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Abstract

Two generalized versions of Wahba’s attitude determination problem have been devel-
oped for a spinning spacecraft, and a restricted version of one problem has been solved in
closed-form. These problems seek to estimate both attitude and rate based solely on a time
series of vector attitude observations along with a spacecraft dynamic model. Algorithms
that solve these problems will be useful for spin-stabilized spacecraft that reduce complex-
ity by omitting rate gyros. The first generalized Wahba problem presumes that the spin axis
is known and that the spin rate is constant but unknown, as for a spinning spacecraft that has
a nutation damper. The second generalized problem includes full rigid-body Euler dynam-
ics, which allow for nutations, and seeks to estimate the unknown initial attitude rate vec-
tor. Both problems are recast into the K-matrix form of Wahba’s problem with K matrices
that depend on the unknown rates. Restricted problems are developed that use the minimum
number of vector measurements, two for the first problem and three for the second problem.
The restricted first problem is solved in closed-form. The restricted second problem is
shown to be observable, and it is reduced to a small system of nonlinear equations in the ax-
ially symmetric case. The possibility of deriving global solutions for these problems makes
them attractive to assist or replace an extended Kalman filter because a global solution can-
not suffer from nonlinear divergence.

Introduction

Attitude estimation for a spinning spacecraft is important because spinning
spacecraft designs are often chosen for missions with a modest budget. A spinning
spacecraft’s attitude determination and control system tends to be more robust and
less costly due to the gyroscopic stiffness afforded by its nonzero angular momen-
tum, which makes the spacecraft’s dynamic motions more predictable. In order to
realize low cost, it is usually necessary to dispense with rate gyros. Such designs
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exploit the improved fidelity of the attitude rate dynamics model in order to enable
rate estimation based solely on attitude sensor data.

This design approach results in a combined attitude and rate determination prob-
lem that is highly nonlinear. It can be solved using extended Kalman filter (EKF)
methods, as in references [1] and [2]. Extended Kalman filters, however, can di-
verge or produce poor estimation accuracy if their linearization assumptions break
down [3, 4].

Another important tool in the field of attitude estimation is Wahba’s problem [5]
and the q-method solution to this problem [3, 6]. Wahba defined a nonlinear
attitude determination problem, and the q method solves it exactly in closed-form.
There are no linearization assumptions in this approach, and, therefore, no
linearization-induced divergence problems or accuracy reductions.

The original Wahba problem and q-method solution are limited to batch attitude
determination from vector observations at a single instant of time. This original
problem does not admit the possibility of estimating attitude rate along with attitude
based on a time series of vector measurements. There have been attempts to extend
the Wahba/q-method approach to a filtered form that also involves rate parameter es-
timates or rate measurements along with dynamic propagation [7–11]. All such at-
tempts rely on rate gyros and a purely kinematic model for dynamic propagation.
Either they do not estimate rate parameters [9, 10], or they estimate only rate-gyro
biases and lose any guarantee of attaining a global solution [7, 8, 11].

The present paper seeks to generalize Wahba’s problem and to work towards
generalizing q-method-like solutions in ways that encompass both attitude and rate
estimation for a spinning spacecraft based only on vector observations. The gener-
alized problems exploit knowledge of the attitude dynamics in order to eliminate
the need for rate gyros. Solution algorithms are sought that simultaneously deter-
mine the attitude and rate estimates that constitute the global optimum of the gen-
eralized problem. These generalized problems include the possibility of measuring
only one vector at any one instant in time. Otherwise, the problem becomes too
easy because a q-method solution to Wahba’s problem can be applied at each in-
stant of time for which two or more vector observations are available. As much as
is possible, this paper seeks to exploit existing knowledge about the q-method so-
lution to Wahba’s original problem because of its known ability to yield the global
optimum. Note that the present generalization of Wahba’s problem is different from
the generalization of reference [12], which seeks only to add another measurement
type to the original static problem.

