
Copyright © 2010 by Brady W. O’Hanlon, Mark L. Psiaki,

Todd E. Humphreys, and Jahshan A. Bhatti. All rights reserved. Preprint from ION GNSS 2010.

Real-Time Spoofing Detection in a Narrow-Band

Civil GPS Receiver

Brady W. O’Hanlon, Mark L. Psiaki, Cornell University, Ithaca, NY

Todd E. Humphreys, Jahshan A. Bhatti, The University of Texas at Austin, Austin, TX

BIOGRAPHY

Brady W. O’Hanlon is a graduate student in the School of

Electrical and Computer Engineering at Cornell University.

He received a B.S. in Electrical and Computer Engineering

from Cornell University. His interests are in the areas of

GNSS technology and applications, GNSS security, and space

weather.

Mark L. Psiaki is a Professor in the Sibley School of

Mechanical and Aerospace Engineering. He received a B.A. in

Physics and M.A. and Ph.D. degrees in Mechanical and

Aerospace Engineering from Princeton University. His

research interests are in the areas of estimation and filtering,

spacecraft attitude and orbit determination, and GNSS

technology and applications.

Todd E. Humphreys is an assistant professor in the department

of Aerospace Engineering and Engineering Mechanics at the

University of Texas at Austin. He received a B.S. and M.S. in

Electrical and Computer Engineering from Utah State

University and a Ph.D. in Aerospace Engineering from Cornell

University. His research interests are in estimation and

filtering, GNSS technology, GNSS-based study of the

ionosphere and neutral atmosphere, and GNSS security and

integrity.

Jahshan A. Bhatti is pursuing a Ph.D. in the Department of

Aerospace Engineering and Engineering Mechanics at the

University of Texas at Austin, where he also received his B.S.

His research interests are in the development of small

satellites, software-defined radio applications, and GNSS

technologies.

ABSTRACT

A real-time method for detecting GPS spoofing in a narrow-

bandwidth civilian GPS receiver has been implemented and

tested, both in the absence of and in the presence of spoofing.

The system was implemented as a software-defined radio

system on a personal computer, using a pair of narrow-

bandwidth radio front-ends that were geographically

separated, with data transmitted between the two over the

Internet.

The presence of a spoofing signal is determined by mixing and

accumulating the base-band quadrature channel samples from

the two receivers, with the aim of cross-correlating the P(Y)

code that should be present in both signals in the absence of

spoofing.

Cross-correlation of spurious signals and undesired

autocorrelation of C/A codes precluded the reliable detection

of a spoofing signal in the real-time system, though further

post-processing in MATLAB resolved these issues.

I. INTRODUCTION

As the reliance of the civilian community on GPS signals for

timing and positioning in mission-critical applications grows,

so does the vulnerability to and potential cost of an attack via

signal spoofing. GPS signal spoofing is a type of attack

whereby a GPS receiver is fooled into tracking counterfeit

signals, generally with the intention of misleading the receiver

with regards to position, time, or both. In 2001 the U.S.

Department of Transportation warned of the vulnerability of

civilian GPS receivers to attacks such as spoofing
1
, and such

attacks have since been demonstrated by a variety of parties
2,3

.

Given the potential damage a successful spoofing attack could

inflict, detecting this kind of attack is of paramount

importance. The spoofing detection method implemented here

was proposed by Lo et al.
4
, and is based on the presumed

security of the encrypted P(Y) code. This paper seeks to

examine the efficacy of this method in the context of a

narrow-bandwidth real-time software receiver using only those

components that would normally be used in a civilian receiver

(that is, using only a patch antenna rather than a high-gain

antenna and no additional timing hardware).

The Lo method assumes that a spoofer can only spoof the C/A

code, and in doing so thereby changes the relationship

between the C/A code and P(Y) for a particular spoofed

signal. Let us assume that there exists a “reference” receiver

that is trusted (that is, the signals are believed genuine), and a

“user equipment” receiver which may or may not be under a

spoofing attack. If one can isolate that portion of the signal

that should contain the P(Y) code from the reference receiver,

a cross-correlation of this data and similar data from the user

equipment receiver can be carried out. Only if the user

equipment receiver is not being spoofed should there be a

large correlation value due to the cross-correlation of the P(Y)

code from both sets of data. Properly executing this cross-

correlation requires isolating the portion of the signal that

should contain the P(Y) code and temporal alignment of the

two data streams.

A good discussion on the probable efficacy of several other

spoofing detection methods can be found in the paper by

Humphreys.

 2

Section II of this paper contains a description of the hardware

used in this work. Section III is an overview of the software

used in implementing this spoofing detection method

including the algorithm in general terms, derivation and

analysis of the spoofing detection statistic threshold, and

peculiarities that are necessary due to the particular software

receiver used. Section VI contains initial results from testing

the algorithm under a variety of conditions including when the

UE receiver is being subjected to a spoofing attack. Section V

contains a discussion of the results, including an in-depth

analysis of the algorithm shortcomings and challenges (done

in MATLAB), the possibility of spoofing of the reference

receiver, and one possible method of C/A code interference,

and Section VI contains conclusions.

II. HARDWARE OVERVIEW

Data for this experiment was collected using custom designed

radio-frequency front-ends (RFEs) paired with data acquisition

units. The RFEs used have intermediate frequency filters with

a bandwidth of 1.9 MHz, and produce 2-bit quantized data at a

sampling frequency of approximately 5.7 MHz. The

quantized data is recorded to a personal computer using a data

acquisition peripheral and then transmitted over the internet

from the reference receiver to the user equipment receiver,

where all processing is done. As the sampling rate is only 5.7

MHz and the data are sampled with 2-bit quantization, this

means the data link between the reference and user equipment

receivers need only support rates of 11.4 megabits per second,

which is well within the capabilities of standard internet

connectivity.

