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ABSTRACT

A new method of is being developed to estimate the
ionosphere’s 3-dimensional electron density distribution
based on GPS slant TEC data. The goal of this effort
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is to develop a generalized parametric ionospheric model
that is amenable to data assimilation using powerful non-
linear least-squares batch filtering techniques and related
techniques. In addition to assimilating GPS TEC data,
this method will eventually be targeted at assimilating
additional data types in order to implement true data
fusion for ionospheric characterization. The parameter-
ized ionosphere model uses a latitude/longitude bi-quintic
spline model to characterize the horizontal variations of
parameters of a vertical electron density profile. The result
is a truly 3-dimensional electron density distribution. It
is parameterized by vertical profile parameter values at
latitude/longitude spline nodes and by various latitude
and longitude partial derivatives of these parameters at
the nodes. This electron density distribution is used in
conjunction with quadrature numerical integration to de-
termine slant TEC along line-of-sight paths to tracked
GPS satellites. A nonlinear batch estimation algorithm
compares the modeled GPS slant TEC values predicted
by its current parameter estimates with corresponding
measured values. It then updates its parameter estimates to
improve its fit to the measurements while balancing a need
to use parameters that remain relatively near reasonable a
priori values, as dictated by an International Reference
Ionosphere calculation. A truth-model simulation study
shows that the vertical TEC map is observable as part
of a latitude/longitude-dependent Chapman profile. The
height of peak electron density and the scale height of
the Chapman profile are only weakly observable from
slant TEC data alone. Tests of this method have also been
made with slant TEC data from an array of over 900 dual-
frequency GPS receivers distributed over the continental
U.S. The method demonstrates an equal or better ability
to predict slant TEC at other GPS receivers than that
of a traditional thin-shell, fixed-altitude ionosphere data
assimilation model like the one used for WAAS.
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INTRODUCTION

Slant Total Electron Content (TEC) measurements from
dual-frequency GPS receivers are regularly used to con-
struct latitude/longitude maps of the ionosphere’s Vertical
TEC (VTEC) [1] and to reconstruct its full 3-dimensional
electron density profile [2]. Existing methods are not
so easily adapted to the assimilation of other types of
ionospheric data, such as digisonde data, though attempts
are being made to do this [3].

Existing methods tend to be based on restrictive assump-
tions, such as a linear relationship between the model’s
unknown parameters and slant TEC or the assumption of
a thin-shell ionosphere at a known height. The method
of Ref. [3] for incorporating ionosonde data is a sort of
cascaded method in which the ionosonde provides peak
electron density altitudes, but not much more.

The present study is a continuation of efforts to develop
a more unified approach to ionospheric data fusion for
purposes of estimating the electron density distribution.
The first two products in this line of work are Refs. [4]
and [5]. The first of these used slant GPS TEC to estimate
a local ionosphere 3-dimensional electron density profile.
The second effort expanded on that concept by direct
fusion of ionosonde and GPS slant TEC data into a local
model. The ionosonde data were modeled directly in terms
of raw group delay, or virtual height, by use of a ray-
tracing calculation.

The present effort is the first of this series that extends
the needed smooth electron density profiles to a regional
or even a global scale. It develops the needed type of
model, and it applies this model to regional ionosphere
estimation based on GPS slant TEC data from a network of
receivers distributed over the Continental U.S. (CONUS).
The extension to handle GPS and ionosonde data fusion
using techniques like those of [5] has been left for a
future study, but the parameterized electron density model
used in the present study is fully capable of being used
in such a data fusion application. A long-term goal of
this set of efforts is to produce a real-time version of the
International Reference Ionosphere (IRI) model or some
similar model. It will be based on fused data from global
networks of ground-based GPS receivers and ionosondes
and on satellite-based radio-occultation slant TEC data.

This paper makes 4 principal contributions to the art of
ionospheric electron density estimation. The first contri-
bution is its demonstration of how to combine a lati-
tude/longitude bi-quintic-spline and a vertical profile to
produce a regional or global 3-dimensional (3D) electron
density profile that can be modified by varying the parame-
ters at its spline nodes. Each bi-quintic spline is a 5" order

spline when considered separately in either the latitude or
longitude direction. Multiple quantities are modeled by
such splines, one spline for each parameter of the model’s
given vertical electron density profile. An advantage of
this type of model is it’s smoothness. It is continuous and
has continuous 1%- and 2"-order spatial derivatives. This
is the required level of smoothness that will allow it to be
used in ray-tracing calculations for the fusion of ionosonde
data, as in [5].

This paper’s second contribution is a slant TEC model
that is based on numerical integration through the splined
electron density distribution. This model is nonlinear in the
relationship between the unknown, estimated parameters
of the spline and its predicted slant TEC.

The third contribution is the definition of a nonlinear esti-
mation problem based on the new splined N.(7;p) elec-
tron density model, where 7 is the 3D Cartesian position
vector in Earth-Centered, Earth-Fixed (ECEF) coordinates
and p is a vector of unknown spline parameters. This
estimation problem seeks the p that produces the best fit
between the measured and modeled slant TEC values. This
paper shows how to incorporate a priori information into
its batch estimation problem as a means of dealing with
the fundamental unobservability of an unknown electron
density profile that is a member of an infinite-dimensional
function space. That is, N.(7;p) is an unknown function
of the 3D » vector, and it can never be fully observed
based only on a finite set of measurements. This paper
also develops a solution algorithm for its nonlinear batch
estimation problem. It is based on standard nonlinear least-
squares techniques.

The fourth contribution is the processing of real GPS slant
TEC data using the new technique. The results are com-
pared to those obtained using a thin-shell, known-altitude
model. The comparison considers the two ionospheric data
assimilation methods’ slant TEC prediction capabilities for
stations whose data have not been assimilated.

The remainder of this paper is divided into 7 sections plus
a summary and conclusions section. Section II defines a
parameterized 3D electron density profile N, (r;p) that is
based on a latitude/longitude bi-quintic spline of Chap-
man vertical profile parameters. Section III presents the
techniques used for the accurate calculation of slant TEC
via numerical integration along GPS ray paths through the
Ne(7;p) profile. It also explains how to compute partial
derivative sensitivities of the modeled slant TEC values
with respect to the ionosphere model parameters. Section
IV develops a method for computing a priori bi-quintic
spline parameters from the IRI model. Section V defines
the batch least-squares estimation problem whose solution
will be used to estimate the ionospheric model parameter



vector p. It also outlines the solution algorithm. Section VI
defines the data set that has been used to develop test cases
for the new algorithm. Section VII presents the results
of algorithm performance on the test data and on truth-
model simulation data. It also compares the performance
on real data with that of a thin-shell, known-altitude
ionosphere VTEC map estimator. Section VIII discusses
potential improvements to this paper’s methods. Section
IX summarizes this paper’s developments and presents its
conclusions.

