
them as such. 

The estimator keeps track of un-differenced carrier phase 
ambiguities, but it computes its state estimate in a way 
which ensures that double-differences of these quantities 
take on integer values.  This approach differs from typical 
CDGPS practice in which single- or double-differenced 
ambiguities are direct states of the estimator.  There are 
two reasons for using the present unconventional 
formulation.  First, it explicitly recognizes the fact that 
these ambiguities are constants.  This allows it to derive 
additional information from them.  Estimators that keep 
track of differenced ambiguities implicitly assume that 
each un-differenced ambiguity contains a time-varying 
real component.  Their differencing operations can be 
viewed as point-wise estimation of each time-varying, 
real-valued component followed by removal of it.  If the 
real-valued components are constants, then differencing 
operations implicitly discard information by ignoring their 
constancy. 

The new estimator will achieve improved results through 
the retention of un-differenced ambiguities only if the 
constancy assumption is true.  The primary causes of non-
constancy are TEC variations and inaccuracies in the 
broadcast GPS navigation data.  The explicit estimation of 
T(tk) and e(tk) provides a means of assuring that the 
ambiguities are constants. 

Two additional advantages accrue from using un-
differenced ambiguities.  First, there is no cross 
correlation in the initial measurement equations, which are 
also un-differenced.  This allows a simpler formulation of 
the optimal estimation problem.  Second, carrier cycle 
slips become easier to identify and correct.  Note, 

however, that the issue of cycle slips is not addressed in 
the present work. 

C. Linearized Pseudo-Range and Carrier Phase 
Measurement Models 

The CDGPS algorithm uses pseudo-range and carrier 
phase measurement models that have been linearized 
about the pseudo-range solutions.  The linearized pseudo-
range models are linearizations of eqs. (1a)-(1d) and take 
the form: 
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where j
Aρ̂  and j

Bρ̂  are the unit vectors that point from the 
transmission-time locations of GPS spacecraft j to the 
pseudo-range positions of receivers A and B.  Most of the 
quantities in eqs. (4a)-(4d) are functions of the sample 
time, tk.  In the interest of saving space, this dependence 
has not been explicitly noted. 

The following are linearized measurement models for the 
L1 and L2 beat carrier phases that are output by receivers 
A and B: 
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where the quantities j
A1φ , j

B1φ , j
A2φ , and j

B2φ  are the 
actual beat carrier phase measurements given in cycles.  
The parameters λL1 (=c/fL1) and λL2 (=c/fL2) are the 
standard nominal carrier wavelengths of the L1 and L2 
signals, respectively.  The terms j

An 1φ , j
Bn 1φ , j

An 2φ , and 
j

Bn 2φ  represent carrier phase measurement errors due to 
multi-path, carrier phase wind-up, and receiver thermal 
noise 13.  The standard deviations of these noise terms are 
usually on the order of (0.01m)/λ or less, which is why 
CDGPS techniques can be very accurate.  Note how eqs. 
(5a)-(5d) resemble eqs. (4a)-(4d), except for the reversals 
of sign in the TEC terms and the additional ambiguity 
biases j

AL a11λ , j
BL a11λ , j

AL a22λ , and j
BL a22λ . 

The models in eqs. (5a)-(5b) are linearizations of the 
carrier phase model given in Ref. 13, which has been 
derived from first principles in order to better understand 
the nature of the ambiguity bias terms.  The present 
models vary from that of Ref. 13 because they recognize 
that the nominal transmitter clock correction can be 
lumped into a single term on the left-hand side of each 
equation. 

D. Pseudo-Measurement of the Single-Differenced 
TEC 

The discussions of Refs. 15 and 16 indicate that it is 
difficult to resolve double-differenced carrier phase 
ambiguities as exact integers when using dual frequency 
measurements to determine both relative position and 
double-differenced TEC.  In order to understand this 
difficulty, consider the TEC-free equivalent L1 carrier 
phase measurement for receiver A: 
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This measurement uses the difference of the range-
equivalent L2 and L1 carrier-phase measurements to solve 
for j

ATEC .  This solution is then substituted back into the 
L1 equation.  The ratio fL1/fL2 = 77/60 can be used to 
define the transformed ambiguity pair 

j
A

j
A

j
A aaa~ 211 6077 −=  and j

A
j
A

j
A aaa~ 212 79 +−= .  The 

inverse transformations are j
A

j
A

j
A a~a~a 211 607 −−=  and 

j
A

j
A

j
A a~a~a 212 779 −−= .  The transformed ambiguities 

preserve the integer nature of their double-differences 
because there is a one-to-one mapping between integer 
values of [ j

Aa1 ; j
Aa2 ] and integer values of [ j

Aa~1 ; j
Aa~2 ].  

The TEC-free equivalent L1 carrier phase measurement 
model can be re-written using the new j

Aa~1  ambiguity: 
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The form of eq. (7) causes two problems when trying to 
resolve integer ambiguities.  First, the effective 
wavelength of the ambiguity is reduced to 

)](77[ 2
2

2
1

2
11 LLLL ff/f −λ  = 0.0063 m.  Second, the 

equivalent standard deviation of the final noise term is 
increased by a factor of 3.2 compared to the original L1 
carrier phase noise, which makes the typical noise 
standard deviation larger than 0.01 m.  Resolution of the 
ambiguities as integers is very difficult when the noise 
standard deviation is larger than the ambiguity 
wavelength. 

The estimator combats this ambiguity problem by adding 
a pseudo-measurement of the single-differenced TEC.  
The linearized model for this pseudo-measurement is: 

j
Bpr

j
Apr TECTEC −   =  j

TEC
j

B
j
A nTECTEC ∆+∂+∂−  (8) 

where j
TECn∆  is a pseudo-noise term.  Its modeled 

standard deviation, j
TEC∆σ , gives a measure of the 

expected magnitude of the difference between j
ATEC  and 

j
BTEC .  This standard deviation is a tuning parameter of 

the estimator.  A large j
TEC∆σ  value indicates little or no 

correlation between the TEC values along the LOS 
vectors from the two user receivers to GPS satellite j.  In 
this case, the estimator will have the same difficulty in 
resolving integer ambiguities that it would have had if it 
had used the TEC-free carrier phase measurement in eq. 
(7).  A small value of j

TEC∆σ  will tell the estimator that it 
can use single-differences between receivers in order to 
remove most of the TEC effects from the L1 and L2 
measurements.  An intermediate value of j

TEC∆σ  allows 
the estimator to determine j

ATEC  and j
BTEC  using the L1 

and L2 carrier phase and pseudo-range measurements, but 
it limits the number of possible ambiguities to those that 
produce reasonable TEC single differences.  Reasonable 
limits can be achieved for relatively large values of 

j
TEC∆σ  because a unit change in j

Aa~1  causes the L1/L2 
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carrier-phase-based estimate of j
ATEC  to change by 8.2 

TEC units, which is a large change. 