All processing was done on a personal computer with a quad-

core Intel i7 930 CPU, and only standard hemispherical patch

antennas were used at both the reference and user equipment

receivers.

A block diagram of the system architecture is shown in Fig. 1.

L1 RF

Front end

UE Receiver

Needing Spoofing

Detection

Sampled,

quantized
data at IF

π/2

Carrier replica

generator
feedback

Additional

C/A code

processing

P(Y) code cross-

correlation

L1 RF

Front end

Sampled,

quantized
data at IF

Carrier replica

generator
feedback

Additional

C/A code

processing

L1 RF

Front end

L1 RF

Front end

Trusted

Receiver

Carrier replica

generator
feedback

Additional
C/A code

processing

π/2

generator
feedback

Additional
C/A code

processing

Internet link

L1 RF

Front end

UE Receiver

Needing Spoofing

Detection

Sampled,

quantized
data at IF

π/2

Carrier replica

generator
feedback

Additional

C/A code

processing

P(Y) code cross-

correlation

L1 RF

Front end

Sampled,

quantized
data at IF

Carrier replica

generator
feedback

Additional

C/A code

processing

L1 RF

Front end

L1 RF

Front end

Trusted

Receiver

Carrier replica

generator
feedback

Additional
C/A code

processing

π/2

generator
feedback

Additional
C/A code

processing

Internet link

Fig. 1. Spoofing detection receiver architecture.

III. SOFTWARE OVERVIEW

In this section we will examine the general theory behind the

spoofing detection method implemented here, how the

spoofing detection statistic threshold was calculated, and

general algorithms required due to the particular software

receiver that was used.

A. Spoofing detection algorithm

In this implementation of the Lo spoofing detection method,

temporal alignment of the two data streams is first step taken.

Rather than time-stamping the data streams using additional

equipment, the embedded navigation message data is used. To

do this, both data streams are tracked until the time of week

(TOW) has been decoded in both. Using this information, the

latency between the two streams can be determined.

Whichever stream lags is then tracked while the other stream

is buffered, until the receiver is processing the exact same C/A

code period on both data streams. The estimated start time of

the n
th

 C/A code period for the reference receiver is defined as

tref(n). Similarly, the estimated start time of the n
th

 C/A code

period for the user equipment receiver is defined as tue(n).

Given that we know tref(n) and tue(n) from the normal,

continuous tracking of the C/A signal, and given that any

group delay between the C/A and P(Y) codes is determined by

the transmitter and common to both the reference and UE

receivers, the P(Y) code phase in the reference receiver data

stream at tref(n) should be the same as the P(Y) code phase in

the UE receiver data stream at time tue(n).

Due to low sampling rate (5.7 MHz) of the receivers used in

this work as compared to the chipping rate of the P(Y) code

(10.23 MHz) there is the question of sub-sample alignment as

well as the coarse alignment described above. That is, to

achieve a large cross-correlation value, we must temporally

align the P(Y) codes to within a fraction of a chip. The P(Y)

chip period of about 97 ns and the data sampling period of 175

ns means that if alignment is done only to the nearest sample it

could be off by as much as 0.55 chips, leading to significant

correlation loss. However, as the sampling period is not a

multiple of the P(Y) code chipping period, this error will vary

over the course of each accumulation, sometimes being close

to zero. The computational resources that would be required

to interpolate the data on a sample-by-sample basis to the

estimated start times of the P(Y) code chips was deemed

prohibitively expensive, so instead we have elected to simply

choose the sample nearest the estimated P(Y) code chip start

time, updating it every millisecond based on the estimated C/A

code start time.

The GPS C/A and P(Y) codes are both transmitted on the L1

frequency, with the C/A code being transmitted ninety degrees

out of phase with respect to the P(Y) code. As the P(Y) code

is encrypted and generally unavailable to civilians, it is

necessary to track the C/A code in such a way that the phase is

known.

A phase-locked loop (PLL) is used to accurately measure the

phase of the desired C/A code signal. The PLL discriminator

 3

requires mixing of the signal with both an in-phase and a

quadrature carrier replica, as illustrated in Fig. 1. The PLL is

formulated to steer the carrier such that the C/A code power

lies entirely in the in-phase channel after carrier wipe-off. As

the P(Y) code is in quadrature with the C/A code, all that is

required to isolate the portion of the signal that should contain

the P(Y) code is to save a replica of the data after mixing with

the quadrature carrier replica. It should be noted that it is

assumed that the receiver is tracking many satellites (say, ten)

concurrently. Due to memory constraints, it was desirous to

avoid storing a replica of the data after carrier mixing for

every satellite, so instead the only the data along with a copy

of the frequency and phase of the carrier replica used for

mixing is retained. This is further discussed in section III.C

below.

Once the portion of the signal containing P(Y) code has been

isolated in both the reference receiver and the user equipment

receiver, it only remains to multiply the two data streams on a

sample-by-sample basis and accumulate the result. If the

receiver is not being spoofed, one is essentially computing the

autocorrelation of the P(Y) code as modified by the receiver

front-end and with the inclusion of noise.

B. Detection Threshold Calculation and Analysis

It is necessary to analyze the cross-correlation spoofing

detection statistic in order to determine how much integration

time would be required in order to achieve a reasonably small

probability of false alarm and, at the same time, a reasonably

large probability of detecting an actual spoofing attack. This

analysis is particularly important given the unusual approach

used here, one which relies on a heavily filtered version of the

P(Y) code that retains only the central 1.9 MHz of its 20 MHz

bandwidth.

The analysis begins with mathematical models of the

quadrature base-band mixed versions of the two signals for the

GPS satellite in question. One is from the reference receiver,

Receiver A, and the other is from the UE receiver that seeks to

detect a possible spoofing attack, Receiver B. Normalized

models of these two signals take the form:

AiiFAAi ntPNC∆ty +=)()/(0 (1a)

BiiFBBi ntPNC∆ty +=)()/(0 (1b)

where yAi is the quadrature base-band-mixed signal from

Receiver A that is sampled at time ti, and yBi is the quadrature

base-band-mixed signal from Receiver B sampled at the same

time. The sample period of the RF front-end is ∆t = ti+1-ti.