II. BI-QUINTIC-SPLINED GLOBAL CHAPMAN
ELECTRON DENSITY PROFILE

A 3D electron density profile of the form N.(r;p)
can be constructed by combining a vertical profile
and a latitude/longitude bi-quintic spline. Suppose that
Nechap(P; Pepap) is @ Chapman vertical profile in which
h is the altitude and the 3-element parameter vector p.j,
contains the profile’s altitude of peak electron density, its
scale height, and its VTEC.

This vertical profile, or any vertical profile, can be used
to construct a fully 3D electron density distribution if one
models its profile parameters as depending on latitude
¢ and longitude A, i.e., P.j,, (@, A). Suppose that this
latitude/longitude “map” of the vertical profile parameters
is itself characterized by a vector of parameters p so that
its full functional form is p,, (4, A; p). In this case the
full 3D electron density profile becomes

Ne(r;p) = Nechap{h(r);pchap[¢(r)a)‘(T);p]} (1)

Although a Chapman profile is used in the present study,
it would be straightforward to replace Nechap(h; Penap)
with some other vertical profile that had some other
parameterization, perhaps one with more elements. This
alternate parameterization would also need to be expressed
as a latitude/longitude “map”, i.e., as a function of ¢
and \. The functions ¢(r), A(r), and h(r) in Eq. (1)
are the standard transformations from Cartesian WGS-
84 coordinates to, respectively, latitude, longitude, and
altitude as defined relative to the WGS-84 ellipsoid.

The particular form of the Chapman profile parameter map
used in the present study takes the form

pchap(¢7 )‘7 p) = exp[plogchap(¢, )‘7 p)] (2)

where the vector function pj,,cnap(¢,A;p) is a lati-
tude/longitude map of the natural logarithms of the 3
Chapman profile parameters. The use of a natural loga-
rithm parameterization and the exponentiation in Eq. (2)
combine to preclude the physically impossible situation in
which elements of p,;,,, would be non-positive.

The function pj,g.pap,(9; A;p) is modeled using a bi-
quintic latitude/longitude spline. Its model takes the form
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The number of bi-quintic spline nodes is M. Two of them
are special nodes at the north and south poles, and the
other M — 2 of them are regular nodes. Each p,; vector
has 3 elements because there are 3 parameters in this
paper’s Chapman vertical profiles. Therefore, the p vector
has 3(9M —6) elements.

The functions ssp;(P,A), s;(P, A, ), and S,p;(P, )
are the basis functions of the bi-quintic spline. The 6
Sepj (¢, \) functions are special to the node at the south
pole, and the 6 functions s,,;(¢, A) are special to the
north pole. The 9 general s;(¢, A, m) functions apply at all
the other nodes, with the parameter vector 7 defining the
latitude and longitude of a general node and the latitude
and longitude extent of the influence of the given node’s
spline functions. Figure 1 shows the 9 general s;(¢, A, 7)
functions plotted near a typical node. They have finite
support in latitude and longitude, and they are everywhere
continuous with continuous first and second latitude and
longitude partial derivatives. The special spline functions
for the south pole and the north pole have been designed to
ensure that the functions and their first and second partial



derivatives are continuous in such a way that the corre-
sponding functions of Cartesian position, s,,;[¢(7), A(7)]
and S,pi[@(r), A(r)], are everywhere continuous with
continuous first and second partial derivatives with respect
to 7. Thus, the function p;,yecpap(@(T), A(1); p] exhibits
no “belly-button”-type singularities at either of the poles.
The 9 regular spline functions also have this property so
that p;,gcnap(@(T), A(); p] and its first and second partial
derivatives with respect to r are everywhere continuous.

The reason that there are 9 different spline functions for
each regular spline node stems from the nature of a bi-
quintic spline. A bi-quintic spline of any arbitrary function
a(¢, \) needs to use the a value at each regular node along
with the following 8 partial derivatives: da/0¢, 9%a/0¢?,
AajoN, D?af0dON, D3afop*ON, O?a/ON?, B3a/dpdN?, and
0*a/0$?d)2. Each node value of a and the corresponding
8 partial derivatives constitute the spline’s coefficients of
the 9 basis functions at the given node.

Besides the special nodes at the two poles, the other bi-
quintic spline nodes are grouped into different sets that
lie on different individual small circles of latitude. On
each particular small circle, the choice of the longitudes
of the nodes is somewhat arbitrary. An example choice
of spline nodes is overlaid on a map of the Earth in
Fig. 2. The red dots are the spline nodes. Note how they
are arranged along common lines of constant latitude.
Their distributions along these lines are more concentrated
over CONUS in order to have a finer ability to resolve
ionospheric variations in that region for this example
spline. There is no particular longitudinal alignment of
points between different small circles of latitude. The
longitude spacing tends to increase near the poles in order
to compensate for the shrinking radii of the corresponding
small circles of latitude.

The actual bi-quintic spline calculation of a function
a(p, A) is based on 7 calculations using 1-dimensional
(1D) quintic splines. A 1D quintic spline is fully char-
acterized by its function values and their first and second
partial derivatives at the two end nodes of a particular
spline interval. Suppose that interval is a longitude interval
and the function in question is the scalar f(\). Then its
quintic spline formula is

FN) = fa[l = 1073(N\) + 1574 (N) — 67°(N))
+ fb[loTS()\) — 157’4()\) + 67'5()\)]

+ % AXpa[T(X) = 67° () +874(N) = 37°())]
+ % AXpa[—47°(X) + 774 () = 37°(V)]

b
+ % aAAga[o.572(A) —1.57%(\)

+ 1.574(\) = 0.575(\)]
O*f 2 3 4 5
+ 7z AN, [0.57°(A) — 75 (A) + 0.57°(N)]  (5)
b

This spline is valid between the two longitude nodes
Ao and \,. This spline formula uses the spline interval
parameter A\, = A\p)—)\, and the non-dimensional relative
position within the interval 7(A\) = (A — A\y)/ANpq.