This approach is similar to the ionosphere-weighted 
approach of Ref. 15.  The main difference is that the 
current approach does not use a priori information about 
the ionosphere other than an estimate of j

TEC∆σ .  The 
method of Ref. 15 also uses an a priori double-
differenced TEC value.  It is likely that the Ref. 15 
estimator can use a lower equivalent j

TEC∆σ  to model the 
residual errors, but its need for an a priori estimate of the 
double-differenced TEC represents a level of 
complication that the present formulation seeks to avoid. 

E. Dynamics Models 

The estimator uses limited dynamics models that are 
appropriate to its kinematic approach to CDGPS 
estimation.  The receiver position and clock error states in 
x(tk) and the ionospheric TEC states in T(tk) are modeled 
as being uncorrelated in time.  That is, there is no dynamic 
relationship used between x(tk) and x(tk-1) or between T(tk) 
and T(tk-1).  Therefore, these quantities must be re-
estimated from scratch at each measurement sample based 
purely on the measurement data from that sample, which 
is consistent with the kinematic approach. 

The states associated with the GPS satellites' residual 
position and clock corrections are modeled as evolving 
according to a first-order Gauss-Markov process: 

)1(111 )()( −−−− += kekkkk tt wee βα  (9) 

where ])[( 11 τα /ttexp kkk −− −=  and =−1kβ  
50

1 }]){2(1[ .
kke /ttexp τσ −−−  are scalars and where we(k-

1) is a Gaussian discrete-time white-process-noise vector 
whose mean is zero and whose covariance equals the 
identity matrix.  The scalar τ is the correlation time of the 
Markov process, and the scalar σe is the steady-state 
standard deviation of each of its 4n independent 
components. 

The real-valued, un-differenced ambiguity vectors aL1 and 
aL2 are modeled as being constant.  Their dynamic models 
take the forms aL1(k) = aL1(k-1) = aL1 and aL2(k) = aL2(k-1) = 
aL2.  These models could be augmented to include the 
possibility of cycle slips, but that would introduce the 
need for hypothesis testing in order to implement a cycle 
slip recovery procedure, as in Ref. 14.  The design of such 
an algorithm is beyond the scope of the present paper. 

III. ESTIMATION ALGORITHM 

A. Square-Root Information Format 

The estimation algorithm uses Square-Root Information 
Filter (SRIF) methods 19 to propagate, update, and store 
its estimates and covariances for the components of the 

)( ktot tx  vector.  The SRIF format uses a square-root 
information equation of the form Rx = z - ν in order to 

keep track of its mean and covariance for x.  The square, 
nonsingular matrix R and the vector z are computed by the 
estimator, and the Gaussian noise vector ν is modeled as 
having a mean of zero and a covariance equal to the 
identity matrix.  These facts imply that the estimate and its 
error covariance are, respectively, x̂  = R-1z and Pxx = 
R-1(R-1)T.  Note that all subsequently defined ν vectors in 
this paper are assumed to be Gaussian white-noise vectors 
with means equal to zero, covariances equal to the identity 
matrix, and zero cross-correlation with all other noise 
vectors. 

The SRIF uses a measurement equation of the form: 

)()()()( )()()( kkekkTkkxk tHtHtHt eTxy ++=  

 ykkLkakLka HH ν+++ )(2)(2)(1)(1 aa  (10) 

where the measurement vector y(tk) and the matrices Hx(k), 
HT(k), He(k), Ha1(k), and Ha2(k) are known.  This vector 
equation includes all of the linearized measurement 
models in eqs. (4a)-(5d) and (8) for all of the tracked GPS 
satellites.  Each such equation is divided by the modeled 
standard deviation of its measurement error in order to be 
in the correct format for inclusion as a component of eq. 
(10).  The resulting equations are used to determine y(tk), 
Hx(k), HT(k), He(k), Ha1(k), and Ha2(k). 

The estimator must keep track of the GPS satellites for 
which eq. (10) models pseudo-range and carrier phase 
measurements and single-differenced TEC pseudo-
measurements.  SA(k) is the set of satellite identifier 
numbers (SVIDs) of the GPS spacecraft for which 
receiver A returns pseudo-range and carrier phase data at 
sample time tk.  It contains nA(k) elements.  Similarly, the 
set SB(k) contains the SVIDs of the nB(k) GPS spacecraft 
whose pseudo-range and carrier phase data are returned 
by receiver B at sample time tk.  The set Scom(k) =  
SA(k) ∩ SB(k) contains the two sets' common SVIDs, which 
number ncom(k) ≤  min[nA(k),nB(k)].  The dimension of y(tk) is 
4[nA(k)+nB(k)]+ncom(k) because each receiver returns both L1 
and L2 pseudo-range and carrier phase for each tracked 
satellite and because there is a single-differenced TEC 
pseudo-measurement for each satellite that is visible to 
both receivers. 

B. A Priori Information 

The estimator uses a priori information about the GPS 
position and clock errors and about the carrier phase 
ambiguities.  The a priori information used at sample time 
tk consists of all of the relevant information that has been 
amassed from all of the preceding sample times.  This 
information is stored in the following square-root format: 
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The matrices Ree(k-1) and Raa(k-1) are square, upper-
triangular, and non-singular with dimensions 4n-by-4n 
and 2[nA(k-1)+nB(k-1)]-by-2[nA(k-1)+nB(k-1)], respectively.  The 
matrix Rea(k-1) has dimension 4n-by-2[nA(k-1)+nB(k-1)].  The 
vector ze(k-1) has dimension 4n, and the vector za(k-1) has 
dimension 2[nA(k-1)+nB(k-1)].  The matrices Ree(k-1), Rea(k-1), 
and Raa(k-1) and the vectors ze(k-1) and za(k-1) are computed 
by the estimator. 

The possibility of a change of tracked satellites from 
sample time tk-1 to sample time tk necessitates the use of 
the notation aL1(k-1) and aL2(k-1) to distinguish the un-
differenced ambiguity vectors associated with different 
sample times.  Although the carrier phase ambiguity for a 
given tracked satellite/receiver pair does not change, the 
vectors aL1(k-1) and aL2(k-1) will change if the elements of 
the set SA(k-1) or the set SB(k-1) change.  This happens 
because aL1(k-1) and aL2(k-1) only store the ambiguities 
associated with the tracked GPS satellites in SA(k-1) and 
SB(k-1). 

If the first measurement sample occurs at sample t0, then 
the estimator must initialize its a priori information at 
fictitious sample time t-1 < t0.  It initializes Ree(-1) to equal 
the 4n-by-4n identity matrix multiplied by 1/σe, and it sets 
ze(-1) = 0.  There are no tracked satellites prior to time t0; 
therefore, the index sets SA(-1) and SB(-1) are set equal to the 
empty set.  This implies that aL1(-1), aL2(-1), and za(-1) are 
empty vectors and that Rea(-1) and Raa(-1) are empty 
matrices. 