The new algorithms will be useful for spin-stabilized spacecraft that use vector
attitude observations from Sunsensors, magnetometers, or star cameras. In the case
of star cameras, the new methods will be important only for an instrument with a
very narrow field of view, i.e., one that often cannot return multiple vector meas-
urements at a single point in time that have enough linear independence to yield an
accurate q-method solution. Although they could be used alone, the new algorithms
also might be useful for initializing the state of an EKF like one of those in refer-
ence [2]. They could ensure that the EKF did not diverge by providing a guaran-
teed level of initial state accuracy.

The present paper makes four main contributions to the problem of attitude and
attitude-rate estimation for a spinning spacecraft. Its first contribution is to pose
two generalizations of Wahba’s problem for a spinning spacecraft. Both general-
ized problems involve solutions for three-axis attitude and rate based purely on a
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time series of reference vector observations, with the likely scenario of having only
a single vector observation at each sample time. Both generalized problems are
based on a torque-free Euler rigid-body dynamics model of a spinning spacecraft.
The first problem presumes spin about a known body axis at an unknown constant
spin rate. This problem is applicable to a spin-stabilized spacecraft with a nutation
damper. The second generalized problem presumes that the spacecraft moments
and products of inertia are known and that the unknown angular momentum is con-
stant in inertial coordinates. This latter problem is applicable to a spinning/nutating
spacecraft. Two forms of the second problem are discussed, the general form and a
form that assumes axial symmetry.

The paper’s second contribution is a closed-form solution of a restricted version
of the first problem. The restricted problem includes only two vector measurements
at two distinct sample times. This is the minimum number of measurements re-
quired in order to determine the unknown initial attitude and the unknown constant
spin rate.

The third contribution is to pose a restricted form of the second problem: the un-
known initial three-axis attitude and three-dimensional angular rate vector must be
determined based on three vector measurements. This problem is not solved, but
the observability of example systems is demonstrated based on only three vector
measurements. Possible analytic solution strategies are discussed for this problem
in the case of axial symmetry.

The final contribution of this paper is to outline possible solution strategies for
the unrestricted forms of the two generalized Wahba problems. This discussion
aims to encourage further research efforts that seek solutions to these problems.

The remainder of this paper consists of four main sections plus conclusions and
an appendix. The second section reviews the original Wahba problem and the q-
method solution, and it presents the two new generalized Wahba problems for a
spinning spacecraft. The third section defines the restricted version of the first gen-
eralized Wahba problem. This section also develops an analytic solution to this re-
stricted problem. The fourth section defines the restricted version of the second
generalized Wahba problem, it demonstrates the local observability of this problem
by using a gradient-based analysis, and it suggests how analytic solutions might be
developed for the axially symmetric case. The fifth section discusses possible so-
lution strategies for the unrestricted forms of the two new generalized Wahba prob-
lems. The sixth section summarizes the paper’s results and gives its conclusions.
The Appendix contains some of the details of the gradient-based analysis presented
in the fourth section.

Two Generalized Wahba Problems for a Spinning Spacecraft

This section reviews the original form of Wahba’s problem and the q-method
solution. It then extends the Wahba problem to develop two new problems that are
applicable to a spinning spacecraft whose attitude and rate must be estimated based
on a time series of vector attitude observations.

Review of Wahba’s Problem

The original Wahba problem seeks to determine the attitude of a spacecraft at a
single instant of time based in body axis measurements of two or more unit
direction vectors [5]. The estimation problem can be posed as the constrained opti-
mization problem 
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find:               q (1a)

to minimize: (1b)

subject to:     (1c)

where q is the quaternion that parameterizes the attitude. The function is the
least-squares cost function that penalizes errors between the body-axis measured
unit direction vectors and the transformations of the corresponding unit reference
vectors from inertial coordinates to body coordinates using the direction cosines
matrix The q method transforms this problem into the quadratic maximiza-
tion problem 

find:               q (2a)

to minimize: (2b)

subject to:   (2c)

where the symmetric matrix K takes the form 

(3)

with the component matrices defined as [3, 6]

(4)

One of the most significant aspects of the Wahba problem is that it can be solved
in closed-form by solving an eigenvalue problem. This approach is known as the q-
method solution [3, 6]. If one adjoins the constraint in equation (2c) to the per-
formance function in equation (2b) using the Lagrange multiplier then the
first-order necessary conditions for maximizing take the form

(5a)

(5b)

which is an eigenvalue problem. The optimal q is the unit-normalized eigenvector
that corresponds to the maximum eigenvalue of K, . This solution globally min-
imizes the original optimal estimation problem in equations (1a)–(1c).

