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ABSTRACT

This paper investigates one method of acquiring and
one method of tracking various chirp-style GPS jam-
mers. A signal model that uses polynomial descrip-
tions of frequency versus time is developed. The de-
veloped model can track ideal linear chirps as well as
more complicated, and even some non-repeating, poly-
nomial frequency patterns. The developed model can
also be used for jammer classification. Two slightly
different measurement models that both make use of
Fast Fourier Transforms (FFTs) are also developed.
An ad-hoc chirp-style signal acquisition method that
uses FFTs of a moderately strong jamming signal is
also developed. The jamming signal model, observa-
tion model, and acquisition procedure are combined
to create a chirp-style signal tracking Kalman filter.
The developed Kalman filter is verified by application
on three sets of laboratory data and on two sets of
field data. Tracking of a chirp-style jammer is demon-
strated for a distance of approximately 1.8 kilometers
between the receiving station and the jammer. The
jammer signal models and the Kalman filter are also
expanded to the scenario where multiple jamming sig-
nals are present, and the modified Kalman filter is eval-
uated on one set of laboratory data.

INTRODUCTION

The Global Positioning System’s location and time-
synchronization capabilities are used in many areas
of civilian life. Some common civilian uses include
navigation through GPS-enabled smart phones or
dash-mounted navigation units, and geotagging pho-
tographs. Common commercial uses include tracking
trucking and shipping [1], aircraft and maritime navi-
gation [2], and high precision timing applications [3, 4].
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Government agencies, such as the police or FBI, can
use GPS for tracking suspected criminals [5].

Unfortunately, the interests of some individuals can be
served by interfering with GPS. A simple example is
that of a thief who steals a vehicle that is GPS en-
abled and wishes to interfere with GPS so that the
vehicle cannot be recovered before dismantling. An-
other example is that of an employee in a commercial
trucking corporation who wishes to interfere with the
GPS tracking device on his company truck so that he
may run personal errands while being paid to make
deliveries. A less malignant use of GPS interference
would be that of someone attempting to enforce an
envelope of privacy around their personal vehicle [6].

In the above examples the GPS interference could be
provided by a civil GPS jammer, also known as a Per-
sonal Privacy Device (PPD). This has led to several
incidents, of which the so called “Newark Incident” is
the most commonly recognized. In the Newark Inci-
dent a truck driver with a GPS jammer in his vehicle
drove by Newark airport and periodically interfered
with the airport’s GPS equipment [2]. The truck driver
only wanted to enforce an envelope of privacy around
his vehicle and was not intending to interfere with the
airport equipment. There was also a less benign in-
cident in Great Britain where a group of car thieves
used GPS jammers to try to disrupt the geolocation
and recovery efforts of the relevant authorities [1].

The above incidents have motivated a number of re-
searchers to investigate PPDs [7, 8, 9, 10, 11, 12, 13]
in general and their geolocation [14, 15, 16, 17, 18]
in specific. This paper furthers the work of [15] and
provides a set of algorithms to acquire and track vari-
ous chirp-style GPS jammers. Jammer signal tracking
has applications in jammer geolocation [15], as would
be useful for law-enforcement actions. Although, not
investigated in detail, this work may also have appli-
cations in jammer classification and interference miti-
gation.

The remainder of the paper is divided into eight sec-
tions. The first section presents background informa-
tion on the civilian GPS chirp-style jammers. The
second section develops a model and state parameter-
ization for the PPDs’ chirp-style signals. The third
section briefly discusses jammer classification using
the developed models. The fourth section discusses
and selects an observation model for use in jammer
signal tracking. The fifth section outlines an ad-hoc
strategy for acquiring a chirp-style jammer that has
a moderately strong carrier-to-noise ratio. The sixth
section combines the state parameterization, observa-
tion model, and acquisition procedure and applies the

resulting algorithm to data collected from several in-
dividual jammers. The seventh section extends the
jammer modeling to scenarios where multiple jammers
are present and it also considers the new complica-
tions that arise when multiple jamming signals must
be tracked. Additionally, the section applies the multi-
jammer tracking algorithm to multi-jammer labora-
tory data. The final section summarizes the paper’s
developments and draws appropriate conclusions.

GPS JAMMER BACKGROUND INFORMA-
TION

Civilian GPS jammers/PPDs can be found in a vari-
ety of form factors, but are on average approximately
the size of a hand-held cellular telephone [8]. Three
different civilian GPS jammers are shown in Fig. 1.

Figure 1 Three different form factors of civilian GPS
jammers/PPDs.

The algorithms used in the processing of signals from
GPS jammers can benefit from an understanding of
the RF output of those same jammers. The typical
output of a civil GPS jammer is shown in Fig. 2. The
horizontal axis is time and the top plot’s vertical axis is
frequency. Each vertical slice of the top plot in the fig-
ure is a Fast Fourier Transform (FFT) of the RF sam-
pled signal, centered at the GPS L1 frequency. The
z, or color axis, is power, with red denoting a large
value and blue denoting a small value. The bottom
plot’s vertical axis is power. The figure shows a classic
example of a chirp signal, or a tone whose frequency re-
peatedly ramps linearly upwards and then resets back
to the starting frequency.

The plot shown in Fig. 2 is a common example of a
GPS jammer’s output spectrum, but other minor vari-
ations exist and will be addressed later. Further infor-
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Figure 2 A common GPS jammer spectrum. The top
plot displays vertical slices of 64-point Hamming-win-
dowed FFTs, and the bottom plot is of power.

mation can be found in the survey of civilian GPS
jammers in Ref. [8].

JAMMER MODELING AND PARAMETER-
IZATION

There are multiple parameterizations that could be de-
veloped for the chirp-style jammer signal introduced in
the previous section. This paper considers a param-
eterization that is similar to that used in Ref. [15],
but with several modifications. The parameterization
starts by assuming a linear chirp, or a first-order rate
of change of the frequency versus time, as shown in
Fig. 3.