C. Dynamic Propagation and Measurement Update 

The SRIF calculations involve the usual Kalman filter 
dynamic propagation followed by a measurement update.  
The dynamic propagation maps the a priori information in 
eq. (11) forwards to time tk using the dynamic models of 
Section II.E.  The measurement update combines the 
propagated a priori information with the new 
measurement information in eq. (10). 

Dynamic Propagation.  The dynamic propagation starts 
with a propagation of the GPS position/transmitter-clock 
error vector e.  These propagation calculations could use 
the traditional SRIF methods of Ref. 19, but an alternate 
method is chosen that works even when αk-1 of eq. (9) is 
zero.  This alternate method is based on singular SRIF 
principles like those used in Ref. 20.  The method starts 
by using orthonormal/upper-triangular (QR) factorization 
21 to compute 
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Q1(k) is an orthonormal matrix, i.e., IQQ kk =T
)(1)(1 .  

)(kwwR
~

 and )(keeR
~

 are square, upper-triangular, non-
singular matrixes of dimension 4n-by-4n, and )(kweR

~
 is 

another matrix of the same dimension.  The orthonormal 
matrix is then used to compute the matrix )1( −keaR

(
 and the 

vector )(ke
~z  according to the formulas 
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These operations result in an a priori square-root 
information equation that takes the form: 









−








=





































−−
−

−
−

−

)1(

)(

)1(

)(

)1(2

)1(1
)1(

)1()(
)(

0 ka

ke

ka

ke

kL

kL

k

kaa

keakee
~~t

R
RR

~

ν
ν

z
z

a
a

e(
 (14) 

The remaining dynamic propagation operations account 
for the changes in tracked satellites, which are reflected in 
differences between the old tracking index sets SA(k-1) and 
SB(k-1) and the new index sets SA(k) and SB(k).  These index 
sets can be used to construct matrices UD(k-1), UK(k-1), and 
V(k) that have the following properties:  Each row of UD(k-1) 
and UK(k-1) is a 1-by-[nA(k-1)+nB(k-1)] row vector with all 
zero entries except for one entry that equals 1, and each 
row of V(k) is similar, except that its dimension is 1-by-
[nA(k)+nB(k)].  The [nA(k-1)+nB(k-1)]-by-[nA(k-1)+nB(k-1)] matrix 
U(k-1) = [UD(k-1);UK(k-1)] is a permutation matrix.  The 
vectors aDL1(k-1) = UD(k-1)aL1(k-1) and aDL2(k-1) = UD(k-1)aL2(k-1) 
contain all of the carrier phase ambiguities for the GPS 
satellites that are tracked at sample time tk-1 but not at 
sample time tk.  These are the ambiguities that must get 
discarded before the measurement update at time tk.  The 
vectors UK(k-1)aL1(k-1) = V(k)aL1(k) and UK(k-1)aL2(k-1) = 
V(k)aL2(k) contain all of the ambiguities that are tracked at 
both sample times and therefore retained at sample time tk.  
The construction of these matrices amounts to an 
accounting calculation that involves comparisons of the 
indices in SA(k-1) and SB(k-1) with the indices in SA(k) and SB(k) 
along with mappings of those indices to the corresponding 
entries in aL1(k-1), aL2(k-1), aL1(k), and aL2(k).  This analysis 
assumes that common index mappings are used for the 
pair aL1(k-1) and aL2(k-1) and for the pair aL1(k) and aL2(k). 

A transformation and a QR factorization are required in 
order to delete the old ambiguities in aDL1(k-1) and aDL2(k-1) 
while mapping the information for the ambiguities in 
UK(k-1)aL1(k-1) and UK(k-1)aL2(k-1) into the correct locations for 
use with the new ambiguity vectors aL1(k) and aL2(k).  The 
transformation takes the form: 

=












)()(

)()(

kaakaD

keakeD

R~R~
R
~

R
~









































−

−

−

−

)(

)(
T

)1(

T
)1(

)1(

)1(

000
000
000
000

0

0

k

k

k

k

kaa

kea

V
I

V
I

U

U
R
R
(

 (15) 

The ambiguity propagation finishes by performing the 
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following QR factorization 
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followed by the vector transformation 
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The matrix Q2(k) is orthonormal, and the matrices )(kDDR  
and )(keeR  are square, upper-triangular, and non-singular.  
The matrix )(kaaR  is upper-triangular, but it will have 
more columns than rows if new tracked satellites appear in 
either of the index sets SA(k) or SB(k).  The matrices 

)(kDDR , )(kDeR , and )(kDaR  and the vector )(kDz  are 
associated with an information equation for the dropped 
ambiguity vector [aDL1(k-1);aDL2(k-1)].  Therefore, they can 
be discarded.  The matrices )(keeR , )(keaR , and )(kaaR  
and the vectors )(kez  and )(kaz  constitute the a priori 
information for the unknown vectors e(tk) and 
[aL1(k);aL2(k)]. 

The discarding of information about the ambiguity vector 
[aDL1(k-1);aDL2(k-1)] is sub-optimal when integer ambiguities 
are used.  It is possible that some of these un-differenced, 
real-valued ambiguities are used to form double-
differences whose integer values have been correctly 
identified.  Wholesale discarding of the information in 

)(kDDR , )(kDeR , )(kDaR , and )(kDz  involves a loss of 
knowledge about the values of any such double-
differenced ambiguities.  The development of optimal 
means to retain this information in the context of SRIF 
calculations is beyond the scope of this paper. 

Measurement Update.  The measurement update uses 
standard SRIF calculations in order to combine the a 
priori information in the last two lines of eqs. (16) and 
(17) with the information in measurement eq. (10).  These 
calculations start with the QR factorization 

=





















0000
000

00
0

)(

)()(

)()()(

)()()()(

)(3

kaa

keakee

kTakTekTT

kxakxekxTkxx

k
R
RR
RRR
RRRR

Q  

 
















)(

)()(

)(2)(1)()()(

000
00

][

kaa

keakee

kakakekTkx

R
RR

HHHHH
 (18) 

and finish with the vector transformation 
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The matrix Q3(k) is orthonormal, and the matrices )(kxxR , 
)(kTTR , )(keeR , and )(kaaR  are square, upper-triangular, 

and non-singular.  The number of rows and columns in 
each of these matrices equals the number of rows in the 
corresponding estimated vector, x(tk), T(tk), e(tk), or 
[aL1(k);aL2(k)].  The matrices )(kxTR , )(kxeR , )(kxaR , 

)(kTeR , )(kTaR , and )(keaR  and the information vectors 
)(kxz , )(kTz , )(kez , and )(kaz  all have appropriate 

dimensions.  The vector )(krz  contains the residual errors 
of the optimal estimate that uses only real-valued 
ambiguities. 