The quantities (C/N0)A and (C/N0)B are the two P(Y) code

signals' received carrier-to-noise ratios in absolute Hz units.

These quantities include the attenuation effects of the narrow-

band RF front-end filter, about 7 dB of P(Y) code attenuation

in the case of a 1.9 MHz filter. The signal PF(t) is the

distorted version of the P(Y) code that comes out of the

narrow-band RF front-end filter, but re-normalized to have

unit power. This re-normalization is consistent with lumping

all of the power loss into the received carrier-to-noise ratios

(C/N0)A and (C/N0)B.

The terms nAi and nBi are the base-band-mixed receiver noise

terms, which are assumed to be Gaussian, zero-mean,

uncorrelated from sample to sample, and uncorrelated between

the two receivers. The normalization used to derive these

equations assumes a unit variance for the Gaussian noise in

each receiver's raw RF front-end samples. This normalization

implies that nAi and nBi both have standard deviations equal to

2/1 . The derivation of this normalized model assumes the

use of a unit-amplitude sinusoidal in order to implement the

quadrature base-band mixing that generates yAi and yBi.

The formulas in Eqs. (1a) and (1b) can be used to analyze the

following cross-correlation spoofing detection statistic

∑=
=

M

i
BiAi yy

1

~γ

 BA NCNC∆tM)/()/(00≅

 ∑ ++
=

M

i
BiiFABiAi ntPNC∆tnn

1
0)()/([

])()/(0 AiiFB ntPNC∆t+ (2)

where M is the number of quadrature base-band-mixed RF

samples used to compute the statistic. This number is related

to the correlation statistic's accumulation interval as follows:

Tcorr = M∆t.

The mean and variance of this detection statistic are

BA NCNC∆tME)/()/(}~{~
00== γγ (3a)

[]{ }BA NCNC∆t
M

E)/()/(21
4

)~(}~{ 00

222
~ ++=−= γγσ γ

 (3b)

These are the mean and variance of the test statistic under the

assumption of no spoofing at Receiver B. Note that it is

always assumed that there is no spoofing at reference Receiver

A.

If Receiver B is being spoofed, then the mean and variance of

the test statistic will change because the P(Y) code will

disappear from Receiver B. The modified mean and variance

can be computed by setting (C/N0)B = 0 in both equations. The

results are spoofedγ~ = 0 and

{ }Aspoofed
NC∆t

M
)/(21

4
0

2
~ +=γσ (4)

Given this spoofed variance for γ~ , it is helpful to re-

normalize the detection statistic through division by the value

spoofedγσ ~ . This re-normalized detection statistic is

 4

{ }A

M

i
BiAi

spoofed
NC∆t

M

yy

)/(21
4

~

0

1

~
+

∑
== =

γσ
γ

γ (5)

This statistic has a spoofed mean of 0 and a spoofed variance

of 1. Its un-spoofed mean and variance are

A

BA

NC∆t

NCNCM
∆tE

)/(21

)/()/(
2}{

0

00

+
== γγ

A

BAcorr

NC∆t

NCNC∆tT

)/(21

)/()/(
2

0

00

+
= (6a)

[]
A

BA

NC∆t

NCNC∆t
E

)/(21

)/()/(21
)(}{

0

00222

+

++
=−= γγσ γ (6b)

Suppose that the probability density function of the detection

statistic γ under the null hypothesis of no spoofing is p(γ|H0),

and suppose that its probability density function is p(γ|H1)

under the hypothesis of spoofing. Both of these probability

densities involve a sum of products of Gaussian random

variables: the noise product on the third line of Eq. (2). Due to

the central limit theorem, however, it is reasonable to

approximate both of these distributions as being Gaussian

because they are the result of summing many small random

components, typically thousands to millions of them.

Therefore, these two distributions can be approximated as:

}
2

)(
exp{

2

1
),;()|(

2

2

0

γγ
γ

σ

γγ

σπ
σγγγ

−
−== NHp (7a)

}5.0exp{
2

1
)1,0;()|(

2
1 γ

π
γγ −== NHp (7b)

As is obvious from Eqs. (7a) and (7b), N(x;µ,σ) refers to a

normal distribution in x with mean µ and variance σ 2
.

The probability density function in Eq. (7a) can be used to

compute a spoofing detection threshold γth that has the false

alarm probability α. It is computed by solving the following

integral equation:

∫=∫=
∞−∞−

thth

ddHp
γ

γ

γ
γσγγγγα),;()|(0 N (8)

This equation can be solved using the MATLAB function

norminv.m: γth = norminv(α, γ ,σγ). This detection statistic is

applied as a minimum value. A spoofing attack has been

detected if γ < γth.

Given the spoofing detection threshold γth, the probability

density function in Eq. (7b) can be used to compute the

probability of detection. It is

∫=∫=
∞−∞−

thth

ddHpPdetect

γγ
γγγγ)1,0;()|(1 N (9)

This probability can be computed using the MATLAB function

normcdf.m: Pdetect = normcdf(γth,0,1).

A real implementation of the spoofing test γ < γth requires an

ability to compute the properly normalized statistic γ and the

corresponding value of γth. The necessary computations

assume knowledge of the actual noise power (i.e., noise

variance) in the receiver's raw RF front-end samples along

with knowledge of the carrier-to-noise ratios of the two

received P(Y) code signals. The noise power normally can be

determined based on an understanding of the RF front-end's

analog automatic gain control (AGC) unit. An alternate,

perhaps superior, noise power estimate can be developed by

considering the variance of the in-phase and quadrature

accumulations that are produced by the C/A code tracking

loops. The received carrier-to-noise ratios of the P(Y) code

can be inferred from those of the tracked C/A code. This

inference uses the fact that received P(Y) code carrier-to-noise

ratios are typically 2 to 3 dB lower than those of the C/A code

on L1 even for a wide-band RF front end. This inference also

factors in the loss of P(Y) code power in the RF front-end's

narrow-band filter. The needed normalization calculations are

developed in the following paragraphs.