Figure 3 Time-history of the signal frequency of a lin-
ear first-order chirp, with appropriate states labeled.

The following state vector is a moderately low-order

parameterization of a chirp-style jammer:

x =



θ
f
αu

αd

A
tu

td

T


(1)

where the entries of the state vector are as follows: θ is
the phase in units of cycles, f is the frequency in units
of Hertz, αu is the upward frequency rate of change
in units of Hertz per second, αd is the downward fre-
quency rate of change in units of Hertz per second, A is
the amplitude in units of Volts, tu is the ramp up time
start for the current ramp and is in units of seconds,
td is the ramp down time start for the current ramp
and is in units of seconds, T is the chirp period and is
in units of seconds. The ramp times could have sepa-
rate periods, such as Tu and T d, but experimentation
with separate periods did not dramatically change the
results presented later in this paper.

The above parameterization assumes that the jammer
chirp has a linear first-order polynomial rate of change
of frequency versus time. For the majority of the chirp-
style jammers the above parameterization is a suffi-
ciently accurate model for most signal processing algo-
rithms. However, there are several jammers that have
significantly different behavior. The following two fig-
ures show the spectra of two jammers that are not
ideally approximated by linear chirps. Fig. 4 appears
to have a non-first-order polynomial ramp down in fre-
quency, whereas Fig. 5 has a non-first-order ramp up
in frequency.

Figure 4 A jammer power spectra, with a non–
first-order polynomial ramp down in frequency versus
time.

The model state can be modified in several ways to
account for higher-order variations in the frequency

3



Figure 5 A jammer power spectra, with a non–
first-order polynomial ramp up in frequency versus
time.

ramps. The modification method selected in this paper
is to add new states that allow the frequency ramps to
follow higher-order polynomials, as is shown in Fig. 6.
The polynomial expansion is in some ways analogous
to a Taylor series expansion of a nonlinear term.

Figure 6 Possible time-history of the signal frequency
for a polynomial-type chirp, with appropriate states
labeled.

The general form of the new state vector is as follows:

x =



θ
f cu1
...

cuMu


 cd1

...
cdMd


A
tu

td

T



(2)

All of the cuj and cdj states are coefficients of the Taylor-
series-type polynomial expansion of the frequency be-
havior, including the first order terms cu1 and cd1 that
have replaced αu and αd. The states of the form cuj
are the coefficients of a ramp-up frequency polynomial,
and the states of the form cdj are the coefficients of
a ramp-down frequency polynomial. The frequency
polynomial is defined as follows:

f (x, t) =


f +

Mu∑
j=1

cuj (t− tu)
j
, tu ≤ td

f +

Md∑
j=1

cdj
(
t− td

)j
, td < tu

(3)

and it can be integrated to determine the correspond-
ing phase:

θ (x, t) =
θ + f (t− tu) +

Mu∑
j=1

cuj
(t−tu)(j+1)

(j+1) , tu ≤ td

θ + f
(
t− td

)
+

Md∑
j=1

cdj
(t−td)

(j+1)

(j+1) , tu > td

(4)

where the top case in Eqs. 3 and 4 is for times when
the frequency is ramping upwards and the bottom case
is for times when the frequency is ramping downwards.

The order of the polynomial, and the associated states
cu1–cuMu

and cd1–cdMd
, can be considered a tuning pa-

rameter. More states will allow for a model that can
more closely replicate the behavior of the true jam-
mer. The practical upper bound on the number of
coefficients used in the model is primarily set by the
sampling rate and numerical conditioning limitations.
If the sampling rate is very low, then the number of
accumulations that can be computed for each chirp is
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reduced and it will be difficult to estimate the higher
order terms accurately. Numerical conditioning issues
may arise due to the dramatically different state mag-
nitudes in the above parameterization, and this may
require that the states be modified to improve the nu-
merical stability of the algorithm. It should also be
noted that using more polynomial coefficients than
necessary is a waste of computational effort. There-
fore, the order of the polynomial should be limited to
a reasonable number.

A 5th order polynomial is considered for both the fre-
quency ramp-up and ramp-down in the remainder of
this paper’s modeling work. Additionally, the poly-
nomial coefficients have been modified from the def-
inition in Eqs. 2–4. The new polynomial coefficients
have been multiplied by the sample time Ts, raised to
the corresponding power, as shown below for the ramp
up:

cu1,new = cu1 (Ts)
1

...

cuMu,new = cuMu
(Ts)

Mu (5)

and for the ramp down:

cd1,new = cd1(Ts)
1

...

cdMd,new
= cdMd

(Ts)
Md (6)

The new states will have magnitudes that are closer
to unity, and therefore will be less likely to cause nu-
merical instabilities in the developed algorithms. For
example, a reasonable numerical value for cu1 might be
1012, and a system with a sampling rate of 10 MHz
would cause cu1,new to have a numerical value closer to
105. It would also be possible to use a fixed number
that is unrelated to sample rate.

The state dynamics are defined in a chirp-by-chirp
manner, with the frequency and phase defined at the
ramp times tu and td. The phase and frequency can
be evaluated at any time, but are only propagated for-
ward and updated when the time crosses the ramp-
down time, td, or ramp-up time, tu, by evaluating
Eqs. 3 and 4.