The information matrices and vectors in eqs. (18) and (19) 
can be used to form the following a posteriori square-root 
information equation 
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This information equation can be used to determine float-
ambiguity estimates of x(tk), T(tk), e(tk), and [aL1(k);aL2(k)] 
by setting the noise vectors νx(k), νT(k), νe(k), and νa(k) equal 
to zero and inverting the large square-root information 
matrix on the left-hand side, but these estimates are not 
optimal if the double-differenced carrier phase 
ambiguities are known to take on integer values.  The 
lower two lines of this system of 4 coupled equations 
constitute the a priori information about e(tk) and 
[aL1(k);aL2(k)] that is needed for propagation forward to 
sample time tk+1.  This information enables the SRIF 
algorithm to execute recursively. 

D. Estimation of Double-Differenced Ambiguities as 
Integers Using a LAMBDA Method 

Improved estimates of all unknowns can be obtained if 
double differences between elements of the vector 
[aL1(k);aL2(k)] can be resolved as exact integers.  This 
integer resolution procedure operates by transforming the 
ambiguities in a way that splits them between double-
differenced integer values and irreducibly real values.  
This transformation is developed by first considering the 
index sets SA(k), SB(k), and Scom(k).  Suppose that ncom(k) > 1.  
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Then the index set Scom(k) and its mappings into the 
elements of aL1(k) and aL2(k) can be used to determine the 
matrix D(k) that forms the vector of all independent 
integer-valued double-differences between elements of 
aL1(k) or aL2(k): 
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The dimension of the double-differenced vector N(k) is 
2[ncom(k)-1], and the dimension of the double-differencing 
operator matrix D(k) is [ncom(k)-1]-by-[nA(k)+nB(k)].  Each 
row of D(k) has all zero values except for two -1 values 
and two +1 values.  One of the -1 values occurs in the 
column associated with receiver A's carrier phase 
ambiguity for the first SVID in Scom(k), and one of the +1 
values occurs in the column that maps to the 
corresponding ambiguity for receiver B.  The other +1 
value in row i occurs in the column that maps to receiver 
A's carrier phase ambiguity for the (i+1)st SVID in Scom(k), 
and the other -1 value in row i occurs in the column that 
maps to the same ambiguity for receiver B. 

The D(k) matrix is used to develop a transformation that 
splits aL1(k) and aL2(k) into their irreducibly real and double-
differenced integer components.  This development starts 
with the following QR factorization: 

T
)(
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)4( 0 k
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k D

R
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where Q4(k) is an orthonormal matrix and R4(k) is a square, 
upper-triangular, non-singular matrix.  These matrices are 
used to form the square, non-singular [nA(k)+nB(k)]-by-
[nA(k)+nB(k)] transformation matrix 
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This transformation can then be used to express the vector 
[aL1(k);aL2(k)] in the following form: 
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The vector air(k) = [airL1(k);airL2(k)] contains the irreducibly 
real carrier phase ambiguities; it is composed of the 
irreducibly real L1 and L2 ambiguity vectors airL1(k) and 
airL2(k).  The vector of double-differenced ambiguities N(k) 
= [NL1(k);NL2(k)] is composed of the L1 and L2 double-
differenced ambiguity vectors NL1(k) and NL2(k). 

The transformation matrices Fir(k) and FN(k), which are 

defined in terms of E(k) in accordance with eq. (24), can be 
used to transform the last line of the system of coupled 
information equations in eq. (20).  This information 
equation can then be QR-factorized in order to isolate the 
integer ambiguities from the irreducibly real ambiguities.  
This QR factorization takes the form: 
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where Q5(k) is an orthonormal matrix, )(kirirR  and 
)(kNNR  are square, upper-triangular, non-singular 

matrices, and )(kirNR  is a matrix of appropriate 
dimensions.  The transformation of the information 
equation is completed by forming the vectors )(kirz  and 

)(kNz  using the formula 
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The following auxiliary transformations help in the 
computation of the estimates of other quantities and in the 
computation of the estimation error covariance matrix: 
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The resulting transformations isolate an independent 
square-root information equation for the double-
differenced ambiguity vector N(k).  This equation can be 
used to define the following integer least-squares cost 
function: 

][][][ )()()(
T

)()()(2
1

)( kNkkNNkNkkNNk -R-RJ zNzNN =  

 (28) 

The optimal integer-valued minimizer to the cost function 
in eq. (28) is determined using the LAMBDA pre-
conditioning transformation and the integer least-squares 
solution algorithm of Ref. 18.  Suppose that this optimal 
estimate is )(kN̂ .  It is used in a back-substitution process 
to determine the estimates of the remaining unknowns.  
These estimates are 
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The information equations can also be used to develop an 
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estimation error covariance matrix for the real-valued 
estimation vector )(krx̂  = [ )( ktx̂ ; )( ktT̂ ; )( ktê ; )(kirâ ].  
It is )(krrP  = T-1

)(
-1

)( ][ krrkrr RR  where 
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Unlike the algorithm of Ref. 7, the current estimation 
algorithm does not include an integer validation and fixing 
procedure.  This approach creates inefficiencies because 
double-differenced ambiguities that are essentially known 
at sample time tk-1 must be re-estimated at time tk.  This re-
estimation translates into added calculations in the 
LAMBDA pre-conditioning and integer least-squares 
solution calculations for sample time tk.  Fortunately, the 
integer least-squares methods of Ref. 18 execute 
sufficiently fast to keep this inefficiency from being overly 
costly in terms of computation time.  An advantage of this 
approach is that it avoids the problem encountered in Ref. 
7 of determining a robust integer validation procedure. 

IV. TRUTH-MODEL SIMULATION 

An off-line truth-model simulation has been developed to 
test the CDGPS algorithm of Section III.  This method of 
testing is needed because no flight data or hardware 
simulation data is available for GPS receivers on a pair of 
high-altitude spacecraft.  The simulation that has been 
used is described in detail in Ref. 13. 

The truth-model simulation incorporates many realistic 
effects.  It includes models of transmitter and receiver 
gain patterns, space loss, transmitted power, and receiver 
thermal noise.  These models are used to calculate the 
received carrier-to-noise ratio, C/N0.  Minimum 
acquisition and tracking threshold values of C/N0 on the 
L1 and L2 channels are used in order to determine signal 
availability subject to a maximum constraint of 12 tracked 
signals per frequency.  These signal availability 
calculations are critical to determining the performance of 
the estimator at high altitude because it is uncertain how 
many transmitter side-lobe signals can be tracked at any 
given location.  One weakness of the simulation is that the 
nulls at the edges of the transmitters' main lobes have been 
attenuated because the simulation's transmitter antenna 
model averages actual measured gains over many 
azimuths at a given elevation in order to form an 
axisymmetric transmitter gain pattern. 

The simulation's ionospheric model is a modified version 
of the GPS broadcast model.  The modification adds an 
altitude dependence to the latitude/longitude dependence 
of the electron density profile.  This dependence is 
characterized by 2 different scale heights in two different 
altitude ranges.  The simulation determines each TEC 

value by numerically integrating the electron density along 
the corresponding LOS vector. 