The normalization calculations start by computing the mean

and variance of the squared magnitudes of each receiver's

C/A-code prompt in-phase/quadrature accumulation vector:

}{
22

/
// akcakc

QIEz ac += (10a)

2
/

2222
/ }]{[

//
acazc zQIE

akcakc
−+=σ (10b)

where Ic/ak and Qc/ak are, respectively, the receiver's prompt in-

phase and quadrature C/A-code accumulations for the k
th

accumulation interval. The two expectation operations can be

carried out using time averages over many accumulations.

These two statistics can be used to compute the Ic/ak and Qc/ak

accumulations' equivalent noise-free power and their noise

variance:

2
/

2
/

2
azcacIQ zA σ−= (11a)

)(5.0 2
/

2
//

2
azcacacIQ zz σσ −−= (11b)

where AIQ is the estimated magnitude of the noise-free [Ic/ak;

Qc/ak] vector and
2
IQA is its power. The accumulations' noise

variance can be used to estimate the noise variance of the raw

RF front-end samples:

22 2
IQ

accum
RF

T

∆t
σσ = (12)

 5

where Taccum is the accumulation interval that the receiver has

used to compute the Ic/ak and Qc/ak accumulations. This

estimate is independent of any knowledge of the receiver's

AGC unit. This calculation assumes that unit-amplitude

sinusoids have been used to perform the base-band mixing of

the raw RF samples in preparation for calculation of the Ic/ak

and Qc/ak accumulations.

The C/A-code carrier-to-noise ratio in absolute Hz units is

computed using the results of Eqs. (11a) and (11b):

accumIQ

IQ
ac

T

A
NC

2

2

/0
2

)/(
σ

= (13)

The results in Eqs. (12) and (13) can be computed for

Receivers A and B in order to yield the quantities σRFA, σRFB,

(C/N0)c/aA, and (C/N0)c/aB. The latter two quantities can be used

to estimate the P(Y) code received carrier-to-noise ratios as

follows:

FaAcA LNCNC
25.0

/00 10)/()/(
−= (14a)

FaBcB LNCNC
25.0

/00 10)/()/(
−= (14b)

where the 10
-0.25

 factors implement the assumption that the

unfiltered received P(Y) code has 2.5 dB less power than the

received C/A code. The loss factor LF accounts for P(Y) code

power losses in the two RF front-ends' narrow-band filters. LF

= 0.2039 (i.e., a 6.9 dB loss) if both receivers use a 1.9 MHz

wide RF front-end filter. This value has been determined by

numerically integrating the usual sinc
2
 power spectral density

of the P(Y) code over the narrow-band filter's bandwidth.

This calculation has assumed a "brick-wall" filter roll-off

curve. The correct LF value associated with a different filter

bandwidth can be calculated using similar techniques.

Note that the assumption of equal filtering losses in both

receivers is consistent with the assumption of this method that

both receivers' RF front-ends use similar filters. This

assumption is important to the validity of the model in Eqs.

(1a) and (1b). Without this condition, the PF(t) function would

not be identical in the two receivers' signal model equations,

and the differing distorted versions of the P(Y) code might not

correlate as well with each other as is assumed in the present

developments.

Given the estimates of the received P(Y) code carrier-to-noise

ratios from Eqs. (14a) and (14b), one can compute the

expected mean and variance of the non-spoofed γ detection

statistic by using Eqs. (6a) and (6b). These values, along with

the desired probability of false alarm, can be used in Eq. (8) in

order to compute the spoofing threshold γth. This threshold

value is then compared to the normalized spoofing statistic,

which is calculated as follows:

{ }ARFBRFA

M

i
rawBirawAi

NC∆t
M

yy

)/(21
4

0

1

+

∑
= =

σσ

γ (15)

where yrawAi and yrawBi are the un-normalized base-band

quadrature RF samples. They will have been computed by

mixing the raw RF samples to base-band using a unit-

amplitude version of the quadrature base-band-mixing

sinusoid.

In order to better appreciate the power of this spoofing

detection test, consider the following example: Suppose that

the P(Y) codes have carrier-to-noise ratios of 45 dB-Hz before

they pass through each receiver's 1.9-MHz-wide RF front-end

filter. Then their filtered carrier-to-noise ratios are (C/N0)A =

(C/N0)B = 10
3.809

 Hz (i.e. 38.09 dB-Hz). Suppose that the RF

sample interval is ∆t = 175x10
-9

 sec and that the correlation

statistics are computed by summing over intervals of length

Tcorr = 1.2 sec, i.e. by summing over M = 6,857,143 samples.

Suppose, also, that the desired probability of a false spoofing

alarm is 0.13 %, i.e., α = 0.0013. Then the computed mean

and standard deviation of the detection statistic are,

respectively, γ = 5.9029 and σγ = 1.0011. The detection

threshold from Eq. (8) is γth = 2.8881, and the probability of

detection from Eq. (9) is Pdetect = 0.998062 (99.8062 %).

Thus, a 1.2-second correlation interval can produce acceptable

levels of false-alarm probability and spoofing detection

probability even when using the greatly attenuated and

distorted version of the P(Y) code that comes out of a 1.9

MHz wide RF front-end filter.

C. Implementation-specific issues

The code for this work was based on a previously existing

software GPS receiver
5
 written in the C and C++

programming languages. This receiver implements several

techniques with regards to carrier mixing and data storage that

required the development of additional algorithms.