The resulting state dynamics equation is as follows:

xk+1 = Φk (tk+1, tk;xk)xk + Γk (tk+1, tk;xk) vk (7)

where xk+1 is the state at time tk+1, xk is the state at
time tk, Φk is the state transition matrix from time tk
to tk+1, Γk is the process noise influence matrix, and
vk is the zero-mean, unity-covariance, white, Gaussian

process noise vector. The process noise is expected to
enter only at the beginning of each ramp interval, tu or
td. It should be noted that the state transition matrix
and the process noise influence matrix are both state
dependent, and are defined as follows:

Φ (tk+1, tk;xk) =


Φ (tk+1, tk)up , if A

Φ (tk+1, tk)down , if B

I, otherwise

(8)

Γ (tk+1, tk;xk) =


Γ (tk+1, tk)up , if A

Γ (tk+1, tk)down , if B

0, otherwise

(9)

where the conditions A and B are defined as follows:

Condition A: t = td (10)

Condition B: t = tu (11)

The state transition matrices for this system are the
identity matrices, except when Eqs. 10 and 11 are sat-
isfied, i.e. when the system time equals td or tu. When
the system time equals td the phase and frequency
are propagated as defined by the up-ramp polynomial
from time tu up to time td. Similarly, when the sys-
tem time equals tu the phase and frequency are prop-
agated as defined by the down-ramp polynomial from
time td up to time tu. The time difference terms in
Eqs. 3 and 4 can be rewritten as rows of Φ (tk+1, tk)up

or Φ (tk+1, tk)down because the states, the coefficients
of the polynomials, enter linearly into those equations.
The amplitude, A, is defined as a constant and the
time states are defined by the following equations:

tu =

{
tu + T, if t = td

tu, otherwise
(12)

td =

{
td + T, if t = tu

td, otherwise
(13)

where the time states tu and td are incremented by
their period T when the system time equals td or tu,
respectively. The rows corresponding to tu or td in
Φ (tk+1, tk)up or Φ (tk+1, tk)down will have 1 entries for
that state, and if the conditions of Eqs. 10 or 11 are
satisfied, it will also have a 1 entry for the period in-
crement for the corresponding state.

Propagation of the state from a time before tu or td

to a time after tu or td will require multiple matrices.
For example, if the state were propagated from time tk
to tu and then from tu to tk+1 the resulting equations
would be:

Φ (tk+1, tk, xk) = Φ
(
tk+1, t

u
+

)
Φ
(
tu+, t

u
−
)

Φ
(
tu−, tk

)
= I Φ (tk+1, tk)down I

= Φ (tk+1, tk)down (14)
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where the time tu− designates a time infinitesimally be-
fore tu and time tu+ designates a time infinitesimally af-
ter tu. If multiple ramp changes were included in the
propagation interval then matrix multiplication series
of Eq. 14 would contain more terms.

The default process noise influence matrices for this
system are zero matrices, except when the conditions
in Eqs. 10 or 11 are met, i.e. when the system time
equals td or tu. All of the states, except for θ, are
considered to have some process noise enter at the be-
ginning of each ramp. The introduction of process
noise creates non-zero entries in the Γ matrices, which
are assumed to be diagonal. If the non-zero diagonal
entries are each set to 1, then the process noise co-
variance matrix Q becomes the square of the standard
deviation of the process noise expected for the entire
ramp. Q is formally defined as:

Q = E[(vk − E[vk]) (vk − E[vk])
∗
] = E[vkv

∗
k] (15)

where E [] is the expected value of the quantity in the
brackets. A reasonable assumption for the Q matrix
is that all of the noise inputs are uncoupled, i.e. Q is
a diagonal matrix.

The amount of process noise that is assumed to be
present in each signal state is a tuning parameter that
can be modified to improve the performance of the fil-
ter. The signal tracking results of the single GPS jam-
mers were not extremely sensitive to the assumed level
of process noise. However, the multi-jammer scenarios
were decidedly more sensitive to the process noise tun-
ing. It should be noted that each jammer can have a
different level of process noise, and a thorough survey
could be conducted to determine a statistically sig-
nificant estimate of the process noises that could be
expected from any GPS jammer seen in the field. A
survey of that many jammers is beyond the scope of
this current work.

The resulting output of the above jammer model is:

y′i = A′i ∗ cos(2π ∗ φ(x, ti)) (16)

where φ(x, ti) is the evaluation of the relevant phase
polynomial, and A′i is the broadcast signal amplitude,
at time ti. The signal as seen at a receiver station with
mixing frequency fmix, and with the high-frequency
mixing term removed, is as follows:

yi =
Ai
2
∗ cos (2π ∗ (φ (x, ti)− fmixti))

=
Ai
2
∗ cos (Θ (x, ti, fmix)) (17)

where the amplitude in Eq. 17 is the actual tracked
amplitude state. Eq. 17 is the final form of the signal
model that is used in the remainder of this paper.

JAMMER CLASSIFICATION

In Ref. [8] the authors found that jammers with the
same physical appearances produced significantly dif-
ferent frequency versus time behavior. The unique fre-
quency versus time behavior can potentially be used
to identify individual jammers. Jammer identification
can be useful for determining how many different jam-
mers are seen at one station. It can also be useful if
a person is being prosecuted for operating a PPD and
the authorities wish to know where else that person
has broken the law by jamming GPS. Jammer identi-
fication only requires that at least one station receive
the jamming signal, as opposed to most automated
geolocation methods which require several stations.

One possible identification method would be to store
a short amount of time of high-sample-rate data from
many jammers in an RF signature library and then
compute cross correlations between the received data
and the library to determine if the signals match. A
new method using the modeling in this paper would
also start with a short recording of data from each jam-
mer in the library. The jammer state would then be
estimated for many chirps. The resulting time-series
of state estimates would then comprise many samples
from a probability density function (pdf) of the jam-
mer’s state perturbed by process noise. A similar pro-
cedure would then be applied to the new received sig-
nal and the resulting two sets of pdfs would be com-
pared to each other. Relevant similarity metrics and
hypothesis tests could be developed to determine if
the new signal is the same as one of the signals in the
library. This method of jammer identification might
require a smaller amount of storage space when com-
pared to one which used a sampled RF data library.
This is a potentially deep research area and will require
further investigation to explore.

JAMMER OBSERVABLES

The standard pair of observables used to track an
RF signal are the In-Phase and Quadrature accumu-
lations. The accumulation formulas at time tk are:

Ik =

N∑
i=1

yicos
(
ΘNCO (ti)

)
(18)

Qk =

N∑
i=1

yisin
(
ΘNCO (ti)

)
(19)

where N is the number of samples used in the accu-
mulation, yi is the sampled RF data, and ΘNCO (ti) is
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the numerically controlled oscillator (NCO) phase at
time ti.