The model includes a number of realistic errors.  
Systematic error effects include attitude-dependent models 
of carrier phase multi-path and of polarization-induced 
carrier phase wind-up.  Also modeled are slowly varying 
discrepancies between the truth GPS satellite locations 
and clock corrections and those determined from the 
broadcast ephemerides.  Random thermal errors are 
included in the pseudo-range and carrier phase 
measurements.  These depend on the received C/N0 and on 
the bandwidth of the tracking loops.  The thermal noise 
model for the carrier phase measurement presumes the use 
of bit aiding in the carrier tracking loops, which allows the 
coherent accumulation period to be longer than the 0.020 
sec data bit period. 

The truth-model dynamic propagation uses an orbital 
simulation with a moderate level of fidelity and a second-
order stochastic simulation of receiver clock drift.  The 
orbital propagation model includes a 10th-order Earth 
gravity model along with Solar and Lunar gravity gradient 
effects, atmospheric drag, and solar radiation pressure.  
The receiver clock drift model includes random terms that 
replicate the short- and long-time-scale effects on an Allan 
variance plot 22. 

The truth-model simulation outputs truth values that can 
be used in order to evaluate the accuracy of the new 
estimation algorithm.  These include the truth position and 
velocity states of user spacecraft A and B along with their 
truth receiver clock errors.  Also output are truth TEC 
values, truth corrections to the GPS satellite's broadcast 
position and clock error time histories, and truth double-
differenced carrier phase ambiguities. 

V. EVALUATION OF ESTIMATOR USING 
TRUTH-MODEL SIMULATION RESULTS 

The new estimator has been evaluated using truth-model 
simulation data for several representative cases.  A long-
baseline LEO case has been considered in order to 
compare its performance with the performance of a 
competing method that has been tested using actual flight 
data.  Short-baseline cases have been considered at GEO 
and HEO.  They are representative of possible missions.  
The final case operates at Lunar altitudes with a baseline 
distance between receivers A and B that equals the Moon's 
diameter.  The goal of this case is to perform a 
preliminary evaluation of the efficacy of CDGPS 
techniques for surveying the relative locations of Lunar 
Positioning System (LPS) base stations or for tracking the 
relative locations of orbiting LPS assets. 

Each scenario tests the estimator's performance using two 
values of j

TEC∆σ , the a priori standard deviation of each 
single-differenced TEC.  The first value is chosen to be on 
the order of the maximum single-differenced TEC as 
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determined from the truth model, and the second value is 
considerably larger than this.  The point of using two 
values is to compare a nearly optimal value with a 
conservative one in order to find out whether the 
conservative value yields a reasonably fast convergence to 
the true single-differenced TEC and the true carrier phase 
ambiguities. 

The performance of the new estimator is compared with a 
more traditional kinematic CDGPS algorithm that uses 
only L1 pseudo-range measurements and double-
differenced L1 carrier phase measurements.  This alternate 
estimation algorithm is like the algorithm described in 
Ref. 14, except that it has been augmented to allow the 
deletion and addition of GPS satellites as the receiver 
channels lose old signals and acquire new ones.  The point 
of this comparison is to determine the advantages, if any, 
of the new estimation algorithm's enhancements, which 
include the use of dual-frequency measurements and the 
use of real-valued, un-differenced ambiguities along with 
double-differenced integer ambiguities. 

A. Long Baseline LEO Results 

The first comparison case is for a pair of user spacecraft 
in similar LEO orbits with an apogee of 660 km, a perigee 
of 645 km, and an inclination of 87.1 deg.  Their 
separation ranges from 133.8 to 135.4 km and is mostly in 
the along-track direction.  The GPS receivers use a patch 
antenna with a hemispherical gain pattern that is 
nominally pointed towards zenith, and they use an 
elevation mask angle of 5 deg measured with respect to 
their patch antenna's horizon.  User spacecraft A tracks 
between 7 and 11 GPS signals during a single orbit, user 
spacecraft B sees anywhere from 6 to 12 signals, and the 
number of GPS satellites in common view ranges from 6 
to 11.  The GPS constellation includes 27 satellites.  The 
nominal sample period for this case is (tk - tk-1) = 2 sec. 

Results for this case are presented in Fig. 2, which plots 
time histories of the components of the relative position 
error vectors along with the number of commonly visible 
GPS satellites and their corresponding GDOP value.  The 
top plot shows along-track (A-T) error component time 
histories for 3 different estimation runs that operate on the 
same truth-model data, and the second and third plots 
from the top show the corresponding cross-track (C-T) 
and altitude (ALT) error component time histories.  The 
solid dark-grey curves are for the new estimator using 

j
TEC∆σ  = 0.11 TECU, the dash-dotted black curves are 

for the new estimator with j
TEC∆σ  = 2.00 TECU, and the 

light-grey dashed curves are for the comparison estimator 
that uses only L1 data.  The bottom plot presents the time 
histories for the number of GPS signals commonly 
available to receivers A and B and the resulting GDOP. 

There are large initial error transients for the new 
estimator when j

TEC∆σ  = 2.00 TECU and for the L1-only 

comparison estimator, as shown in the top 3 plots of Fig. 
2.  These correspond to initial errors in the integer 
ambiguity estimates, as evidenced by the results of Fig. 3.  
The top plot of Fig. 3 graphs the time histories of the 
maximum double-differenced carrier phase ambiguity 
errors for each of the three estimators, and the bottom plot 
graphs the number of ambiguities that are in error at any 
given time for the corresponding estimator.  The initial 
error transients on the top three plots of Fig. 2 correspond 
to times when the two ambiguity error metrics are non-
zero.  The two figures indicate that the new estimator with 

j
TEC∆σ  = 0.11 TECU converges to the correct 

ambiguities on the first sample.  The new estimator with 
j
TEC∆σ  = 2.00 TECU takes 412 sec to determine the 

correct ambiguities, and the L1-only estimator does not 
stabilize at the correct ambiguities until it has processed 
456 sec of data.  The new estimator, when used with the 
lowest j

TEC∆σ  tuning value, converges the most rapidly, 
as expected. 
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Fig. 2. Time histories of relative position error 

components, GDOP, and the number of 
commonly available GPS signals for a long-
baseline LEO case. 

Another interesting feature of these plots is the trouble 
that occurs after t = 3000 sec.  The L1-only estimator 
starts to experience larger errors at about t = 3220 sec.  
The new estimator with j

TEC∆σ  = 0.11 TECU develops 
errors in its double-differenced integer ambiguities during 
two extended periods, and these incorrect ambiguities 
cause corresponding errors in the along-track and altitude 
components of the relative position vector.  These 
problems are caused by significant non-zero single-
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differenced TEC values.  They are discussed in more 
detail below. 
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Fig. 3. Two sets of error metric time histories for 

double-differenced integer ambiguities for a 
long-baseline LEO case. 