The availability of robust eigenvalue solvers enables the q method to guarantee
that the globally optimal attitude has been determined. This ability to guarantee
global optimality is a very strong asset of all Wahba/q-method-based estimation
algorithms. One of the other leading attitude estimation algorithms, the extended
Kalman filter (EKF), can have divergence problems because it relies on linearizations
that only have local validity. In other words, it may diverge because it cannot guar-
antee that its solution is the global optimum of the associated estimation problem [4].

First Generalized Wahba’s Problem: Known Spin Direction, Unknown Spin Rate

The first extension to Wahba’s problem relaxes the requirement that all of the
measurements be taken at the same instant of time. It includes the estimation of an
unknown constant spin rate about the known major inertia axis of the spin-stabilized
spacecraft. This generalized Wahba problem can have a solution even if there is no
single instant in time when more than one vector measurement is available.
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This generalized Wahba problem is applicable to a spin-stabilized spacecraft that
has a nutation damper. Nutation damping ensures that the spacecraft will spin about
its major axis of inertia in steady state. Standard spin-balancing techniques imply
that this axis will be known in spacecraft body coordinates.

This problem formulation and all of this paper’s subsequent developments assume
that attitude sensor alignments have been well calibrated in advance. This assumption
ensures that the measured vectors are known in the same body-axis coordinate sys-
tem that is used to define the known spacecraft moment-of-inertia properties.

If one defines the known spin axis to be where is a unit di-
rection vector in spacecraft coordinates, and if one defines the unknown constant
spin rate to be the scalar , then the first generalized Wahba problem takes the form 

find:                (6a)

to maximize: (6b)

subject to:        (6c)

where is the initial attitude quaternion at epoch time , is the sample time
at which the body-vector measurement was made for and

is the orthonormal matrix that maps to 
Given that the spin vector is known to be constant and equal to

the quaternion dynamics model in reference [6] implies that this matrix is 

(7)

This generalized Wahba problem differs markedly from previous time-varying
Wahba problems that have been proposed, as typified by the problem defined in ref-
erences [9] and [10]. Such problems presume the availability of three-axis rate-gyro
data. Although they include a quaternion transition matrix in an estimation
performance metric, as in equation (6b), their matrix does not depend on
any unknown spin rate. It is assumed to be known from the gyro data and from in-
tegration of the associated transition matrix differential equation.

The estimation performance metric in equation (6b) can be re-written in the form
where

(8)

Thus, the new problem form retains the original q-method form. The only differ-
ence is that its K matrix now depends on an unknown parameter.

Second Generalized Wahba’s Problem: Known Inertia Matrix 
and Torque-Free Motion

The second generalized Wahba problem for a spinning spacecraft relaxes the
requirements that the spin axis is known a priori and that the spin rate is constant.
It replaces these assumptions with assumptions that the spacecraft is rigid, that its
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body-axis moment-of-inertia matrix is known, and that the spacecraft un-
dergoes torque-free motion. Thus, the spacecraft can nutate while it spins. The cor-
responding generalized form of the Wahba problem is 

find:                (9a)

to maximize: (9b)

subject to:        (9c)

where the unknown vector is the initial angular velocity of the spacecraft
at time expressed in body coordinates, and is the quaternion transi-
tion matrix that is used to determine for a rigid body under-
going torque-free motion. This matrix can be determined by integrating Euler’s
equation to determine as a function of while simul-
taneously integrating the quaternion transition matrix differential equation from the
initial condition . This system of equations takes the well-
known form [6] 

(10a)

(10b)

Note that can be assumed to be diagonal without loss of generality.
This system of equations can be integrated numerically or analytically. The re-

sult in equation (7) is the solution of this system of equations for the special case
where is a principal axis of and is aligned with this axis. A more compli-
cated closed-form solution for can be determined for the case of axial
symmetry. It exploits the notion of a body-fixed cone rolling on a space cone and
can be written in terms of ordinary trigonometric functions ([6], p. 530). The solu-
tion for the general case involves the use of Serret-Andoyer variables [13] and is
very complex. It is not clear that an analytic form of this latter solution would serve
better within an optimization algorithm than would a solution based on numerical
integration of equations (10a) and (10b).