Phase errors due to non-continuous carrier base-band

mixing phases across accumulation boundaries. Carrier

replicas in this receiver are pre-computed on a grid of Doppler

frequencies and with an initial phase of zero and stored in

memory as a way to reduce computational load. Carrier

mixing is done over a 1 millisecond period that is defined to

be the sub-accumulation period. This leads to an average

phase error over the sub-accumulation period that is defined as

∆φ. After code and carrier wipe-off, the resultant (I,Q) vector

is rotated by ∆φ prior to processing by the PLL to obtain the

true phase. Consider now a single sample of the data from one

receiver after carrier-wipe off as a complex sample (A+jB).

As previously stated, the goal is to mix the quadrature

component of the base-band mixed samples from the reference

and UE receivers, but each sample after carrier wipe-off has

the aforementioned phase error ∆φ. One way to resolve this

 6

would be to rotate each sample by ∆φ, then mix the resultant

quadrature portions of the data. Let this post-rotation

quadrature accumulation be denoted Qrot. It can be written as

follows:

∑
=

∆−+∆−+=
N

i

iiiirot jjBAjjBAQ
0

222111)]exp(*)Im[(*)]exp(*)Im[(ϕϕ
 (16)

Where the subscript 1 or 2 denoted which receiver the sample

is from, the subscript i denotes a time index, and the A and B

are the data samples after carrier wipe-off with in-phase and

quadrature carrier replicas, respectively. Rearranging this

expression and evaluating the sum leads to

)sin()cos()cos()sin(

)sin()sin()cos()cos(

21212121

21212121

ϕϕϕϕ

ϕϕϕϕ

∆∆−∆∆−

∆∆+∆∆=

IQQI

IIQQQrot (17)

Where Q1Q2 indicates the cross-correlation of the quadrature

base-band mixed data from receivers 1 and 2, I1I2 is the in-

phase base-band mixed cross-correlation, and the other terms

are cross-terms. Thus the cross-correlation rotation can be

done after mixing and accumulation of the two data streams

rather than on a sample-by-sample basis, but at the cost of

having to carry out four times the number of cross-

correlations.

Bit-wise parallel algorithms. Bit-wise parallel algorithms as

described in Ref. 6 were implemented as an optimization. In

this bit-wise approach, the data are stored as 32-bit integers.

The data are quantized to two bits, with the sign bits from one

set of 32 samples stored in one integer, and the associated

magnitude bits in another. The carrier replicas are similarly

packed into integers with sign and magnitude being two

separate words. As stated in section A above, carrier wipe-off

has not yet actually been done; we have only a copy of the

data and the parameters used for carrier mixing. Thus to

execute a cross-correlation, me must multiply and accumulate

four things: the carrier replicas from both the reference and

UE receivers, and the associated data from the reference and

UE receivers. To enable a look-up table implementation all of

the above inputs were split into 4-bit chunks. The sign bits are

all logically exclusive-or’ed together, leaving only the data

magnitude and carrier replica bits from each receiver. The 4

bits chunks of each of the above elements (dataref, dataue,

carrierref, carrierue, sign) are combined into a 20 bit word and

then used as an index into a pre-computed look-up table,

where the value at that index is the result of multiplying and

accumulating the two base-band mixed data streams. It was

determined that the largest possible accumulation value could

be stored in two bytes, so the resultant table size was 2
20

 *2

bytes = 2MB.

IV. RESULTS

Several different tests were conducted using this algorithm.

The first such test was a using data from two receivers located

in Ithaca, New York (42.44 E, 76.48 W), spaced about 1

kilometer apart. Neither of the receivers were being spoofed.

The cross-correlation statistic versus time for this test is shown

in Fig. 2. In the interest of clarity only three channels are

shown, though there were a total 9 satellites in view of both

receivers.

Fig. 2. Cross-correlation statistic vs. time for two nearby

receivers, neither of which is being spoofed.

Rather than the expected large positive cross-correlation

power, there is a large amplitude oscillation present on two of

the signals, though their mean value is large and positive.

Other signals from this data set also showed oscillations.

The second test used data from one receiver located in Ithaca,

New York, and a second receiver located in Austin, Texas

(30.33 N, 97.68 W), with neither of the receivers being

spoofed. Cross-correlation statistics versus time for this test

are shown in Fig. 3.

Similarly to the result from test 1, there is a large amplitude

oscillation present on one of the signals, though two others

show a relatively large and positive cross-correlation value

over the length of the test.

The third test again used data from one receiver in Ithaca, New

York, and one receiver in Austin, Texas. For this test neither

receiver was spoofed for the first 65 seconds, after which time

spoofing was turned on at the Austin receiver. For the next 65

seconds, although the signal was being spoofed, the spoofed

signal was held as closely as possible to the true signal (that is,

the spoofed signals had the same pseudorange and time as the

true signal). After this point, the pseudoranges were modified

to make it appear that the receiver was moving in the ECEF y

direction with a velocity of 2 m/s for the remainder of the test.

Cross-correlation statistic time histories for this test are shown

in Fig. 4. Some of these time histories differ qualitatively

from those in Fig. 3, but these results do not show a clear drop

of all detection statistics nearly to zero after spoofing has

commenced.

The result from test 1 was duplicated, to a large extent, using

an independently developed MATLAB-based software receiver

(discussed in depth in section V.A). This fact implies that Fig.

2's anomalous results are not caused solely by errors in the

processing.

 7

Fig. 3. Cross-correlation statistic versus time for two widely

separated receivers, neither of which is being spoofed.

Fig. 4. Cross-correlation statistic vs. time for two widely

separated receivers, one of which is spoofed starting at 65

seconds.

V. DISCUSSION

A. MATLAB Analysis

The anomalous initial results from the spoofing detection

process represent a significant concern. As is reasonable for a

complicated receiver software development task, a candidate

explanation of these results is that the receiver software might

be incorrect. Therefore, an independent MATLAB software

receiver has been used to process the data from two receivers

in order to check whether it yields similar or different cross

correlation results. It is an off-line software receiver that

works in a post-processing mode.