The new estimator with j
TEC∆σ  = 2.00 TECU has no such 

troubles.  Its ambiguities remain correct, and it 
experiences no large spikes in its relative position error 
components, as evidenced in the top three plots of Fig 2.  
Its peak relative position errors after the initial settling 
interval are 0.0265 m along-track, 0.0115 m across-track, 
and 0.0552 m in altitude.  These error levels are 
reasonable given the large baseline and the significant 
errors due to incorrect GPS broadcast ephemerides and 
clock corrections.  Furthermore, they are consistent with 
their computed variances as determined using the square-
root information matrix of eq. (30). 

Further evidence of the efficacy of the new estimator with 
j
TEC∆σ  = 2.00 TECU is presented in Fig. 4.  This figure 

plots the estimated and truth values for the TEC (top plot), 
the differential TEC (middle plot), and the ECIF X 
component of the GPS satellite position error when using 
the broadcast ephemerides to compute position (bottom 
plot).  These plots apply to GPS SVID 1, the top plot is 
the TEC value along the LOS from receiver A to this 
SVID, and the middle plot is the difference between the 
TEC values along the lines of sight from receivers B and 
A to SVID 1.  The top two plots show reasonable tracking 
performance for the absolute and single-differenced TEC 
estimates.  The bottom plot shows that the estimated 
correction to the GPS satellite position is not very 
accurate.  Despite the poor convergence of this latter 
quantity, its inclusion in the filter provides the useful 
function of informing the estimator about potential low-
frequency errors due to uncertainties in the broadcast GPS 
ephemerides.  Note that the GPS position/clock Markov 
error models for all cases in this paper use the tuning 
parameters τ = 2500 sec and σe = 0.55 m. 

The top plot of Fig. 4 shows a TEC slope discontinuity at 
about t = 3200 sec, and the middle plot shows a 
corresponding jump in the differential TEC as the two 
spacecraft pass through this discontinuity at different 
times.  This discontinuity and similar discontinuities on 
other channels are what cause the L1-only CDGPS 
estimator to have an error spike at this time.  The middle 
plot also shows a ramping increase in the differential TEC 
starting at t = 3500 sec.  This increase and similar 
increases on other channels eventually invalidate the 
tuning assumption j

TEC∆σ  = 0.11 TECU, which is why 
the corresponding estimator experiences ambiguity errors 
and relative position error spikes after t = 4000 sec.  
These increases also explain the degradation of the L1-
only estimator’s along-track and altitude accuracy during 
the second half of the orbit. 
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Fig. 4. Truth-value and estimated time histories for 

representative absolute TEC, single-differenced 
TEC, and GPS satellite position error for a long-
baseline LEO case. 

These results can be compared with those of Ref. 7 when 
operating on actual data from the GRACE mission.  The 
GRACE mission is similar to the present example; it 
consists of 2 spacecraft orbiting at an altitude of 500 km 
and an inclination of 89 deg with a separation of about 
220 km.  Reference 7 implements 2 estimators, one that is 
kinematic and one that includes dynamic models of the 
positions, receiver clock errors, and TEC values.  The 
kinematic estimator of Ref. 7 has an accuracy similar to 
that of this paper's new estimator.  Peak along-track errors 
are on the order of 0.03 m.  The dynamics-based estimator 
of Ref. 7 is more accurate; it achieves peak along-track 
errors on the order of 0.002 m to 0.007 m.  Altitude and 
cross-track errors are not reported because the "truth" 
relative position is determined using the GRACE 
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mission's K-band ranging system, which makes 
measurements only in the along-track direction.  The 
performance reported in Ref. 7 is for a smoother, which 
should be more accurate than this paper’s new estimator 
because a smoother uses data from before and after any 
given time point of interest.  Furthermore, the GPS 
ephemerides used in Ref. 7 are post-processed values that 
are much more accurate than the broadcast values.  Thus, 
it is surprising and encouraging that the new estimator has 
performance comparable to that of the Ref.-7 kinematic 
estimator.  It is also encouraging that the new estimator 
converges to the correct double-differenced integer 
ambiguities in 412 sec or less while the average 
convergence time for the Ref.-7 estimator is 1200 sec. 

B. GEO Results 

A geosynchronous case has been run that uses a short 
separation of 3 km between receivers A and B.  Their 
relative position vector is oriented in the along-track 
direction of their mean orbit.  The simulation assumes that 
both spacecraft carry a typical patch antenna with a 
hemispherical gain pattern, and that the antenna is 
nominally pointed towards nadir.  It assumes that both 
GPS receivers have weak-signal acquisition and tracking 
capabilities which enable them to use L1 signals with 
carrier-to-noise ratios as low as C/N0 = 18 dB-Hz and L2 
signals with C/N0 as low as 15 dB-Hz.  These levels are 
feasible given the results of Refs. 9, 10, 11, and 23, but no 
currently available operational receiver can function at 
these signal levels.  These assumptions about receiver 
capabilities cause there to be between 11 and 12 GPS 
signals available at all times.  The nominal sample period 
is (tk - tk-1) = 30 sec for this case.   

Results for this case are shown in Fig. 5.  This figure is 
similar to Fig. 2:  The top three graphs plot along-track, 
across-track, and altitude time histories of the relative 
position error components.  The bottom graph plots the 
number of available GPS satellites common to receivers A 
and B and the corresponding GDOP values.  Although 
many satellites are available, GDOP ranges between 7.6 
and 13.2 because of their poor geometry; they are 
clustered relatively near the nadir direction.  The top three 
graphs plot error time histories for 3 estimators, an 
implementation of the new estimator that uses j

TEC∆σ  = 
0.76 TECU, another implementation that uses j

TEC∆σ  = 
5.00 TECU, and the L1-only comparison estimator. 

The new estimator performs well.  The estimator with 
j
TEC∆σ  = 0.76 TECU converges to the correct double-

differenced ambiguities on the first sample, and the 
j
TEC∆σ  = 5.00 estimator converges in 90 sec.  These two 

estimators have almost identical performance after the 
initial convergence period.  Their peak stead-state error 
magnitudes are 0.037 m along-track, 0.032 m across-
track, and 0.239 m in altitude.  The poorer performance in 
altitude is expected because the high GDOP mostly 

represents uncertainty of a linear combination of receiver 
clock error and altitude. 

The estimators’ predicted relative position error standard 
deviations have been calculated using the square-root 
information matrix in eq. (30).  Their average values are 
0.018 m along-track, 0.015 m across-track, and 0.100 m in 
altitude.  The actual peak errors are commensurate with 
these standard deviations and bear out the conjecture that 
the poorer altitude performance is a result of GDOP 
effects, which are directly reflected in the predicted 
standard deviations. 
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Fig. 5. GEO-case time histories of relative position 

error components, GDOP, and the number of 
commonly available GPS signals. 

The L1-only comparison estimator performs better than 
either of the new filters for all times except during the 
negative altitude error spike that occurs between the times 
t = 5500 sec and t = 5750 sec.  At other times, the along-
track, across-track, and altitude peak error magnitudes are, 
respectively, 0.014 m, 0.008 m, and 0.090 m.  The altitude 
error spike of 0.8 m occurs because the LOS vector to 
SVID 3 passes very near the Earth.  This causes it to cross 
a long section of increased ionospheric electron density, 
and the small differences between the LOS vectors to 
receivers A and B cause significant differential TEC to 
develop, which causes the error spike.  The new 
estimators do not have any error spikes because they 
successfully estimate and remove the spike in the 
differential TEC. 