Similar to the first generalized Wahba problem, the performance metric in equa-
tion (9b) can be recast into the form where 

(11)

Again, this is the problem form that is addressed by the original q method, except
that the K matrix is a function of the initial angular velocity vector .

It may be beneficial to reformulate the 2nd generalized Wahba problem by re-
placing the unknown initial angular velocity with the unknown initial angular
momentum. One could use the initial angular momentum in spacecraft coordinates,

or the constant angular momentum in inertial coordinates:
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proposed new vectors of unknowns and . It is straightforward to
transform the problem between these three different possible formulations. The re-
sulting transformations would yield Wahba-type performance metrics of the form

or . The calculation of the
symmetric matrix or would involve integration of the corre-
sponding versions of equations (10a) and (10b) followed by a summation like that
in equation (11). The performance metric is probably less useful. The
added dependence of on would complicate any effort to maximize

A Restricted Version of the First Generalized Wahba Problem 
and its Exact Solution

A restricted version of the first Wahba problem in equations (6a)–(6c) can be
solved exactly. This problem limits the number of vector measurements to the min-
imum that is needed in order to make the solution unique: measurements at
two distinct measurement times with reference unit direction vectors and

that are linearly independent. This restricted problem is observable in the general
case because each measurement contains two independent pieces of scalar infor-
mation, making for a total of four equivalent scalar measurements. The problem un-
knowns also constitute the equivalent of four scalars, the three free parameters in
the quaternion after its normalization constraint has been considered and the spin
rate . Therefore, the four problem unknowns should be determinable from the four
pieces of attitude information in the two vector measurements.

The solution of the restricted problem amounts to equation solving. It produces
an equivalent to the equation (1b) cost that is exactly zero. This solution starts by
recognizing that each matrix , as defined in equation (4), has two equal maximum
eigenvalues with two orthogonal eigenvectors. Using the results of reference [14],
this subspace of eigenvectors is spanned by the two quaternions 

(12a)

(12b)

where in the lower condition of equation (12a) is any vector that is perpendicu-
lar to and where standard quaternion multiplication [6] is used in equation (12b)
with the order convention such that . The general maxi-
mizing eigenvector is the quaternion

(13)

The angle is a free parameter that will be determined by the solution procedure
in a way that causes to equal the optimal estimate of the attitude quaternion at
time .

The quaternion formula in equation (13) can be applied at the measurement
times and , and the results can be used in a quaternion multiplication in order to
determine the quaternion of rotation between these two times as
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(14)

The quaternion notation indicates the quaternion formed by negating the first
three elements of q while keeping the fourth element unchanged. It constitutes the
inverse rotation so that , the identity quaternion.

The solution to the restricted first problem makes use of the fact that the rotation
quaternion in equation (14) must equal

(15)

In particular, the first three elements of from equation (14) must be parallel to
the spin direction vector . One can choose two unit direction vectors and 
such that forms an orthonormal triad. One uses these two vectors to
develop a pair of equations for the two unknown angles and

These equations take the form

(16)

where the matrices F and G are 
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(17b)

Equation (16) is used to solve for the vector in terms of the
vector , and the result is substituted into the equation 

to yield the equation 

(18)

where is a symmetric matrix. In the general case, F is con-
jectured to have an inverse, as demonstrated by several randomly developed numer-
ical examples, all of which yielded a nonsingular F matrix. If F is not invertible, then
it should be possible to develop an alternate equation in terms of and andsin 
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the inverse of G, one that solves equation (16) for the vector in
terms of the vector and that substitutes the result into the equation

. Alternatively, it may be possible to choose the vectors 
and in a way that ensures the nonsingularity of F. The conditions that ensure non-
singularity of F or G constitute a subject that warrants further investigation.