The NCO phase is arbitrarily defined by the user. The
jammer phase time history can be determined from the
previous modeling section and is as follows for a single
polynomial ramp:

Θ (x, ti, fmix) =

2π

[
θNk + fNk ∆tA +

NA∑
j=1

cAj
∆tj+1

A

(j + 1) (Ts)j

− fmixti]
(20)

where the subscript “A” denotes ramp A, ∆tA is de-
fined as ti− tA, and tA is either tu or td, depending on
if the ramp is up or down, respectively. If the accu-
mulation time interval spans part of two ramps, ramp
A and then ramp B, the phase is as follows:

Θ (x, ti, fmix) =

2π

[
θNk + fNk ∆tA +

(
NA∑
j=1

cAj
∆tj+1

BA

(Ts)j

[
∆tBA
(j + 1)

+ ∆tB

])

+

(
NB∑
j=1

cBj
∆tj+1

B

(j + 1) (Ts)j

)
− fmixti

]
(21)

where ∆tBA is defined as tB − tA, and tB is either tu

or td and tA is the other, i.e. if the first ramp is an up
ramp then ramp A starts at time tu and tB = td. If
more than two ramps are spanned by an accumulation
interval then the received phase equation simply gains
additional terms.

If the signal contains no noise, then the NCO phase
that produces the largest accumulation is the same
phase as the incoming signal that one wishes to track.
In a traditional signal tracking architecture the ac-
cumulations would then constitute the measurements
that would be sent to the Kalman filter. The corre-
sponding measurement models would then be defined
by substituting the signal model and the signal model
estimates into the yi term in the accumulation models
of Eqs. 18 and 19. The measurement models can be
simplified further by converting the discrete sums to
continuous integrals and attempting to solve the re-
sulting integrals in closed form. The integral of the
higher order phase terms is at simplest, in the case of
a perfectly linear ramp, a Fresnel integral. The higher
order polynomials will further complicate the integra-
tion. The resulting measurement model is complicated
and requires significant computational overhead. Ad-
ditionally, a single pair of long time-span accumula-
tions is likely to prove insufficient for filter convergence
and signal tracking. This is because the accumulations
will result in appreciable power only if the NCO phase

time-histories are close to that of the real signal being
tracked.

The slow evaluation speed and a strong preference for
multiple accumulations suggest that a different mea-
surement model that does not have the same draw-
backs should be considered. It should be noted that,
unlike GPS, the GPS jammers broadcast very power-
ful signals, and their signal can be easily seen above
the noise floor in a given area around each jammer. A
faster measurement that computes accumulations and
spans the frequency range of the physical sampling sys-
tem is the Fast Fourier Transform (FFT). The FFT
computes accumulations at fixed frequencies spaced
evenly between the positive and negative Nyquist fre-
quency bounds. If the accumulation lengths are short
enough that they do not lose power due to the chang-
ing frequency of the incoming signal then they will
provide a measurement of the jammer power in each
frequency bin across the entire Nyquist range.

The FFT measurements are defined as follows:

z(L) = I + iQ

=

N∑
n=1

w(n)y(n)e−i2π
(L−1)(n−1)

N

=

N∑
n=1

w(n)y(n)e−iζ(L,n,N) (22)

∀L ∈ [1, ..., N ]

where w is the time domain windowing function used
to reduce sidelobes in the FFT, y is the sampled signal,
and L is the frequency bin number of the FFT. The
present work used the Hamming window, but other
windowing functions would likely produce similar re-
sults.

It is important to note that it would be unreasonable
to expect that the phase can be precisely tracked in
this system. Precise tracking of the phase state θ re-
quires at least the following two conditions be met.
The first condition is that the frequency polynomial
estimate be very accurate, such that there are only
very minor fluctuations in the frequency that cannot
be modeled by the polynomial. The second condition
is that the jamming signal always stays within the re-
ceiver’s Nyquist frequency bounds.

Satisfying the above two conditions will be difficult in
even the most benign situations, where the jamming
environment can be controlled and RF data can be
acquired with a high-speed recording system. The re-
sults of two such scenario are shown in Figs. 7 and 8.
In Fig. 7 the order of the frequency polynomial re-
quired to describe the signal changes from chirp to
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chirp, and sometimes the frequency of the signal per-
forms near-instantaneous jumps that may not be ac-
curately modeled by a continuous polynomial. Even
a well-designed signal tracking algorithm will there-
fore be unable to accurately track this jammer’s phase,
unless the instantaneous jump behavior is accurately
modeled and reliably estimated. The frequency poly-
nomial model developed in this paper does not permit
instantaneous frequency jumps, but it will allow an ap-
proximation to that behavior. In Fig. 8 the frequency
of the jamming signal passes outside of the receiver
system’s Nyquist range. When the frequency passes
outside of the Nyquist range the phase can no longer
be tracked. Although the frequency and phase behav-
ior are governed by the polynomial parameterizations
developed in this paper, they are not guarantees of the
behavior outside of the visible frequency range. The
Nyquist frequency range is dependent on the equip-
ment being used, but even in the above high-rate labo-
ratory system the signal is not always visible, and field
equipment typically uses a lower digitization rate.

Figure 7 A jammer power spectra, with jumps in fre-
quency. Continuous approximations to the above fre-
quency behavior will likely be inaccurate and the phase
estimate will likely be untrustworthy.

Because the phase estimated state θ is unlikely to be
accurate, the phase state will be removed for the single
jammer signal tracking case. The resulting measure-
ments are further simplified by considering only the
absolute value of the accumulations, as follows:

z(L) = |I + (iQ) |

= |
N∑
n=1

w(n)y(n)e−iζ(L,n,N)| (23)

∀L ∈ [1, ..., N ]

Figure 8 A jammer power spectra, the frequency
span is much greater than that covered by the high-
-speed data sampling equipment (62.5 MHz complex
samples). Phase estimates derived from data that
spans multiple ramps will likely be erroneous.