Using the 1D formula in Eq. (5), the bi-quintic spline
calculations proceed as follows: Suppose that (¢;, \;)
and (¢;, ;) are the nearest neighboring southwest and
southeast bi-quintic spline nodes relative to the point of
interest (¢, A). Suppose, also, that (¢, Ax) and (¢, Ar)
are the neighboring northwest and northeast nodes. Then
$i=09; < ¢ < dr=0¢, A <A< Ay and A <A<
M. One uses the values of a;, (0a/ON);, (8%¢/ON?);, aj,
(0afoN);, and (9%a/ON?); in order to perform 1D spline
longitude interpolation along the lower ¢; small circle
in order to determine a(¢;, \). Similar 1D quintic spline
calculations are performed in order to determine Oa/O¢p
and 0%a/0¢? at this same point (¢;, \). Similar quintic
spline calculations on the upper ¢, small circle are carried
out in order to compute a(¢x,A) along with Ja/0¢ and
9?aj0¢* at this same point (¢, ). Finally, a 1D quintic
spline is calculated between these final two points along
the ¢ direction in order to arrive at a(¢, A).

If one of the neighboring small circles consists of the
single node at the south pole or the north pole, then special
calculations ensue. Rather than using a longitude quintic
spline to compute the values da/d¢ and H?a/d¢? appropri-
ate to the longitude A at the pole, a zero-mean once-per-rev
sinusoidal function of longitude is used to compute da/0¢,
and a non-zero-mean twice-per-rev sinusoid is used to
compute 9%a/0¢?. The 6 spline parameters that correspond
to the 6 nodal functions at the pole consist of the value of
a at the pole, the two arbitrary coefficients that determine
the Ja/0¢ sinusoid, the two arbitrary coefficients that
determine the twice-per-rev part of the 9?a/0¢? sinusoid,
and the arbitrary non-zero offset of the 9%a/0¢? sinusoid.

This paper’s calculations require the first and second
partial derivatives with respect to the Cartesian position
vector 7 of the electron density distribution N, (7; p). They
also require the first partial derivative with respect to the
ionosphere parameter vector p along with the second cross
partial derivative with respect to r and p. These derivatives
can be computed by using the chain rule and taking
appropriate derivatives of the sequence of 1D quintic
spline calculations that have been described above. The
spline nature of N, (7;p) implies that many of the partial
derivatives with respect to elements of p will be zero at
any given latitude/longitude point. This is true because of
the finite support of the spline basis functions, as depicted
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Fig. 1: The nine bi-quintic spline functions of a typical node.

in Fig. 1. Therefore, care should be taken not to waste
time calculating elements of any p partial derivatives that
are known a priori to equal 0.

Fig. 2: Example map of possible bi-quintic spline nodes.

III. SLANT TEC MEASUREMENT MODEL

This paper’s nonlinear estimation algorithm needs a model
by which it can predict each measured slant TEC for a
given set of ionosphere parameters. This section explains
how to compute that prediction.

A. Numerical Integration to Approximate Slant TEC
Model

The slant TEC through the modeled N, (r;p) distribution
of Section II can be calculated based on knowledge of the

GPS receiver location and of the direction vector from that
location to the GPS satellite in question. Suppose that the
k" slant TEC measurement is made at Cartesian ECEF
ground station location 7y, that the ECEF unit direction
vector from that ground station to the tracked GPS satellite
is g, and that the distance from the ground station to the
satellite is pg. If the modeled N.(r;p) electron density
distribution is correct, then this k™ slant TEC measurement
should take on the value:

Pk

hi(p) = N[(rgsk+p7r); Pldp (6)

0

This integral can be approximated numerically using
quadrature integration. The chosen quadrature formula
is based on a cubic spline approximation of the one-
dimensional electron density distribution Ngx(p;p) =
Ne[(rgsk + pr1);p) and a set of numerical integration
grid points along the line-of-sight (LOS) vector {pio, ...,
prL}- Suppose that the electron densities at these grid
points are Nexo [= Nek(pro; P)1s s Nekr [= Ner(prr; p)]
and that the corresponding p derivatives are N/, [=
(ANer/dp)|(proip))> - Negr, [= (dNew/dp)l(p, . :p)]- Then
the quadrature integration formula used to calculate the
slant TEC is

L1 Ap
= ki
hi(p) ~ 5 [Nekt + Nek(+1)
1=0
Appi
+ 6 (Now — Nék(l-ﬁ-l))} (7

where Apr; = praa) — Pl



The ranges pxo, ..., pr are specially chosen to lie at pre-
selected points along the Chapman profile. The bi-quintic
spline model of N, (7;p) of Section II employs associated
spatial functions of the Chapman profile altitude of peak
electron density and scale height. Suppose that these
functions are defined to be, respectively, A,,q.n, (7; P) and
hsn(r; p). Then it is possible to assign a non-dimensional
Chapman altitude to each ECEF location 7:

h(”") - hmawNe (’l"; p)
hsh(r;p>

z(r;p) = (®)

where h(r) is the altitude measured relative to the WGS-
84 ellipsoid.

The numerical integration grid points used for Eq. (7) are
defined implicitly using a set of pre-specified target non-
dimensional Chapman altitudes, 2, ..., 2L:

21 = 2[(Pgsk+ PriTr); P]
fori=0,...L )

It is straightforward to solve each of these implicit equa-
tions for its unknown pj; value using Newton’s method.
These iterative calculations can be sped up through careful
use of the py(;_1) solution when generating a first Newton
guess of py;.

The target non-dimensional Chapman altitudes, zg, ..., 21,
are pre-selected in a way that groups them near the peak of
the Chapman electron density profile. A careful arrange-
ment of these points can result in accurate quadrature
integration through the varying Chapman profile while
economizing on the number of quadrature integration
points. The calculations performed in Section VII use just
(L+1) = 29 grid points and achieve a relative accuracy
better than 1 part in 10,000.

The estimation algorithm of this paper also needs to cal-
culate the Jacobian first partial derivative of its slant TEC
model hy(p) with respect to p. This is accomplished via
analytic partial differentiation of the quadrature integration
approximation given in Eq. (7). This differentiation uses
the chain rule and accounts for two ways in which the
terms in the summation depend on p. The first way is
through the direct dependence of the function N, (p;; p)
on p. The second way is through the implicit dependence
of the pg; node values on p. This latter dependence
enters through the implicit definition of pg; in Eq. (9).
Differentiation of this equation with respect to p yields a
linear equation for the partial derivative 9py;/Op, which
can easily be solved to determine this derivative. The full
formula of the 8izk/8p calculation is straightforward to
derive. It has been omitted for the sake of brevity.