Thus, the new estimators experience better performance 
when differential TEC is a concern, but their accuracies 
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are about 2.5 to 4 times worse when differential TEC is 
not a concern.  This is the expected result because any 
attempt to estimate additional quantities will increase the 
estimation error of other quantities if the new estimated 
quantities are certain to have negligible differences from 
their a priori values and if knowledge of this certainty is 
withheld from the estimator. 

There are two encouraging aspects of the GEO results.  
First, integer ambiguities can be resolved very rapidly, in 
90 sec or less.  This occurs even when a large (i.e., 
conservative) value is used for j

TEC∆σ .  Surprisingly, this 
occurs even when the peak magnitudes of the relative 
position error components equal or exceed a carrier 
wavelength.  It is conjectured that integer resolution is 
possible because there are smaller errors in the sub-space 
of the estimation problem that contains the double-
differenced ambiguities.  The second encouraging aspect 
is the high accuracy of the relative position estimates.  
Peak component errors of less than 0.25 m can be 
achieved despite average GDOP values of about 10. 

C. HEO Results 

A HEO case has been run for a pair of spacecraft in a 
highly elliptical mean Earth orbit with a perigee altitude of 
0.2 Earth radii and an apogee altitude of 17 Earth radii.  
The separation between the two spacecraft in a 
representative arc near apogee ranges from 9.3 km to 14.1 
km in the along-track direction.  These conditions are 
similar to those described for the Magnetospheric 
Multiscale Mission 2.  Each spacecraft is assumed to carry 
a hemispherical patch antenna that is nominally pointed 
towards nadir along with a weak-signal enabled receiver 
that can acquire and track L1 signals down to C/N0 = 12 
dB-Hz and L2 signals down to C/N0 = 9 dB-Hz.  These 
represent ambitious, but possibly realizable performance 
goals.  If this performance is not realizable, than a higher 
gain antenna can be substituted for the patch antenna, and 
similar performance can be achieved using a less capable 
receiver.  These assumed sensitivities allow the receivers 
to track between 7 and 12 common satellites during a 
12000 second data arc that uses a nominal sample period 
of (tk - tk-1) = 30 sec. 

Position error and GDOP time histories for this case are 
graphed in Fig. 6.  These results show many similarities to 
the GEO case, except the errors are larger and the 
ambiguities take longer to converge to the true values.  
The larger errors are mostly the results of larger GDOP 
values.  As shown in the figure’s bottom plot, GDOP for 
the satellites common to both receivers ranges from 60 to 
260 and has a mean of 120.  Again, GDOP primarily 
represents an error that is a linear combination of altitude 
and receiver clock offset. 

The new estimator that tunes j
TEC∆σ  to 1.6 TECU 

converges to the correct ambiguities in 240 sec, and the 

new estimator that uses j
TEC∆σ  = 10.0 TECU converges 

in 480 sec.  The faster convergence of the first tuning case 
is consistent with what is expected.  After the initial 
convergence, there are three brief periods when the 
estimator with the first tuning produces wrong double-
differenced ambiguity estimates for one SVID.  The 
ambiguity errors equal only 1 carrier cycle in each of 
these cases.  After the initial convergence of the estimator 
with the second tuning, there are almost 20 short periods 
during which it produces wrong integer ambiguities for 
one or two SVIDs.  These errors can be as large as 5 
carrier cycles.  There is no significant correlation between 
the observed spikes in the relative position error 
components and the short spikes in the ambiguity errors.  
It is conjectured that these errors occur in directions of the 
ambiguity subspace that do not have a significant impact 
on the relative position error. 
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Fig. 6. Relative-position-error and GDOP time histories 

for a HEO case with an altitude of 17 Earth 
radii. 

As in the GEO case, both cases that use the new estimator 
show poorer accuracy than the L1-only estimator 
whenever single-difference TEC is not significant, but the 
new estimators have superior accuracy when TEC 
differences become large.  This can be seen on the third 
graph of Fig. 6.  The L1-only estimator shows large 
negative altitude error spikes between the times t = 4000 
sec and t = 4200 sec and between the times t = 10800 sec 
and t = 11000 sec.  These correspond to times when one 
SVID's signal passes near the Earth, and therefore, 
through a long path of large electron density.  At other 
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times, the L1-only estimator's peak steady-state along-
track, across-track, and altitude errors are, respectively, 
0.419 m, 0.057 m, and 2.830 m.  The corresponding peak 
steady-state errors for the 2 cases of the new estimator are 
0.421 m, 0.257 m, and 8.323 m when j

TEC∆σ  = 1.6 
TECU and 0.425 m, 0.259 m, and 9.157 m when j

TEC∆σ  
= 10.0 TECU.  The L1-only estimator is about 4.5 times 
as accurate as the L1/L2 estimator in across-track 
position, about 3 times as accurate in altitude, and 
comparable in along-track position when single-
differenced TEC is negligible. 

The actual error magnitudes for the new estimator are 
consistent with their computed covariances as determined 
from the square-root information matrix in eq. (30).  This 
can be seen in a rough way on Fig. 6 by noting that the 
noisiest sections of the altitude plot tend to correspond to 
the times when GDOP is the highest -- compare the last 
two graphs on the figure. 

D. Lunar Results 

The last case to be considered is for a pair of user 
spacecraft that are orbiting at the Lunar altitude with an 
along-track separation of about 3700 km, which is roughly 
equal to the Lunar diameter.  Each receiver is assumed to 
have a 1 m dish antenna that is pointed towards the Earth 
and to have the ability track C/N0 as low as 15 dB-Hz on 
both the L1 and L2 frequencies.  These conditions allow 
the receivers to track between 10 and 12 common GPS 
signals, and the achieved GDOP ranges between 650 and 
1010 with an average of about 770. 

Relative position error and GDOP time histories for this 
case are shown in Fig. 7.  As expected, the relative 
position errors are larger than in all the other cases, 
especially in altitude.  The errors seem to take about 1000 
sec to converge to steady-state performance.  Note, 
however, that the carrier phase double-differenced 
ambiguities never all converge to correct integer values.  
During a significant number of samples, the integer least-
squares solution algorithm of Ref. 18 terminates 
prematurely at a sub-optimal solution to the ambiguity 
resolution problem.  It does this because a metric of its 
computational burden experiences an over-run.  This 
problem is more pronounced for the estimator that uses 
the higher tuning value of j

TEC∆σ .  The poorer accuracy, 
the incorrect ambiguities when the integer least-squares 
algorithm does terminate, and the premature termination 
of the integer least-squares algorithm are all caused by the 
extremely large GDOP values associated with this case, as 
depicted in the figure's bottom graph. 