The measurement model is defined similarly:

h(L) = |I(x) + (iQ(x)) |

= |
N∑
n=1

w(n)ȳ(n, x, fmix)e−iζ(L,n,N)| (24)

∀L ∈ [1, ..., N ]

where ȳ is the predicted RF sample obtained by prop-
agating the state to the current measurement interval
and evaluating Eq. 17 for the time at sample n. The I
and Q dependencies on the non-state terms have been
omitted for the sake of notational convenience. The
Jacobian, or partial derivatives of the measurement
model with respect to the model state, is required for
Kalman filter estimation and is defined as:

H(L) =
∂

∂x
|I(x) + (iQ(x)) |

=
∂

∂x
|
N∑
n=1

w(n)ȳ(n, x, fmix)e−iζ(L,n,N)| (25)

∀L ∈ [1, ..., N ]

The absolute value is defined as:

|a+ (ib)| =
√

(a2) + (b2) (26)

and the partial derivative as:

∂

∂x
|a+ (ib)| =

a
(
∂a
∂x

)
+ b

(
∂b
∂x

)
|a+ (ib)|

(27)
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In the case of the measurement model from Eq. 24:

a = I (x)

≈ A

2

N∑
n=1

w(n)cos (Θ(x, tn, fmix)− ζ (L, n,N))

=
A

2

N∑
n=1

w(n)cos (µ (L, n,N, fmix, x))

=
A

2

N∑
n=1

w(n)cos (µ (P , x)) (28)

b = Q (x)

≈ A

2

N∑
n=1

w(n)sin (Θ(x, tn, fmix)− ζ (L, n,N))

=
A

2

N∑
n=1

w(n)sin (µ (L, n,N, fmix, x))

=
A

2

N∑
n=1

w(n)sin (µ (P , x)) (29)

where P is a vector of parameters that has been intro-
duced for notational convenience and includes L, n,
N , andfmix. The reason that Eq. 28 and 29 are only
approximations is because the high frequency term,
from the conversion of the products of the trigono-
metric terms to the sum of the terms with combined
arguments, is assumed to sum to zero. The resulting
partial derivatives of a and b are as follows:

∂a

∂x
=


a
A , for x = A

−A2

N∑
n=1

w(n)∂Θ
∂x sin (µ (P , x)) , otherwise

(30)

∂b

∂x
=


b
A , for x = A

A
2

N∑
n=1

w(n)∂Θ
∂x cos (µ (P , x)) , otherwise

(31)

Eqs. 26–31 can be combined with the measurement
model equations, Eq. 24 and 25, to complete the ab-
solute value FFT measurement model.

Sometimes it might be preferable to use the power of
an accumulation pair instead of just the absolute value,
where the absolute value is effectively the square root
of the power. In that case the measurements are de-
fined using the same I and Q definitions from the FFT
model:

z(L) = [I + (iQ)]
∗

[I + (iQ)]

= I2 +Q2 (32)

∀L ∈ [1, ..., N ]

The measurement model is defined as follows:

h(L) = I(x)2 +Q(x)2 (33)

∀L ∈ [1, ..., N ]

with partial derivatives:

H(L) =
∂

∂x

[
I(x)2 +Q(x)2

]
= 2

∂I(x)

∂x
I(x) + 2

∂Q(x)

∂x
Q(x) (34)

∀L ∈ [1, ..., N ]

The partial derivatives of the accumulations with re-
spect to the states are given by Eqs. 30 and 31.

Every RF sample includes some amount of sample
noise, which eventually becomes accumulation noise.
The noise statistics of the absolute value of the FFTs
is complicated and only an approximation has been
used in this paper. The results are similar to the noise
statistics for the power measurements, which are as
follows:

E[z(L)] ≈
(
I2
true +Q2

true

)
+Nσ2 (35)

cov(z(L)) = E
[
(z(L)− E[z(L)]) (z(L)− E[z(L)])

∗]
≈ 2Nσ2

[
I2
true +Q2

true

]
+N2σ4 (36)

where Itrue and Qtrue are the accumulations if the
signal contained zero noise.

One component of the measurement model that still
needs to be addressed is the RF filter characteristics of
the physical jammers and recording devices. The RF
filters will attenuate different frequencies at different
rates. The data recording equipment RF filter shape
can be determined off-line. Off-line system identifi-
cation is likely not possible for the jammers, because
the equipment is not typically available before the first
encounter in the field. It might still be possible to per-
form off-line system identification on several jammers
and attempt to identify repeatable RF filter shapes
among the surveyed jammers. Therefore, if the class
of the jammer is known a priori then the RF filter
shape can be assumed—it may provide sufficient ac-
curacy for tracking purposes.

Alternatively, the RF filter shapes can be identified on-
line, after signal detection and before the initialization
of the tracking algorithms. There are many ways to
do this, but one simple method of system identification
would start by computing FFTs of the incoming sig-
nal at a rate that is faster than the chirp period. Then
the maximum magnitude, or the average magnitude, of
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each FFT bin would be computed over many chirp pe-
riods. The resulting RF filter’s magnitude versus fre-
quency bin output would contain the effects of both the
jamming and recording equipment. That output could
then be normalized. The result of the above procedure
is an attenuation factor that can be included into each
FFT computation in the measurement model.

It should be noted that the maximum time length of
each accumulation is a function of the frequency rate
of change of the jammer being tracked. A jammer that
has a slower ramp rate will be able to use more samples
before the frequency mismatch between the jammer’s
frequency and the FFT bin frequency causes the I-Q
vector to complete a full rotation. A jammer with a
fast rate of change will only be able to use a fewer
number of samples.