B. Full Measurement Model with Receiver Biases

The full model for the slant TEC measurement takes the
form

Y. = hi(p) + byr) + vk
= hi(p, b) + v (10

where ¢(k) is an indexing function that associates the
q(k)™ receiver with the k™ measurement and where b, is
the inter-channel TEC bias of the ¢ receiver. The vector
b = [b1;...;Dg] is the vector that contains the unknown
biases of all @) receivers whose data are being used in
the ionosphere estimation problem. The quantity vy is
the slant TEC measurement noise. It is assumed to be
a sample from a zero-mean Gaussian distribution with
standard deviation o,.

Note that multiple k£ values will typically map to identical
q(k) values due to the fact of individual receivers having
multiple channels and, therefore, measuring slant TEC to
multiple satellites. If any given set of k values produces
identical ¢(k) values, then all of the corresponding 7 sy
receiver locations in Eqs. (6) and (9) will be identical.

If the entire estimation problem includes a total of K
measurements, then these measurements and their cor-
responding models and errors can be lumped into K-
dimensional vectors:

Y1 hy (Pa b) V1
Y2 ha(p,b) vy
Yy = Y3 , h,(p7 b) = h3(pa b) , v= Vs
YK hx (P, b) VK
(1)
The final vector measurement model takes the form
y=h(p,b) +v (12)

Its measurement error vector v is assumed to be a zero-
mean, Gaussian random vector with covariance matrix

E{vw"} =R
oz 0 0 0
0 o2 0 ... 0
— 0 0 0'33 0 (]3)
0 0 0 UEK

IV. APRIORIPARAMETER ESTIMATES FROM
IRI MODEL

Typically the ionosphere model parameter vector p has
many elements, perhaps thousands to tens of thousands
or more. Such large numbers are necessary in order for



it to allow a sufficiently general parameterization of the
N (r;p) electron density distribution, one that has the
potential to form a reasonable approximation of the true
distribution.

This large number of unknown parameters poses a chal-
lenge for any estimation algorithm, the challenge of ob-
servability. The slant TEC measurement model in Eq. (12)
is said to be observable if there is a unique combination
of the vector pair (p, b) that minimizes the norm squared
of this equation’s measurement error vector v. If the
minimum is not unique, then there is no practical way
to prefer one minimizing (p,b) combination to another.
Given that one combination is likely nearest to the true
combination while others are likely far away, a lack of
observability makes the measurement model useless for
purposes of forming an accurate estimate of (p,b). As
the number of unknowns grows, the challenge of achieving
observability grows.

Even if a system is technically observable, its unique
optimal estimates of the ionosphere parameter vector p
and the receiver bias vector b might be highly inaccurate,
thereby making the estimates useless for all practical
applications. It is a well known fact of estimation theory
that an increase in the number of estimated unknowns
will degrade the accuracy of the estimates of all the pre-
existing unknowns if all else is equal. Therefore, having
a large number of unknown ionosphere parameters in p
poses a challenge to the goal of estimating an accurate
N.(r;p) distribution.

All of the preceding statements assume that p and b
must be estimated from scratch based purely in the
measured slant TEC data in y. If additional information
can be gleaned from another source, then the problem
of obtaining accurate estimates of p and b becomes less
challenging.

Therefore, a method has been developed to obtain a
reasonable a priori estimate of the ionosphere parameter
vector p. This estimate is generated using an ionosphere
model. The idea is to find a value of p that fits N.(r;p)
to a modeled N, (r) distribution.

The IRI [6] is the model that has been used in this study to
develop an a priori p estimate. Note, however, that there
is nothing sacred about using the IRI model. One could
use any other reasonable model, e.g., the SAMI2 model

[7].

A. Calculation of A Priori lonospheric Parameter Vector

A sequence of operations is used to develop an a priori
estimate of p from the IRI model. The first operation is

to determine the 3 Chapman profile parameters at each
of the bi-quintic spline nodes. This involves calculation
of the IRI N, vertical profile at each node followed by
calculation of the optimal nonlinear least-squares fit of
the 3 Chapman parameters to the IRI profile. The natural
logarithms of these fit parameters are used as the elements
of the a priori p that correspond to bi-quintic spline
function values at the spline nodes.

Next, a smoothing process is used to generate reasonable
values for the 8 required partial derivatives of each splined
quantity at each node (only 5 at the north and south poles).
The initial partial derivatives to be calculated are the first
and second partial derivatives of each splined quantity
with respect to longitude A. These values are chosen
in order to minimize the longitude integral around each
small circle of latitude of the square of the third partial
derivative with respect to longitude of the periodic quintic-
splined quantity. This minimization tends to produce the
smoothest possible longitude variations that fit the function
values at all of the nodes on the given small circle. This
process is repeated for each independent small circle of
constant latitude for all the regular spline nodes until all
of the required first and second A partial derivatives have
been computed.

A similar process is then applied to each independent
great circle of constant longitude (modulo 180°) that
passes through one or more spline nodes. The value of a
particular splined function is computed at all intersection
points between this great circle and the small circles of
constant latitude on which all of the spline nodes lie.
Values of the first and second ¢ partial derivatives of
this function are then chosen in order to minimize the
latitudinal integral around the great circle of longitude
of the square of the third partial derivative with respect
to latitude of the periodic quintic-splined quantity. Again,
this minimization tends to produce the smoothest possible
latitude variations. The computed first and second ¢ partial
derivatives from this procedure are retained for all of the
great-circle/small-circle intersection points that correspond
to actual bi-quintic spline nodes. This process is repeated
for each unique great circle until all of the first and second
¢ partial derivatives have been computed at all of the
regular spline points.

This process is also used to compute a priori estimates of
the periodic ¢ partial derivative parameters that apply at
the north and south poles. The first and second ¢ partial
derivatives are computed as functions of the great-circle A
samples at the two poles during this procedure. These, in
turn, are fit to appropriate sinusoidal models in A in order
to produce the desired elements of the a priori p estimate.

The cross partial derivatives with respect to ¢ and A at



the regular spline nodes are computed in a manner similar
to that used to compute the ¢ partial derivatives. Great
circles are used, and partial derivatives with respect to
¢ are computed at intersection points between a given
great circle and the set of constant-latitude small circles.
The difference here is that the splined quantities whose
¢ partial derivatives are to be estimated are quantities
that are themselves first or second partial derivatives with
respect to A. Such quantities are computable at the great-
circle/small-circle intersection points based on the original
small-circle periodic splines with respect to A.

The resulting estimates are a set of Chapman profile
parameter natural logarithms and various of their latitude
and longitude partial derivatives at the spline nodes. When
lumped into the form of the p ionosphere parameter vector,
the result constitutes the a priori parameter estimate. Let
this estimate be called p.