Trigonometric identities can be used to re-cast equation (18) in the form 

(19)

where 

(20a)

(20b)

and where atan2[,] is the usual two-argument arctangent function. Equation (19)
can be solved in closed form. It has two solutions in the form of

(21a)

(21b)

The ambiguities for integer-valued n only affect the common-mode signs of the
elements of the quaternions in equation (13). Such sign changes do not change
the represented attitudes; therefore, nonzero values of n can be ignored.

The ability to distinguish which of these two solutions is correct is not provided
by the data at the two sample times that are used in this restricted problem. Nu-
merical truth-model simulations show that a simple test involving a third vector ob-
servation at a third sample time suffices to resolve this ambiguity.

Given the correct from equation (21a) or (21b), a back substitution procedure is
needed in order to determine the other solution quantities of interest. This procedure
starts by substituting into equation (16) and solving for . The quantities 

and are computed next, and these quantities are sub-
stituted into equation (13) in order to compute and . These quaternions are
substituted into the first line of equation (14) in order to compute the rotation quater-
nion . This quaternion is equated with the theoretical formula in equation (15) in
order to compute the spin rate . Finally, this spin rate is substituted into equation (7)
in order to compute the quaternion transition matrix and this matrix
is used to compute the initial quaternion: 

This solution procedure has been encoded and tested on simulated truth-model
problems. Except for the ambiguity noted between the two values in equations
(21a) and (21b), the numerical calculations bear out the correctness of this solution.

This solution to the restricted form of the first generalized Wahba problem could
be useful for initializing an EKF. Given its global optimality, its solution would be
likely to be very near the true attitude and spin rate if the measurements were rea-
sonably accurate. This good solution could provide an EKF with enough initializa-
tion accuracy to avoid the possibility of divergence due to linearization errors.
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This solution may provide insight that could lead to the development of a closed-
form solution to the unrestricted version of the first generalized Wahba problem.
Alternatively, it could provide the starting guess for an iterative numerical solution
of the unrestricted problem.

A Restricted Form of the Second Generalized Wahba Problem

The Minimum Observable Form of the Second Problem

The restricted version of the second generalized Wahba problem uses the mini-
mum number of measurements required for observability. Consider the number of
free scalar unknowns in the second generalized problem: there are three free pa-
rameters in the initial quaternion after the normalization constraint has been en-
forced, and there are three independent elements of the initial angular velocity
vector , which yields a total of six scalar unknowns. Each vector attitude meas-
urement pair contains two pieces of scalar information. Therefore, at least

pairs are needed in order to make the second generalized problem observ-
able. The next two subsections demonstrate that measurements is a suffi-
cient number for observability in a representative set of example cases. The
restricted version of the second problem is defined to be the problem that uses this
many measurements.

This restricted second generalized Wahba problem may have important practical
uses. It may be possible to develop an analytic or semi-analytic global solution to
this restricted problem as was done for the first restricted problem. Such a solution
could shed light on how best to solve the unrestricted form of the problem. Alter-
natively, it could be used to initialize one of the EKFs in reference [2], thereby pre-
cluding the possibility that the EKF would diverge.

It is possible that initialization of an EKF will be the most important use of either
of the generalized Wahba problems. If so, then the restricted forms of the two prob-
lems would probably be the most important forms because the corresponding
EKF solution might be as good or better than the solution to the unrestricted prob-
lem when considered over any significant time duration. In this case, a quest for
solutions to the unrestricted forms of the two generalized problems might be more
of a pure mathematical challenge than an important contribution to aerospace
engineering.