If the user desires to track a very weak signal, or
a signal that has a quick time-rate-of-change of fre-
quency, then a different measurement model might be
required. A candidate model that has similar char-
acteristics of an FFT accumulation model is one that
starts with FFTs, but then adds a linear frequency
rate of change term. The ramping frequency term will
allow for longer accumulations, and therefore a higher
signal-to-noise ratio. However, there are several down-
sides to this new proposed model. One down-side is
that many ramp-rates would be needed until the ac-
tual ramp rate of the jammer being tracked is known
with enough certainty that only one ramp rate could
be used. A second down-side is that the measurement
noise covariance matrix, R, may become more compli-
cated. This type of accumulation may also face length
limitations due to the NCO frequency passing outside
of the Nyquist bounds of the system. Finally, the ob-
servability properties of this new model have not been
investigated.

AD-HOC ACQUISITION OF A MODER-
ATELY POWERFUL CHIRP-STYLE JAM-
MER SIGNAL

There are multiple ways to initialize a state for use in
the developed chirp-style GPS jammer signal tracking
filter. The method presented in this paper assumes
a moderately strong jammer signal-to-noise ratio, i.e.
the signal can be at least partially seen in FFTs com-
puted at the receiver. The primary obstacle to a fast
state initialization procedure in this system is the high
dimensionality of the proposed state. If the 2-ramp
polynomial parameterization model developed in this
paper is used (without phase) then the state’s dimen-
sion is fifteen. This is a state space that is likely too

large to search in any brute-force manner in a small
amount of time. Instead, the initialization procedure
will attempt to extract some state values from auto-
correlations and FFTs of the sampled data and then
make some simplifying assumptions about the jammer
to reduce the search dimensions to a more tractable
size. The developed algorithm is intended to allow for
the initialization of the state of a single jammer only.

The spectra of a GPS jammer from data recorded in a
field campaign at White Sands Missile Range in 2012
is shown in Fig. 9. Several quantities are clearly dis-

Figure 9 A jammer power spectra spanning 9 MHz
on the y axis and approximately 20 µs on the x axis.

tinguishable from Fig. 9. These quantities include the
period of the jammer, T , a time t0 at which the signal
passes through a given frequency f0, and the linear
coefficient of the ramp-up polynomial, cu1 . The four
quantities, T , f0, t0, and cu1 are labeled in Fig. 10,
and code can easily be written to automate the com-
putation of those quantities. The period can also be
computed more precisely by using autocorrelations of
the raw data.

Fig. 10 seems to imply that the other states cannot
reliably be initialized by directly inspecting the FFTs
of two chirps, and an expanded initialization procedure
should be developed.

The additional initialization procedure presented in
this paper will collapse the remaining (large) search
space by assuming a 1st order linear polynomial chirp.
This assumption is not strictly valid, but appears to
be a reasonable low-order approximation of the many
jammers in Ref. [8]. The benefit of the 1st order lin-
ear polynomial chirp assumption is that it reduces the
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Figure 10 A jammer power spectra spanning 9 MHz
on the y axis and approximately 20 µs on the x axis.
Easily extractable quantities have been labeled.

number of polynomial coefficients that must be initial-
ized to two. This lower-dimensional initialization can
be considered a “rough” initialization.

It might appear that there are four states that must
be determined to complete the rough initialization: f ,
cd1, tu and td (the amplitude state can be scaled at the
end of the initialization procedure). That is not the
case. Coupling between states, the frequency f0, and
the time t0, can be used to reduce the independent
initialization dimension to two. The remaining two
dimensions must be explored to determine the best
rough state initialization. The first dimension is the
span of the chirp. The span can be defined in terms
of the frequency or time, because the two quantities
are coupled through the cu1 term. The frequency is
selected in this work. The frequency span fspan is
shown graphically for two distinct chirps in the Fig. 11.
Where fspan,1 is the frequency span of the first chirp
and fspan,2 is the frequency span of the second chirp.

The second dimension is the starting point of the chirp.
The starting point can be defined in terms of either
the initial frequency f or time of ramp up tu, because
the two quantities are coupled in a manner similar to
the coupling in fspan. The frequency f is selected in
this work, so that parallelism is preserved between the
two search dimensions. The center frequency f0 (or
fL1

), t0, and cu1 are provided earlier by direct com-
putation on the FFT spectra, and they constrain the
chirp to lie along a line in the frequency-time plot with
slope cu1 , and they prescribe an intersection point at
(t0,f0). The quantities fspan, T , cu1 , and the assump-

Figure 11 Frequency-time histories for two different
values of the chirp frequency span, but otherwise using
similar states. The chirps have been offset in time in
the interest of clarity.

tion of a 1st order linear polynomial chirp prescribe
the ramp-down rate cd1. The starting frequency search
is shown graphically in Fig. 12 for three different hy-
pothesis starting chirp times and frequencies, f1, f2,
and f3, but identical states otherwise.

Figure 12 Frequency-time histories for three different
values of the chirp frequency starting value, but similar
states otherwise.

The many different state hypothesis xhthat will result
from searching the above two dimensions must be eval-
uated to determine how closely they fit the real data.
There are many ways to define an appropriate ad-hoc
“goodness of fit” metric. This paper’s metric will be
a cost function J

(
xh, y

)
that seeks to minimize the 2-

norm of the frequency difference between the real data
and the hypothesis data. The actual metric considers
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the FFT frequency bin spacing distance between peaks
of FFTs computed on real data and those computed
on the hypothesis data. The formal definition of the
scalar cost function is as follows:

J
(
xh, y

)
= ||d

(
xh, y

)
||2 (37)

where d is a vector of FFT bin distances between the
maximum powered accumulation in the FFTs of the
real data and the hypothesis data.

Fig. 13 shows a possible entry of d, where the vector d
is composed of many such d values, and corresponding
FFTs on sequential data. In Fig. 13 d is the single dis-
tance between the peaks of the real data, at bin num-
ber 95, and the hypothesis data, at bin number 175,
and is approximately 80 bins. Many computations of
the form shown in Fig. 13 are combined to cover the
full chirp period of the jammer as shown in Fig. 14. In
fact, the use of several chirps seems to improve the 1st

order linear frequency polynomial fit results by aver-
aging to reduce the effect of measurement noise.