The efficacy of the smoothing procedure has been tested
by comparing the bi-quintic spline’s estimated Chapman
parameters with those based on direct fit to the IRI profile.
The comparisons have been made at points between the
bi-quintic spline nodes. When the spline grid spacing is
about 10° in latitude and an equivalent geographic spacing
in longitude, the two Chapman parameter maps agree well.
Therefore, the smoothing method of fitting the latitude and
longitude spline partial derivatives seems to work well.

Another option is to use a thin-shell, constant-altitude a
priori model of the ionosphere. This option is provided
for purposes of generating a comparison ionosphere model
fit in Section VII. The generation of the p vector in this
case is the same for all elements that parameterize the
Chapman profile’s VTEC natural logarithm. That is, this
thin-shell model continues to use the IRI VTEC map to
generate its a priori VITEC model. The differences lie
in the models of peak electron density height and scale
height. The computed values from the IRI profile are
discarded in favor of known constants that are independent
of latitude and longitude. The height of the peak electron
density is set to the constant value 350 km. The Chapman
scale height is set to 1 km, which corresponds to a very
thin shell.

B. Modeled Uncertainty of the A Priori lonospheric Pa-
rameter Vector

The batch filter also needs a covariance matrix that char-
acterizes the a priori uncertainty in the estimate p. A
simplified diagonal covariance matrix is used. It starts with
assumed a priori standard deviations for the Chapman
altitude of peak electron density, the Chapman scale
height, and the Chapman VTEC. Let these quantities be,

respectively, OhmazNes Ohsh, and oy rgco. These standard
deviations are assumed to be independent of latitude and
longitude.

At any given node point, the a priori standard deviations
of the natural logarithms of A,,qxNe, hsn, and VI EC
are computed using a finite-difference-based linearization
of the natural logarithm function. The formulas employed
are

ln(hmaa:Ne + ’yahmaacNe) - 1n(hrnarNe)

Olnhmax = ~
~ In(hsh +vonsn) — In(hgp)
Olnhsh = ~
IH(VTEC + '}/O'VTEC) - 1H(VTEC)
OInVTEC = ~

(14)

where v is a tuning parameter of the one-sided finite
difference calculation. A typical value used in this study
is v = 1.3. The standard deviations given in Eq. (14)
are applied directly to the elements of p that correspond
to node values of the Chapman profile parameter natural
logarithms.

Calculation of a priori standard deviations for the ¢ and
A partial derivative elements of p is somewhat more
complicated. For each spline node, the calculation starts by
computing the maximum separation of that node’s latitude
from its two nearest-neighbor small circles of latitude that
contain additional nodes. Let this maximum be designated
A¢. Similarly, the maximum longitude separation is calcu-
lated between the given node and its two nearest neighbors
on its own constant latitude small circle. Let this maximum
be designated A\. These latitude and longitude increments
are then used to divide the standard deviations given in Eq.
(14) in order to synthesize a priori standard deviations
for the corresponding partial derivatives. For example,
consider the a priori standard deviation for the first partial
derivative with respect to longitude of the Chapman scale
height natural logarithm. It is set to the value oy, psn/AN.
Similarly, the value op,vrEc/(A¢?AN) is the chosen a
priori standard deviation for the third partial derivative of
the VT EC natural logarithm twice with respect to ¢ and
once with respect to A. The remaining a priori parameter
standard deviations are calculated in a similar manner.

The various a priori standard deviations for the p vector
are then assembled into a diagonal a priori covariance
matrix. It takes the form:

E{(p—p)(p—D)"} = Ppp



o2y 0 0 0
0 op10 g) 0
— 0 0 O'p13 0 (15)
0 0 0 ... 02y

where o,;; is the a priori standard deviation of element
Pij, with element indices as defined in Eq. (4).

The chosen values of ohymazNe, Ohsh, and oyrpc are
tuning parameters of the batch estimation algorithm. Small
values cause the estimator to trust the corresponding ele-
ments of p and not to change them much in the calculation
of its optimal fit. Large values cause the estimator to trust
the corresponding entries of p less, which opens up the
possibility of making larger adjustments to these values
during the estimation calculations.

The comparison constant-height, thin-shell ionosphere
model has been implemented using the same batch filter
that is used for this paper’s general model. The only dif-
ferences lie in the choice of p entries corresponding to the
peak-electron-density height map and the scale-height map
and in the choices of opmazne and opsn. As discussed
previously, the modified elements of p dictate a constant
peak electron density altitude of 350 km and a constant
scale height of 1 km at all latitudes and longitudes. In
order to maintain these constant values during the batch
estimation calculations, the uncertainty standard deviations
in OpmaxNe and opsp, are set to very small values. This
special tuning prevents the batch estimator from making
any appreciable adjustments to the altitude or scale height
during the solution of its estimation problem. The only
permitted adjustments are to its VI'EC' map.

V. BATCH LEAST-SQUARES ESTIMATION
PROBLEM AND SOLUTION ALGORITHM

A. Least-Squares Estimation Problem

The batch filter computes its optimal estimates of the iono-
sphere parameter vector p and the receiver biases vector
b by finding the values of these vectors that minimize the
following negative-log-probability density cost function

J(p,b) = %[y —h(p,b)]"R™'[y — h(p,b)]

1 1

+ 5(17 - p)TPﬁﬁl(p -p)
1
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The third cost term penalizes non-zero receiver bias es-
timates under the assumptions that their a priori values
are 0 and that their a priori uncertainties have a standard
deviation of op.

+-—b"b (16)

The minimization of the cost function in Eq. (16) is
equivalent to solving for the least-squares solution of the
following over-determined system of nonlinear equations

R™y)  [R™/*h(p,b)
Pl = | Bpp |+vie A7)
0 =b

where R~Y2 and Pﬁ_ﬁl/ ? are inverses of matrix square roots
of, respectively, R and Pp;. The requisite matrix square
roots can be computed using Cholesky-factorization. The
composite equation error vector vy, is assumed to be
a random sample from a zero-mean, identity-covariance
Gaussian distribution.

B. Gauss-Newton Solution Algorithm

The Gauss-Newton method [8] is used to solve the optimal
estimation problem that minimizes the nonlinear weighted
least-squares cost function in Eq. (16). It is an iterative
gradient-based optimization algorithm.

Each iteration of the Gauss-Newton method starts with a
guess of the optimal p and b vectors, and it generates im-
proved guesses until no more improvements are possible.
The improved guesses are generated after linearizing the
over-determined system of equations in Eq. (17) about the
current guesses of p and b. This over-determined linear
system of equations is solved to determine candidate better
guesses of the optimal p and b. A line search is then
performed along the segment from the existing guess in
(p,b) space to the candidate new guess. The search stops
short of the candidate new guess if a reduction of the
increment is necessary in order to ensure a decrease of
the cost function in Eq. (16). This line search procedure
guarantees convergence to a local minimum of this cost
function.