The MATLAB software receiver has confirmed the results of

the C-code software receiver. Consider Fig. 5, which plots the

cross-correlation for PRN08 for the case with the two

receivers located in Ithaca. This cross-correlation time history

is plotted as the green dashed curve in Fig. 5. Its values have

been computed using correlation intervals of Tcorr = 1.2 sec.

These are normalized detection statistic values, γ as defined in

Eq. (15), which is why their scale differs from the

corresponding cross-correlation plot for the C-code receiver

(red solid curve of Fig. 2), the latter being given in raw, un-

normalized units. This cross-correlation curve exhibits similar

oscillations to those of the C-code receiver. Unfortunately,

there are unexplained differences. The MATLAB plots pass to

negative values, while the C-code values do not. Given the

reliability of the MATLAB software receiver, this result implies

that the C-code software receiver calculations need

modification.

0 20 40 60 80 100 120
-20

-10

0

10

20

30

40

50

Time (sec)

g
a
m

m
a
 (
n
o
n
-d

im
e
n
s
io

n
a
l)

 After excision of C/A signals

C/A signals present

Expected Mean

Spoofing Threshold, alpha = 0.0001

Fig. 5. The γ detection statistic with and without prior

excision of the C/A code signals for two receivers near each

other (PRN08, Tcorr = 1.2 sec).

Additional calculations have been used to determine the

expected mean value of this curve, γ from Eq. (6a), and the

spoofing detection threshold for a probability of missed

detection α = 10
-4

, γth from Eq. (8). They are also plotted on

Fig. 5 as, respectively, the red dash-dotted horizontal line at γ

= 9.42 and the black dash-dotted horizontal line at γth = 5.70.

These values correspond to received P(Y) code carrier-to-

noise ratios of (C/N0)A = 10
4.31

 Hz (43.1 dB-Hz) and (C/N0)B =

10
3.71

 Hz (37.1 dB-Hz) as inferred from the corresponding

tracked C/A code carrier-to-noise ratios by using Eqs. (14a)

and (14b). The small false-alarm probability still allows a

large probability of detection, Pdetect = 0.99999999397

(99.999999397 %), because of the two signals' relatively high

carrier-to-noise ratios.

As is evident from the green dashed curve of Fig. 5, false

spoofing alarms occur in the ranges t = 27.5 to 45.4 sec, t =

66.0 to 83.1 sec, and t above 104.0 sec. These are the times

when the green dashed curve lies below the black dash-dotted

horizontal line that indicates γth. Something is obviously

wrong with this spoofing detection test.

 8

One conjecture about the problem with this spoofing detection

statistic is that it is affected by the other C/A codes that are

present. A second C/A code could produce these results if its

differential C/A code start/stop relative to that of PRN08 were

the same for both receivers and if its differential carrier

Doppler shift relative to PRN08 were also the same in the two

receivers, as will be discussed in further detail below. In such

a situation, the second signal's C/A code would look almost

identical between the two receivers after base-band mixing in

quadrature with the C/A code for PRN08. The second C/A

code would likely not be at base band itself after this

operation, but its time variations would be nearly identical in

the two receivers. When cross-correlated between the two

receivers, these nearly identical time variations would produce

significant power.

This conjecture has been tested by re-computing the inter-

receiver quadrature cross-correlation for PRN08 using a

modified algorithm. The modified algorithm first removes all

C/A code signals from the raw RF samples of both receivers

before mixing to base-band in quadrature with the C/A code of

PRN08. Removal of the C/A code signals is a straight-

forward, though computationally intensive, task after their

carrier and code phases have been successfully acquired and

tracked using a PLL and a DLL, as was done in Ref. 7. Given

these modified base-band-mixed quadrature signals, the

remaining calculations of the modified cross-correlation

algorithm are identical to those that culminate in Eq. (15).

The result for PRN08 is the blue solid curve in Fig. 5.

The modified cross-correlation curve in Fig. 5 has about the

same mean value as the green dashed curve, but its oscillations

are greatly reduced. This reduction provides a clear indication

that the other C/A code signals played a significant role in

producing the large oscillations of the green dashed spoofing

detection statistic. Their removal produces a much more

reasonable curve, one whose mean value is relatively close to

the expected mean shown in the red dash-dotted flat line and

whose variations never produce a spoofing false alarm: Note

how the blue solid curve never drops below the black dash-

dotted spoofing alarm threshold. The spoofing-detection

cross-correlations of additional signals have been re-calculated

using C/A-code excision, and similar improvements have been

observed.

The results shown in Fig. 5's blue solid curve provide strong

evidence that the filtered P(Y) code is present in the signal in

sufficient strength to be used for spoofing detection.

Otherwise, the mean value of the solid blue curve would not

have been near its expected mean value, the level of the red

dash-dotted line. The residual oscillations of the blue solid

curve, however, are still considered to be anomalous, i.e., to

differ from what is expected based on a simple analysis of

spoofing detection. It is believed that these oscillations are

caused by the filtered P(Y) codes of the other signals. These

filtered P(Y) codes have a correlation length of 150 m due to

their 1.9 MHz filtered bandwidths. Therefore, it is believable

that the other signals' filtered P(Y) codes could have had

similar offsets relative to the filtered P(Y) code of PRN08 in

the two receivers, similar at the 150 m level. Variations of

their offsets relative to the PRN08 filtered P(Y) code could

cause the observed oscillations in the blue solid curve.

An additional analysis has been performed in order to assess

whether the encouraging results of the blue solid curve of Fig.