Figure 13 An example plot of FFT power versus FFT
bin number for real data (blue) and for hypothesis data
(green).

The final step in the initialization procedure is the
“fine” initialization. The fine initialization procedure
expands the rough initialization state corresponding
to the best 1st order linear polynomial chirp approx-
imation to a full polynomial. The above rough ini-
tialization procedure should produce a state estimate
that is within the pull-in range of a standard non-
linear Maximum Likelihood Estimator (MLE) that al-
lows full polynomial variation on the frequency ramps.
The Square Root Information (SRI) formulation of the
MLE cost function is shown below:

J
(
x, y
)

=[
R−Ta

(
z
(
y
)
− h (x)

)]T [
R−Ta

(
z
(
y
)
− h (x)

)]
(38)

where z is the vector of FFT measurements computed
from the data y, h is the FFT measurement model of

Figure 14 Graphical representation of a 1st order lin-
ear polynomial frequency approximation to a higher
order chirp. FFTs of the real data are in blue, hypoth-
esis data in green, the frequency bin distances between
the two data (before rounding to the nearest frequency
bin) are in black, and the the FFT frequencies used to
calculated the entries of d are in red.

Eq. 24, and Ra is the Cholesky factorization, or ma-
trix square root, of the measurement noise covariance
matrix R. Where R is defined as:

R = RTa ∗Ra = E
[
(ν − E [ν]) (ν − E [ν])

T
]

(39)

where ν is the measurement noise vector. The mea-
surement noise statistics are similar to those in the
previous section on jammer observables.

SINGLE-JAMMER KALMAN FILTER SIG-
NAL TRACKING

The state, dynamics model, measurement model, and
initialization procedure can be combined to produce a
Kalman filter to track the RF signal of a chirp-style
GPS jammer. The data used in this section comes
from two different sources. The first source is data
originally collected for use in Ref. [8], where many
GPS jammer’s signals were recorded using complex
sampling at a rate of 62.5 MHz. The second source is
the data originally collected for use in Ref. [15], where
many GPS jammer’s signals were recorded at approx-
imately 8 or 9 MHz (depending on the file) during a
testing event at WSMR sponsored by the DHS.

The first set of Kalman filter tracking results considers
three different jammers in a laboratory environment.
The jammers progress from a nearly perfectly linear
1st order polynomial jammer behavior to the jammer
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that was least like a 1st order jammer out of all the
jammer signatures collected for Ref. [8]. Each labora-
tory jammer is initialized not using the previously de-
veloped acquisition procedure. The initialization was
performed by manually inspecting an FFT surface plot
of the jammer data and then guessing a linear 1st or-
der polynomial state. This particular initialization was
selected so that the initial state provided to the filter
had some significant error, as was likely not to be the
case with the previously developed acquisition proce-
dure. The error was introduced to demonstrate some
of the filter convergence properties. A full analysis of
the filter convergence range is beyond the scope of this
paper. This paper’s ad-hoc acquisition procedure has
been used on the WSMR data shown later.

The results of the most benign jammer, or that which
has a frequency behavior that most closely matches the
linear 1st order frequency polynomial model, is shown
in Fig. 15. The Kalman filter’s frequency estimate at
each sample time is plotted on top of a surface plot
comprised of FFTs of the real data. Despite the ini-
tial error, the filter quickly determines the correct state
of the jammer, and, although it is not shown, the fil-
ter state estimates completely settle within 10 chirp
periods.

Figure 15 Spectra of the first GPS jammer in a labo-
ratory environment, with the Kalman filter frequency
state estimates overlaid in green.

The results of the second jammer are shown in Fig. 16.
The second jammer does not have as close of a match
to the linear 1st order frequency polynomial behavior
as the previous jammer, as can be seen in the curve of
the frequency up-ramp. The initial error can be seen
in the jump of the frequency estimate at the bottom
of the first chirp. The Kalman filter determines the
state of the jammer in less than two chirp periods.

The results of the least benign jammer, or that which
has a frequency behavior that least closely matches the
linear 1st order frequency polynomial model, is shown

Figure 16 Spectra of the second GPS jammer in a
laboratory environment, with the Kalman filter fre-
quency state estimates overlaid in green.

in Fig. 17. Despite the fact that the jammer has a
different ramp behavior for each chirp the Kalman fil-
ter is able to modify its state estimate every ramp to
closely follow the jammer’s actual frequency.

Figure 17 Spectra of the third GPS jammer in a lab-
oratory environment, with the Kalman filter frequency
state estimates overlaid in green.

The above results will naturally degrade with in-
creased noise. The motivation for testing the filter
with more noise is to understand how the jammers can
be tracked in a real-world scenario. Instead of testing
with more noise the filter will be analyzed using actual
data from a real-world scenario at WSMR.

The second set of Kalman filter tracking results con-
siders one jammer at two different distances from the
receiver station. The first set of results is shown in
Fig. 18, when the jammer is approximately 50 meters
from the recording station. The state is initialized
using the automated acquisition procedure mentioned
previously and the filter is able to track the signal very
accurately from the beginning of the data set.

In Fig. 19, the Kalman filter is applied to the same
jammer as in Fig. 18, but now the jammer is approx-
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Figure 18 Spectra of a GPS jammer at WSMR when
it is very close, with the Kalman filter frequency state
estimates overlaid in green.

imately 1.8 kilometers away from the receiver station.
Despite the fact that the jamming signal is only barely
visible above the noise the acquisition procedure is able
to initialize the state and the filter is able to track the
signal. It should be noted that the automated acquisi-
tion procedure required several initialization attempts,
discarding several µs of data after each failed initial-
ization, to produce a good state estimate for signal
tracking. Methods of determining when the signal has
failed initialization are beyond the scope of this paper,
but a common test is to consider the measurement
residuals after the initialization procedure concludes.

Figure 19 Spectra of a GPS jammer at WSMR when
it is far away, with the Kalman filter frequency state
estimates overlaid in green.