Some ad hoc features have been added to the basic Gauss-
Newton method. These features tend to help achieve
eventual convergence to the optimal solution. One feature
is to optimize only b on the first Gauss-Newton iteration.
The biases enter the system of equations in Eq. (17)
linearly. Therefore, they can be optimized exactly using
some simple linear algebra calculations.

A second ad hoc feature restricts the length of the step
from the existing guess of (p,b) to the candidate new guess
in such a way that the resulting change in p has a norm
which is no larger than the vector norm of the existing
p guess. Without this technique, initial p increments are
sometimes unreasonably large, and they cause internal
calculations to produce ridiculous results that crash the
software.



The Gauss-Newton method’s convergence is insensitive to
the initial guess of b by virtue of the initial optimization
of only that unknown. Convergence can be sensitive,
however, to the initial guess of p. Typically one uses the a
priori value from the IRI model, p. If one has a better first
guess, perhaps from a previous solution of the problem
that uses slightly different tuning parameters or a slightly
different set of slant TEC measurements, then one can
initialize the algorithm with that better p guess.

C. Cramer-Rao Estimation Error Covariance Lower
Bound

The cost function J(p,b) has been designed to equal
the negative natural logarithm of the Bayesian probability
density of (p,b) conditioned on the data in y under the
diffuse prior assumption of Bayes’ postulate. The inverse
of the second partial derivative of this function, when
evaluated at the truth values of p and b, yields the Cramer-
Rao lower bound for the error covariance of any estimator.
This covariance lower bound is:

-1

8% 8%

P, Ppp| op? . 9pdb (18)
PTb Py %] 227
p opob b2

VI. TEST DATA SET

This paper’s new ionosphere estimation algorithm has
been tested by applying it to data from a network of
almost 1000 CONUS stations. Slant TEC data from this
network have been collected for 17 March 2015. Each
station returns slant TEC data from about 7 to 8 GPS
satellites on average.

The distribution of CONUS ground stations for an exam-
ple case is shown in Fig. 3. The red dots show the locations
of the receiver ground stations whose slant TEC have been
used to estimate the ionosphere parameter vector p and
the corresponding receiver bias vector b. Although this set
only applies to one case, most of these ground stations are
the same for all cases considered in this paper. The ground
stations are concentrated on the west cost, in the northeast,
and in the northern part of the midwest. Therefore, one
expects better model performance in these regions.

The 6 green diamonds in Fig. 3 give the locations of 6
receivers from which slant TEC data are available but are
not used in the batch estimation problem. These 6 stations
are used to evaluate the slant TEC prediction accuracy of
the N.(7,p) electron density distribution when using an
optimal estimate of the p ionosphere parameter vector.
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Fig. 3: Map of ground stations used to estimate the
electron density profile (red dots) and used to evaluate
slant TEC prediction capability of estimate (green
diamonds).

These stations’ TEC values are compared with those pre-
dicted for these stations using the slant TEC measurement
model in Eq. (7). After removal of any apparent common-
mode bias for the given station, the maximum and root-
mean-square (RMS) errors are computed for the given test
station. These prediction accuracy metrics are compared
among 3 potential ionosphere estimates, the optimal esti-
mate that uses this paper’s new method, the optimal thin-
shell, known-altitude estimate, and the a priori estimate
based on the IRI model. Considering their proximity to
stations used by the batch estimator, one would expect
the best performance for test stations A, E, and F. Worse
performance might be expected for stations B, C, and D.

Note that the removal of biases from the 6 test station
receivers represents a sort of “cheating”. The biases are
calculated as being the mean errors between the predicted
slant TEC values at the stations and their measured values.
This need to rely on measured values means that the de-
biased values are not wholly predicted values. Despite
this “cheating” such an analysis provides a reasonable
measure of whether the slant TEC predictions would
be useful for aiding single-frequency GPS navigation. If
aiding the navigation of a single-frequency receiver, any
bias that was actually part of the model rather than the data
would cause an error in the corrected pseudoranges of the
aided receiver. Fortunately, this error would be common-
mode, which would put it entirely in the computed clock
correction rather than in the position estimate.

Data from two different times have been analyzed for 17
March 2015, one from UTC 07:00:00 and the other from
UTC 20:00:00. The first corresponds to a local time of
01:00:00 roughly over the middle of CONUS. The second



time corresponds to a local time of 14:00:00. Thus, the first
case occurs in the middle of the night, at a time of low
expected VTEC. The second case corresponds to the early
afternoon, at a time near the expected peak VTEC. Both
of these times lie within the 24 period that corresponds to
the 2015 St. Patrick’s day geomagnetic storm. So, the new
algorithm has been presented with interesting estimation
cases.

The local nighttime case involves data from @ = 935
independent GPS receivers for a total of K = 7869 slant
TEC measurements. The local daytime case has slightly
more receivers but fewer measurements: numbers: () =
937 receivers and K = 6431 TEC measurements.

The a priori estimate p used by the filter for each case is
based on the IRI model for exactly one year earlier than
the time of the measurements. This one year offset relieves
the need for the IRI to be used in a predictive mode
should the present algorithm be implemented in a real-
time application. This use of a 1-year offset is reasonable
because the IRI model tends to exhibit a strong correlation
between its N (7) distributions when they are separated
in time by exactly 1 year.

The various tuning parameters that have been used in the
filter are as follows: o,,x = 1 TECU (10'¢ electrons/m?),
for all k = 1, ..., K; 0hmaez = 2 km for the new batch
filter under regular operation but o,,,4, = 0.0001 km when
implementing the thin-shell, known-altitude estimator; o,
= 1 km for the new batch filter under regular operation but
Ohmaz = 0.00001 km for the thin-shell, known-altitude
estimator; oyrrc = 5 TECU (5x10'¢ electrons/m?) for
most cases, but it is sometimes lowered to 0.5 TECU or
1 TECU.

The two different nominal bi-quintic spline node spacings
have been tried for the batch filter when operating on these
data. The primary case uses a nominal spacing of 15°
in latitude and roughly the equivalent geodetic distance
between longitude grid points on any given small circle of
latitude. A different version of the filter cuts these nominal
spacings in half over CONUS, but leaves them nearly the
same over the remainder of the globe. All of the data are
taken over CONUS, and this refined grid spacing causes
roughly a tripling of the number of unknown ionosphere
parameters that are actively estimated by the batch filter.