5 are caused by the presence of filtered P(Y) code. This test

computes the correlations of the base-band-mixed PRN08

quadrature signals for various time offsets of the two receivers'

signals relative to each other, as defined by first lining up their

corresponding PRN08 C/A codes. The resulting cross-

correlation vs. delay plot is the blue solid curve in Fig. 6. It

applies to the 2
nd

 1.2-sec cross-correlation interval associated

with Fig. 5. This curve should have a shape that is consistent

with the autocorrelation function of the filtered P(Y) code.

For comparison purposes, that shape is also plotted in Fig. 6 as

the red dash-dotted curve. This latter curve assumes a "brick-

wall" filter in the RF front-end with a bandwidth of 1.98 MHz.

This bandwidth has been "tweaked" up from the advertised 1.9

MHz 1dB bandwidth of the RF front-end in order to better

match the blue solid curve. As can be seen, these two curves

match relatively well. This close match further supports the

conjecture that the good cross-correlation results of the blue

solid curve in Fig. 5 are caused by filtered P(Y) code on the

PRN08 quadrature signal.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Correlation Delay of Signal B Relative to Signal A (microsec)

N
o
rm

a
liz

e
d
 C

o
rr

e
la

ti
o
n

PRN 08 Quad. Base-Band-Mixed

P(Y) Code Filtered to 1.98 MHz

Fig. 6. Filtered P(Y)-code cross-correlation as a function of

delay between Signals A and B, experimental result for PRN08

with nearby receivers (blue solid) and theoretical result based

on 1.98 MHz RF front-end filter (red dash-dotted).

Note that some of the corresponding correlation curves at

different time offsets show multiple correlation peaks of

similar magnitude. These alternate correlation curves are the

equivalents of the blue solid curve of Fig. 6, but taken from

correlation time intervals other than the 2
nd

 interval associated

with Fig. 5. The presence of multiple peaks provides an

indication that P(Y) codes of other satellites may be playing a

role in the generation of the blue solid curve in Fig. 5. They

may constitute the cause of that curve's oscillations. Of

course, with distant receivers, such effects would likely

diminish to below the noise level.

 9

Three additional MATLAB analyses are planned. The first

analysis will apply the C/A-code excision technique to data

from distant receivers, one in Ithaca, NY and one in Austin,

TX. Spoofed and unspoofed cases will be considered. The

analysis goal will be to determine whether the presence of

other C/A codes caused any of the problems that have been

noted for the C-code spoofing detection algorithm when

applied to distant receivers.

The second analysis will attempt to detect the filtered P(Y)

code in each signal by using semi-codeless techniques, as

discussed in Refs. 8, 9, and 10. These techniques will need to

be modified in order to account for the effects of the narrow-

band filter on the P(Y) code. The principle effect is to

broaden the square pulse function of a chip of the P(Y) code

into a sinc-like function. The goal of this analysis will be to

verify the presence of the filtered P(Y) code in the RF front-

end's output and to check its characteristics.

The third analysis will study the effects of applying semi-

codeless P(Y) techniques to the problem of spoofing detection.

This will be a generalization of the semi-codeless techniques

of Refs. 8, 9, and 10 to the spoofing detection cross-

correlation calculation. It is hoped that such a method will

eliminate the oscillations that appear in the blue solid curve of

Fig. 5. This is expected to happen because the semi-codeless

technique makes use of the known P code and the known

timing, relative to the P code, of the W anti-spoofing bits that

transform P code into P(Y) code
8,9,10

. The low cross-

correlations of the P codes of different PRN numbers, if

suitably exploited by a semi-codeless technique, are expected

to eliminate extraneous signal correlations between the two

receivers. This holds true even when the reference and UE

receivers are close to each other. There is an additional

expected benefit of using a semi-codeless spoofing detection

technique. A good technique should significantly reduce the

required cross-correlation interval Tcorr for a given false alarm

probability α and probability of detection Pdetect.

B. Reference Station Spoofing

One might suspect that spoofing of the reference receiver

would not be a problem for the proposed architecture. The

reference receiver knows its location, and therefore, it might

be able to use this knowledge in order to detect a spoofing

attack. In fact, a spoofer could attack the reference receiver

using the method of Ref. 2 in a way that does not try to spoof

its position or its receiver clock time. Rather, this "auxiliary"

spoofer would have another, more subtle goal in its spoofing

attack. It would seek to spoof the reference receiver about

what is the proper P(Y) code signal that is in phase quadrature

with each received C/A code signal. Given such spoofing, the

reference receiver would not detect any error in its position or

even in its receiver clock. It would, however, transmit an

erroneous base-band-mixed quadrature signal to the UE

receivers that it was supposed to aid in detecting spoofing. If

another spoofer, the main spoofer, then attacked the UE

receivers using the same false P(Y) code in phase quadrature

with each spoofed C/A code, then such an attack would defeat

the present method and, indeed, the method of Ref. 4.

C. C/A Code Interference

In this section we examine one of the possible mechanisms by

which the C/A code could contribute to the quadrature channel

cross-correlation result, a mechanism that has already been

suggested in the MATLAB analysis section.

To illustrate this mechanism, imagine that both the reference

receiver and the UE receiver are only observing two GPS

satellites, which we shall denote SVA and SVB. As discussed in

section III, cross-correlation of the P(Y) code from SVA

involves mixing the data from the reference and UE receivers

to baseband using the estimated phase, Doppler shift, and

intermediate frequency of the signal. This will produce

signals of the form

BREFBREFAAREF CAtYPS])cos[()(αωω +−+= −− (18a)

BUEBUEAAUE CAtYPS])cos[()(βωω +−+= −− (18b)

where SREF and SUE are the base-band mixed signals from the

reference and UE receivers, respectively. The ω terms here

are the Doppler shift of the signal from either SVA or SVB as

observed at either the reference of UE receivers, α and β are

arbitrary phases, P(Y)A is the P(Y) code from SVA, and CAB is

the coarse/acquisition code from SVB We are neglecting noise,

data bit modulation, and signal amplitude terms here.