MULTI-JAMMER KALMAN FILTER SIG-
NAL TRACKING

The jammer models must first be extend to handle
multiple signals before the signal tracking problem can
be addressed. The dynamics of each jammer are inde-
pendent of other jammers and result in the following

uncoupled dynamics equation:

x
k+1

= Φ x
k

+ Γ v
k

(40)

where the entries of Eq. 40 are defined as follows for
the case of two jammers:

x =

[
x1

x2

]
v =

[
v1

v2

]
Φ =

[
Φ1 0
0 Φ2

]
Γ =

[
Γ1 0
0 Γ2

]
where x1 is the state of the first jammer, x2 is the
state of the second jammer, and the other terms are de-
fined in a similar manner in conjunction with Eq. 7–13.
Eq. 40 can be extended to handle an arbitrary number
of jammers by appending the new jammer’s state to
the current state vector, appending the new process
noise vector to the current process noise vector, and
then modifying the matrices Φ and Γ appropriately.

The measurement model is slightly more complicated.
The signal received at the recording station is a linear
combination of the two, or more, jammer signals. The
combined signal model is as follows:

ȳ
(
ti, x, fmix

)
= ȳ1 (ti, x1, fmix) + ȳ2 (ti, x2, fmix)

=
A1,i

2
∗ cos (Θ (x1, ti, fmix))

+
A2,i

2
∗ cos (Θ (x2, ti, fmix)) (41)

where ȳ1 and ȳ2 are defined by Eq. 17. Eq. 41 can be
extended to an arbitrary number of jammers by adding
the new signals in the same manner that ȳ2 was added
to ȳ1.

The resulting FFT measurement model has the same
fundamental form as before:

h(L) = |
N∑
n=1

w(n)ȳ(n, x, fmix)e−iζ(L,n,N)| (42)

∀L ∈ [1, ..., N ]

FFT operators have the convenient property that they
are linear and can therefore be distributed among the
multiple incoming signals. The resulting measurement
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model equation has the following form:

h(L) = |
N∑
n=1

w(n)ȳ1(n, x1, fmix)e−iζ(L,n,N) + ...

N∑
n=1

w(n)ȳ2(n, x2, fmix)e−iζ(L,n,N)| (43)

∀L ∈ [1, ..., N ]

The partial derivatives behave similarly and have been
omitted for the sake of brevity.

Multiple incoming jamming signals experience an ad-
ditional effect that is not normally seen in single jam-
ming signals: interference. The two signals are fre-
quency modulated sinewaves that will likely have very
similar frequencies at some point during signal track-
ing. When two sine waves with similar frequencies are
combined they begin to constructively and destruc-
tively interfere with each other. The factor that de-
termines whether the interference is constructive or
destructive is the relative phase of the two signals.
Therefore, the signal phase that was neglected earlier
in this paper’s filter development becomes vitally im-
portant. The measurement model could be modified
again to allow the phase of both signals to be states,
but it is difficult to track both signal’s phases accu-
rately enough to predict the type and level of interfer-
ence. Additionally, it is the relative phase between the
jammers that determines the type and extent of the
interference. Therefore, at each time step the relative
phase θrel of the jammers is added as a parameter and
the measurements are optimized over it. The optimiza-
tion cost function is the same as the earlier maximum
likelihood cost function, but for a single measurement
set:

J
(
θrel, x, y

)
=[

R−Ta
(
z
(
y
)
− h (x, θrel)

)]T [
R−Ta

(
z
(
y
)
− h (x, θrel)

)]
(44)

Determining the optimal relative phase θrel from
Eq. 44 is easily accomplished by evaluating multiple
phases on the unit circle and selecting the one with
the lowest cost. It was found that a grid of 40 points
spaced evenly on the unit circle determined a relative
phase value to an appropriate resolution for tracking
two jamming signals.

The above algorithm was tested on laboratory data.
A multi-jammer data set was developed by adding to-
gether the samples from two different jammer data
sets. The states of each jammer were initialized sepa-
rately on the individual data sets before combination
because an efficient multi-jammer initialization algo-
rithm is beyond the scope of this current work. The

spectra of the combined jammer samples is shown in
Fig. 20. The Kalman filter frequency estimates of the
two jammers are overlaid in green and red in Fig. 21.

Figure 20 Spectra of two GPS jammers in a labora-
tory environment.

Figure 21 Spectra of two GPS jammers in a labo-
ratory environment, with the Kalman filter frequency
estimates overlaid in red and green.

The multi-jammer signal tracking work has been
shown to work on real jamming data in a laboratory
setting. A real-world test has not yet been completed,
and it is not known how many jammers can reasonably
be tracked using the developed algorithms. It should
be noted that the optimization in Eq. 44 increases in
dimensionality by one every time another jammer is
added to the incoming signal, effectively slowing down
the algorithm more than might normally be expected
from the simple state dimension increase. It should
also be noted that significant tuning of the measure-
ment and process noise was required to allow the filter
to track the combined two-jammer signal. The results
of the multi-signal tracking algorithm would likely im-
prove, and be more stable to noise parameters, if a
filter architecture that is different from the Extended
Kalman filter was implemented. A filter architecture
that might work more reliably is the particle filter or
the Gaussian mixture filter.
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SUMMARY AND CONCLUSIONS

This paper investigated one method of acquiring and
one method of tracking various chirp-style GPS jam-
mers. A signal model that uses polynomial descrip-
tions of frequency versus time was developed and its
utility for jammer signal tracking and classification
was discussed. Two slightly different observation mod-
els were derived. An ad-hoc chirp-style signal acqui-
sition method that used FFTs of a moderately strong
jamming signal was also developed. The various algo-
rithm components were combined to produce a signal
tracking Kalman filter. The developed Kalman filter
was verified by application on three sets of laboratory
data and on two sets of field data. One GPS jammer
was even acquired and tracked at a distance of approx-
imately 1.8 kilometers. The developed models and al-
gorithms were expanded to consider multiple jammers
simultaneously, and the algorithms were tested on one
set of multi-jammer laboratory data.
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