An additional test case has been run using data from
a truth-model simulation. The simulation used a p;,.,:p
ionosphere parameter vector and a non-zero byy.:pn re-
ceiver bias vector to generate simulated data. Random
noise was added to the simulated data in order to ap-
proximate the effects of sensor noise. The p;,,;, vector
and the filter’s a priori p vector were deliberately set to
significantly different values in order to avoid a sort of
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“cheating” that would aid the filter’s accuracy in a way
which would be unrealistic for data from a real receiver
network. The method of synthesizing realistic differences
was to generate py,.,, using the IRI model for 23 Dec.
2012 and to generate p from the 23 June 2010 IRI model.
This 6 month discrepancy in the time of year ensured a
significant difference in the two parameter vectors. The
goal of the truth-model simulation has been to test the
concept in a controlled setting where the “truth” value of
p is known so that it can be compared directly to the
optimal estimate. If this is a good technique, then the
resulting comparison should yield reasonable agreement
despite the significant differences between p;,.,,; and the
batch filter’s a priori estimate in p.

The test case used simulated data from ) = 237 GPS
receivers at CORS sites that were distributed fairly evenly
over the CONUS. The number of slant TEC measurements
was K = 1937. The simulated slant TEC measurement
accuracy was o,,% = 0.2 TECU.

The batch filter for the truth-model data used a bi-quintic
spline grid with a nominal spacing of 10° in latitude
and roughly the equivalent geodetic distance between
longitude grid points on any given small circle of latitude.

VII. ALGORITHM PERFORMANCE

The new ionosphere estimation algorithm has been tested
in various ways. Its performance is good, especially when
considered relative to the alternatives. The details of how
it performed are discussed in the present section.

A. Performance on Truth-Model Simulation Data

The initial test of the new method using data from the
truth-model simulation provided confirmation that this
method has merit. The differences between the truth and
estimated VTEC values over most of the CONUS were
0.5 TECU or less. This is very good and is consistent with
computed covariances that have been generated using the
Cramer-Rao formula in Eq. (18).

The truth-model simulation demonstrated a degraded abil-
ity of the batch filter to estimate the truth Chapman
profile’s altitude of peak electron density and scale height.
Errors in the peak density altitude ranged from 45 to 90
km in the region of high density of ionosphere pierce
points of the measurements. The batch filter’s Cramer-Rao
covariance calculations indicated that these errors should
have been smaller, with o ranging from about 7 to 40 km.
Similarly, the scale height estimates were not great. Their
errors ranged from about -24 km to 60 km over CONUS.
The corresponding Cramer-Rao limits of the scale height



standard deviations in this region ranged from about 9 to
27 km. This is a more reasonable level of consistency.
These latter two results indicate that the altitude of peak
electron density and the scale height are only weakly
observable based solely on slant TEC data from a network
of ground-based dual-frequency GPS receivers.

B. Performance on Real Data

The nonlinear least-squares batch estimation algorithm
worked well. It tended to reach the minimum of the
cost function in Eq. (16) in about 5 major Gauss-Newton
iterations after the first iteration that updated only b. Each
iteration took between 20 minutes and an hour when
performing the computations in MATLAB on a 3 GHz
laptop computer.

The statistics that characterize the slant TEC prediction
capabilities and fit errors are summarized in Table I. These
results apply to two cases. One case, called the Local
Night case, corresponds to UTC 07:00:00, and results
for that case are presented in the 3 left-most columns
of the table. The other case is for local day time, for
UTC 20:00:00, as previously mentioned. The 3 right-most
columns of the table apply to this case. Each entry of
the table contains RMS slant TEC errors followed by
maximum slant TEC errors after the slash, “/”. These error
statistics are all given in TECU. The first 6 rows of the
table record the slant TEC predictions at the 6 test station
locations that are denoted by green diamonds in Fig. 3.
The 7" line aggregates the maximum and RMS errors over
all GPS slant TEC measurements for these 6 stations. The
8" and final line of the table gives the RMS and peak
slant TEC errors for the data from the other stations, the
ones that have been used by the batch filter to form its
ionosphere parameter estimates.

The performance of the new ionospheric estimation filter
can be evaluated by comparing its results in the 1*' and 4
columns of Table I with those of the thin-shell, known-
altitude model (2™ and 5™ columns) and with those of the
a priori IRI-based model (3™ and 6™ columns). The new
method obviously makes great improvements over the a
priori IRI-based model: The RMS and maximum errors
in the 1*' column are obviously much smaller than those
in the 3" for the local night case, and the same holds
true for the local day comparison between the 4" and
6™ columns. The improvement of the new method over
the thin-shell/known-altitude case is much less dramatic.
There is clearly a moderate improvement for the local day
case, as one can see by comparing the 4" and 5" columns.
The improvement for the local night case, however, is
marginal — compare the 1 and 2" columns.
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Note that all cases in Table I use the a priori model
VTEC standard deviation oy rpc =5 TECU. They also all
use a bi-quintic spline grid spacing over CONUS of 15°.
This spacing gives roughly the same possible variations as
would a 5° spacing for a simple bi-linear latitude/longitude
interpolator. This is true because a bi-linear model has
only one independent parameter per node, but the bi-
quintic spline model has 9 per node. The spline’s nominal
grid spacing divided by the square root of the number
of parameters per node gives the equivalent lat/long grid
spacing for an interpolant with a single parameter per
node.

More than 900 of the same receivers apply to the local
day and local night cases. These receivers’ biases can
be compared to check whether their estimates display
day/night stability. Bias stability has been studied by a
number of authors, and one would expect these receivers to
have such stability, perhaps varying a few TECU from day
to night due to temperature variations. In fact, variations
as large as 21 TECU have been observed. This is less than
10% of the range of biases seen in the 900+ receivers, but
this variability is deemed to be larger than is reasonable.
What is more, the estimated biases are sensitive to the filter
a priori VTEC uncertainty tuning parameter oy rgpc. An
increase of this value from 0.5 TECU to 5 TECU changes
the bias estimates by anywhere from 10 to 34 TECU for a
daytime case. Clearly something systematic is occurring,
and it implies that the estimated absolute VTEC values
are suspect.

One constructive way to analyze the properties of the
new ionosphere estimation method is to consider the
increments that it estimates to its a priori electron density
distribution. Such increments are illustrated in Figs. 4 and
5. Figure 4 plots the increment to the Chapman profile’s
altitude of peak electron density relative to its a priori
latitude/longitude variations. Figure 5 does the same for
the profile’s VTEC increment. Both plots also show the
ionosphere pierce points of the 6431 ray-paths that are
associated with the measurements which have been used
by the estimator. In both cases, the increments die off
to zero as one moves far away from these pierce points
because there is no effect of the distant electron density
distribution on the modeled measurements and because the
batch filter is designed to revert to its a priori model in
this situation. In the region of the pierce points, however,
the batch filter estimates significant perturbations from the
a priori Chapman profile parameters.