Once these two signals are mixed to base-band, we multiply

them together and accumulate, noting that the result contains

the following term:

∑
=

−−−− ++−−−
N

i

BBiUEBUEAREFBREFA iCAiCAt
1

)(*)(])}()cos[{(βαωωωω (19)

Where the sum is over N samples, i is a sample index, and

other terms remain as before. Several cross-terms have been

omitted here. We see that if the observed difference in

Doppler shift between SVA and SVB is close to the same for

both the reference and UE receiver, this term will possibly

have a large magnitude due to the auto-correlation of the C/A

code from SVB, and will be amplitude modulated as

determined by this Doppler shift double difference. Of course

it is also required that the C/A code from SVB have the same

relationship in terms of code phase to the C/A code from SVA

on both receivers (i.e., the pseudorange double difference must

also be small modulo one C/A code period), otherwise the

auto-correlation properties of the C/A codes means there will

not be a large correlation value.

Referring again to Fig. 2, it should be noted that the observed

difference in Doppler shift between PRN 7 and PRN 8 was

nearly identical at both the reference and UE receivers,

presumably leading to the observed large-amplitude

oscillation. PRN 11 had no such small Doppler double

difference, thus the lack of a large oscillation. This result is

more expected when the reference receiver and the UE

receiver are very close together, but is simply a function of the

 10

geometry of the system and can happen with widely spaced

receivers.

VI. CONCLUSIONS

In summary, an attempt has been made to apply a recently

proposed spoofing detection method within a software

receiver. This method seeks to verify the absence of spoofing

by looking for strong cross correlations between two receivers,

one a reference receiver and the other the potential spoofing

victim, of the portion of the P(Y) code that passes through

each receiver's narrow-band RF front-end. This heavily

filtered P(Y) code should be present in phase quadrature with

the C/A codes of both receivers if neither is being spoofed.

Lack of a strong cross-correlation should indicate a spoofing

attack.

The real-time version of this system performs poorly at

present. In at least one case, that of nearby receivers, an

offline software receiver analysis has determined the cause of

much of this poor performance: It results from additional

cross-correlation power that arises from other C/A codes. This

analysis, however, also confirms that the narrow-band-filtered

remnants of the P(Y) are present in sufficient strength to

develop a reasonable spoofing detection statistic. One strategy

for synthesizing a successful test statistic is to excise the C/A

codes from the signals before cross-correlation between

receivers. Another possible technique might resort to semi-

codeless cross correlation, though the practicality and efficacy

of such an approach has yet to be demonstrated.

This paper's negative result for the original simple-minded

version of this spoofing detector is at odds with another

published work on this subject. It is possible that this

discrepancy has been caused by the present algorithm's use of

a narrow-band RF front-end. The other work used a wide-

band front-end, one that captures most of the P(Y) power. It is

possible, however, that alternate, stronger explanations for this

discrepancy may be found.

The only certainty at present is that significant further study is

required of this concept and of the challenges of implementing

it successfully. Its ability to tolerate a narrow-band filter in

the RF front-end may make this type of spoofing detection

system practical for low-cost, low-power receivers, but this

approach may be difficult to implement because of the

significant attenuation and distortion of the encrypted P(Y)

code signal that constitutes its basis for spoofing detection.

REFERENCES

[1] “Vulnerability assessment of the transportation infrastructure

relying on the Global Positioning System,” Tech. rep., John A.

Volpe National Transportation Systems Center, 2001.

[2] Humphreys, T.E., Ledvina, B.M., Psiaki, M.L., O'Hanlon, B.,

and Kintner, P.M. Jr., "Assessing the Spoofing Threat:

Development of a Portable GPS Civilian Spoofer," Proceedings

of the ION GNSS 2008, Sept. 16-19, 2008, Savannah, GA, pp.

2314-2325.

[3] Warner, J.S. and Johnston, R.G., “A Simple Demonstration

That the Global Positioning System (GPS) is Vulnerable to

Spoofing," Journal of Security Administration, 2003.

[4] Lo, S., De Lorenzo, D., Enge, P., Akos, D., and Bradley, P.,

"Signal Authentication, A Secure Civil GNSS for Today," Inside

GNSS, Vol. 4, No. 5, Sept./Oct. 2009, pp. 30-39.

[5] Humphreys, T.E., Psiaki, M.L., Kintner, P.M. Jr., Ledvina,

B.M., “GNSS Receiver Implementation on a DSP: Status,

Challenges, and Prospects,” Proc. 2006 ION GNSS Conf.,

Institute of Navigation, Fort Worth TX, pp. 237002382.

[6] Ledvina, B.M., Psiaki, M.L., Powell, S.P., and Kintner, P.M. Jr.,

“Bit-Wise Parallel Algorithms for Efficient Software Correlation

Applied to a GPS Software Receiver," IEEE Transactions on

Wireless Communications, Vol.3, No.5, September 2004.

[7] Psiaki, M.L., Humphreys, T.E., Mohiuddin, S., Powell, S.P.,

Cerruti, A.P., and Kintner, P.M. Jr., "Searching for Galileo,"

Proceedings of the ION GNSS 2006, Sept. 26-29, 2006, Fort

Worth, TX, pp. 1567-1575.

[8] Woo, K.T., "Optimum Semicodeless Carrier-Phase Tracking of

L2," Navigation, 47(2), 2000, pp. 82-99.

[9] Psiaki, M.L., Powell, S.P., Jung, H., and Kintner, P.M., "Design

and Practical Implementation of Multifrequency RF Front Ends

Using Direct RF Sampling," Proc. ION GPS/GNSS 2003, Sept.

9-12, 2003, Portland, OR, pp. 90-102.

[10] Jung, H., Psiaki, M.L., and Powell, S.P., "Kalman-Filter-Based

Semi-Codeless Tracking of Weak Dual-Frequency GPS

Signals," Proceedings of the ION GPS 2003, Sept. 9-12, 2003,

Portland, OR.