Nevertheless, the estimation accuracy of this system is 
impressive.  The steady-state component errors of the new 
estimator's solution are all smaller than 26 m in 
magnitude.  The new estimators are at least an order of 
magnitude more accurate than the L1-only estimator – 

consider the light grey dashed curves that rarely have 
small enough errors to lie within the vertical bounds of 
Fig. 7’s first and third graphs.  If the new algorithm’s 
estimation errors are averaged over the last 11000 sec of 
this interval, then the relative position error components 
can be reduced to less than 3 meters.  This system might 
provide a means of surveying the relative positions of 
base stations of a Lunar Positioning System.  Further 
enhancements, such as knowledge that the receivers are 
fixed to the Moon, might further improve the accuracy.  
This type of system warrants further study. 
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Fig. 7. Relative-position-error and GDOP time histories 

for a case at the Lunar altitude. 

VI. AREAS FOR IMPROVEMENT 

There exist a number of possible enhancements that might 
improve the new estimator.  An obvious area for 
improvement would be to add dynamic models for the 
absolute and relative positions of receivers A and B, for 
the receivers' clock errors, and for the TEC variations 7.  
Such models would improve performance by increasing 
the amount of averaging/filtering of measurement noise.  
In addition, an orbital dynamic model couples along-track 
motion to altitude.  This coupling would enable the 
relatively good measurement geometry for determining 
along-track errors to have a beneficial impact on the large 
altitude errors.  The net effect could be a significant 
reduction in the equivalent GDOP of the system.  As an 
added benefit, the incorporation of a dynamics model 
would yield absolute and relative velocity estimates, 
which would be needed if it were necessary to control the 
absolute or relative motion of the formation. 
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A second possible improvement would be to tailor 
j
TEC∆σ  to use different values for different SVIDs.  An 

SVID with a lower absolute TEC would be assigned a 
lower standard deviation for the single-differenced TEC, 
but an SVID with a larger absolute TEC would be 
assigned a higher standard deviation.  For LEO cases, this 
assignment could be made as a function of the elevation 
angle of the LOS vector.  For high-altitude cases, the 
assignment could be made as a function of the minimum 
altitude along the LOS vector.  If feasible, this tailoring of 

j
TEC∆σ  would cause the accuracy of the new estimator to 

approach that of the L1-only estimator in cases of low 
single-differenced TEC because the corresponding low 

j
TEC∆σ  values would signal to the estimator that the 

single-differenced TEC was near enough to zero to be 
safely ignored.  Conversely, if the single-differenced TEC 
were larger, then the corresponding larger j

TEC∆σ  values 
would warn the algorithm to explicitly estimate the single-
differenced TEC value based on L1 and L2 data, which 
would enable it to avoid the L1-only error spikes that are 
evidenced in Figs. 5 and 6. 

A third possible improvement would be to add an 
ambiguity validation and fixing procedure.  It would allow 
the integer least-squares solver to work with fewer 
unknowns, which would speed its execution.  This 
validation strategy should probably be tailored to have the 
capability to fix only some of the integer ambiguities.  A 
related improvement would be to modify the estimator so 
that it retained the information contained in a validated 
double-differenced integer ambiguity even when GPS 
signals associated with that ambiguity were no longer 
available. 

A fourth possible improvement would be to detect and 
correct for cycle slips.  This ability would be particularly 
important when operating on weak side-lobe signals at 
high altitudes because the carrier tracking phase-lock loop 
would have a greater tendency to experience cycle slips.  
The goal should be to do some sort of hypothesis testing, 
as in Ref. 14.  The necessary algorithm would probably be 
simpler than that used in Ref. 14 because it should be 
easier to isolate cycle slips when using un-differenced 
ambiguities, as in the present formulation. 

Additional work should be done to test the ideas presented 
here.  This work should include additional simulation 
testing and testing with actual flight data.  The simulation 
testing should consider more cases, it should incorporate a 
model of cycle slips for weak signal cases, and it should 
use improved transmitter antenna gains patterns that have 
realistic nulls at the edges of the main lobes.  Testing with 
flight data would need to be restricted to LEO cases 
because high-altitude data of sufficient quality is not 
currently available.  A prime candidate for testing is the 
GRACE data that has been used in Ref. 7. 

VII. SUMMARY AND CONCLUSIONS 

A new estimator has been developed that uses CDGPS 
techniques in order to determine the relative positions of a 
pair of Earth-orbiting spacecraft.  The estimator uses 
civilian GPS L1 and L2 pseudo-range and carrier phase 
data, and it is based on the kinematic approach.  It 
estimates absolute and relative positions, receiver clock 
corrections, ionospheric TEC, residual errors in the GPS 
satellite positions and clock corrections, and carrier phase 
ambiguities.  The estimator deals with the ambiguities in a 
two-stage process.  The first stage deals with un-
differenced, real-valued ambiguities and performs 
traditional measurement updates.  The second stage uses 
double-differences to isolate a subspace of the ambiguities 
that take on exact integer values.  A LAMBDA method 
and an integer least-squares solution are implemented in 
this sub-space in order to optimally estimate these 
integers.  An additional feature of the estimator is that it 
uses a pseudo-measurement of the single-differenced 
ionospheric TEC in order to provide a kind of soft bound 
on the ambiguity search space.  Additional soft bounds to 
the ambiguity search are provided by the pseudo-range 
measurements. 

The performance of the new estimator has been evaluated 
using a truth-model simulation.  Its long-baseline LEO 
performance is comparable with that of other kinematic 
estimators.  It has also been tested at altitudes above the 
GPS constellation, including GEO, an altitude of 17 Earth 
Radii, and the Lunar altitude.  These high-altitude tests 
presume the availability of GPS receivers that can acquire 
and track weak side-lobe signals; otherwise, the number of 
tracked satellites would be insufficient to enable the use of 
CDGPS techniques.  Accuracy is directly affected by the 
high GDOP values that occur in all high-altitude cases.  
These values range from about 10 at GEO to near 1000 at 
the Lunar altitude.  Ambiguity resolution happens almost 
immediately for a short-baseline GEO case, and the 
maximum relative position error is on the order of 0.25 m.  
At 17 Earth radii, ambiguity resolution can require as long 
as 500 sec, and several channels can experience 
intermittent ambiguity resolution errors if the single-
differenced TEC pseudo-measurement bounds are not 
sufficiently tight.  Relative position accuracy in this case 
is on the order of 10 m.  At Lunar altitudes, it becomes 
difficult to resolve ambiguities correctly, and relative 
position errors can be as large as 25 m for a baseline equal 
to the Lunar diameter. 

Ambiguity resolution is often possible even when the 
relative position errors are larger than a carrier 
wavelength.  This result is thought to be caused by a lower 
uncertainty in the subspace of the estimation problem that 
is spanned by the double-differenced integer ambiguities.  
Alternatively, this result may be more a function of the use 
of a powerful integer least-squares solution algorithm. 
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