The most unusual features of these two figures are the
large humps in the VTEC increment plot shown in Fig. 5.
The largest of these occur in regions that border the region
of pierce points. These perturbations are very large, and
their distance from the pierce point concentrations makes



TABLE I: Summary of RMS/Maximum Slant TEC Errors (given in TECU)

Case Local Local Local Local Local Local
Night Night Night Day Day Day
New Thin- A priori New Thin- A priori
filter shell IRI filter shell IRI
Station A 3.6/6.3 3.8/6.9 7.0/11.7 2.0/3.2 2.9/5.0 9.4/14.9
Station B 3.2/5.2 3.7/5.7 4.8/7.6 3.5/4.4 3.9/6.0 12.2/25.8
Station C 3.6/5.7 3.8/5.8 5.2/9.0 1.6/2.5 2.3/3.8 9.4/14.9
Station D 5.2/7.1 5.0/6.9 5.6/11.0 2.9/4.4 3.4/4.8 4.9/6.7
Station E 3.3/6.4 3.4/6.4 6.0/10.9 2.3/4.6 2.5/4.9 9.0/14.2
Station F 2.5/4.6 2.8/4.7 5.9/10.8 2.2/3.6 2.5/4.0 7.1/13.2
All 6 Stations 3.6/7.1 3.8/6.9 5.8/11.7 2.5/4.6 3.0/6.0 9.0/25.8
Batch Filter Data Fit 3.5/31.5 | 3.6/32.0 5.4/- 2.4/26.4 | 2.8/26.6 9.9/-
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Fig. 4: Increments to a priori altitude of maximum
electron density as estimated by the new algorithm for a
local daytime case.
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Fig. 5: Increments to a priori VTEC as estimated by the
new algorithm for a local daytime case.

their large increments suspect. It is conjectured that these
large humps are caused by poor VTEC observability at
the edges of the pierce points region.

The reason for including the a priori penalty terms in the
batch filter cost function of Eq. (16) has been to avoid such
large unphysical filter anomalies. Obviously the desired
result has not been achieved. Therefore, more research
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needs to be done to develop improved alternate means
of adding a priori information about the ionosphere’s
electron density profile. Perhaps a better way of choosing
the Ppp a priori covariance matrix would alleviate such
problems. One idea is to penalize the latitude/longitude
curvature of the estimated increments to the a priori
altitude, scale height, and VTEC profiles. Such penalties
would constitute a regularization-type soft constraint on
the final electron density profile estimate.

The large humps in Fig. 5 do not detract from the
performance improvements found in the 4" column of
Table I relative to the 5" and 6 columns. Recall that these
three columns and this figure apply to the same case. The
table deals mostly with the ability of the new technique
to perform a sort of interpolation between measured slant
TEC values. The new method can do this well. The humps
in the figure have more to do with extrapolation beyond
the edges of the data set. The method is not very good at
extrapolation in its current form.

VIII. POTENTIAL
TESTS

IMPROVEMENTS AND

Various strategies hold the potential to improve this new
filter. As mentioned in the previous section, it might be
beneficial to switch to a penalty on the latitude/longitude
curvature of the difference between the estimate and the
a priori IRT model.

Another planned improvement is to extend this method to
assimilate ionosonde and radio-occultation data too. Such
data would tend to make the vertical profile parameters,
i.e., the altitude of peak electron density and the scale
height, more observable. Such data may allow the use of
more complicated vertical profiles that can better approx-
imate the profiles that exist in nature.

It might be wise to link the day and nighttime receiver
biases. One way to do this would be to implement the
estimator as sequential Kalman filter that would process
a whole time series of data. The Kalman filter dynamic



model could dictate that receiver biases have limits to their
likely drift rates.

It would be helpful to add more physics than is in the IRI
model. Perhaps this could be done by using the SAMI2
model of some similar model.

If the number of elements in the p vector becomes too
large to perform dense-matrix computations, i.e., on the
order of tens of thousands or more, then it may be wise
to implement some sort of Ensemble Kalman Filter to
perform the estimation calculations. Care must be taken,
however, not to preclude the possibility of achieving good
estimates as a result of making highly unphysical assump-
tions in order to implement such a filter. The first author
has developed a new type of Ensemble Kalman Filter that
may allow more natural assumptions and thereby achieve
good results.

Eventually a different vertical profile and parameterization
should be tried. A single Chapman profile is too restrictive.
It cannot capture the E layer or the D layer. Perhaps one
should try a Booker profile or some similar general profile
from the curve approximation literature.

It would be good to devise better tests for the fidelity
of this new method’s electron density profile estimates.
In situ density measurements from a satellite or density
vertical profiles from an incoherent scatter radar would
help to evaluate this method’s effectiveness. Some or all
of the estimator improvements noted above should be
implemented prior to taking the trouble of performing
such evaluations. In its current form, the present method
probably cannot estimate a very accurate 3D electron
density profile.

IX. SUMMARY AND CONCLUSIONS

This paper has developed and tested a new method for
estimating ionosphere electron density distributions based
on GPS slant TEC data. The new method uses a bi-
quintic spline to parameterize the latitude/longitude spatial
variations of the parameters of a vertical electron den-
sity profile, a Chapman profile in the present case. It
uses the corresponding 3D electron density distribution to
compute modeled values of slant TEC. These values are
compared with measured values within a batch nonlinear
least-squares filter, and the filter updates the ionosphere
parameterization in order to better fit the measured slant
TEC values. The output of the filter is a parameterization
that provides a data-based model of the ionosphere’s 3D
electron density distribution.

This new method has been tested using truth-model sim-
ulation data and using data from a network of more
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than 900 dual-frequency GPS receivers distributed over
the continental U.S. The batch filter has been able to
improve its fit to the slant TEC data by a factor of 1.5
to 3 in comparison to an a priori IRI-based model. It has
also demonstrated a moderate improvement relative to a
fixed-altitude, thin-shell ionosphere model. It does better
at predicting the slant TEC at receiver locations other than
those where its receivers are located. The best performance
improvement has been for a daytime case.

These developments represent and early step in a pro-
cess that envisions fusing additional data types, such as
ionosonde data and radio-occultation data. The goal is to
develop accurate real-time or near-real-time data-fusion-
based estimates of the ionosphere’s electron density profile
and other states.
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