A Second-Order Approximation of the Second Wahba Problem

A gradient-based approximation of the restricted form of the second generalized
Wahba problem can be used to demonstrate its local observability. Suppose
that is a candidate point for the maximization of the performance
metric of equation (9b). Then the optimal estimation problem in equa-
tions (9a)–(9c) can be approximated to second order near this point by the problem 

find:              (22a)

to maximize: (22b)

subject to:      (22c)q0opt
T �q0 � 0
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where and are perturbations to and and where is
the second order approximation of the corresponding perturbation to 
The variable is the Lagrange multiplier for the constraint
in equation (9c) and equals the largest eigenvalue of because must
equal the corresponding eigenvector. The vectors and are the gradients of

with respect to and , and the matrices and are the Hes-
sian second partial derivatives of with respect to and , all evaluated
at and . The Appendix presents formulas for the computation of 

and 

Local Observability of the Restricted Second Problem

A system is said to be observable if and only if there exists a unique solution to
the corresponding well-determined or over-determined system of equations that in-
corporates the system’s measurement model and dynamic model. Local observ-
ability of the second generalized Wahba problem is the equivalent of demonstrating
that the problem in equations (22a)–(22c) has the unique global maximum 
and . Two conditions must be met for uniqueness to hold in this case. They
are the first-order necessary condition and the second-order sufficient condition for

to be a local maximum of the original problem in equations (9a)–(9c).
The first-order necessary condition requires that and that 

The scalar is the Lagrange multiplier for the linearized constraint in equation (22c).
A review of the formula for in equation (A1a) of the Appendix shows that

will cause the first of these two equations to be satisfied if is an
eigenvector of with eigenvalue equal to . This is a familiar result from
the original q-method solution of the Wahba problem. The equation is a new
condition imposed by the present paper’s generalization of Wahba’s problem. For
purposes of the local observability analysis, it can be assumed that the chosen

point satisfies these two first-order necessary conditions.
The second-order sufficient condition for a local maximum at the point

is that the projected Hessian of the performance metric 
be negative definite. The Hessian matrix is the block matrix in the last term
on the right-hand side of equation (22b). The second-order sufficient condition con-
siders the projection of this Hessian into the six-dimensional subspace of

space that is perpendicular to the constraint gradient vector 
Negative definiteness of the projected Hessian implies that every nonzero vector

produces a negative value when substituted into the last term on the
right-hand side of equation (22b) if the vector’s component obeys

A suitable projection of the Hessian can be calculated by first determining a
projection matrix such that the matrix is orthonormal.

One possible choice of is 

(23)

as suggested by quaternion multiplication theory [6]. Given this projection, the re-
quired projected Hessian matrix is 6 � 6
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(24)

The second-order sufficient condition can be evaluated by computing the six real-
valued eigenvalues of the symmetric matrix. It is negative definite and the sys-
tem is locally observable if and only if all six eigenvalues are negative.

The second-order problem approximation and observability calculations of equa-
tions (22a)–(24) have been carried out numerically for several example cases.
These computations have used “truth” values of and in order to simulate the

vector measurements. The measurements have been simulated with zero meas-
urement noise. The same truth values of and have then been used as and

in equations (22a)–(24). This guarantees that the first-order necessary condi-
tions for a local maximum are satisfied. The question of local observability has
been answered by computing the six eigenvalues of and checking that they are
all negative. A variety of truth values of and have been generated for these
tests with the aid of a random number generator.

These calculations have confirmed the observability of the restricted form of the
second generalized Wahba problem for all of the numerical cases that have been
considered. Recall that this restricted problem is the form that incorporates the min-
imum required number of vector measurements, . This numerical evidence
demonstrates observability in the general case that has three different measurement
times , , and and three linearly independent inertial reference vectors , and

The numerical evidence also shows that the problem can retain observability
even when two of the reference vectors are the same while the third is linearly in-
dependent, i.e., when , , or . The restricted problem loses ob-
servability, however, if all three inertial reference vectors lie in the same direction
or if two or more of the measurement times are the same.

There might exist isolated additional cases in which the restricted problem is not
observable, perhaps cases where the sample times induce an aliasing-like effect
with respect to the spacecraft’s nutation or spin frequency. No such perverse cases
have yet been encountered.

Possible Analytic Solution Strategies for the Restricted Second Problem 
in the Case of Axial Symmetry

It would be useful to have an analytic global solution to the restricted version of
the second generalized Wahba problem. Such a solution would be for the second
problem what the analytic solution of the third section is for the first problem. No
such solution has yet been derived. This subsection suggests strategies that might
be employed to derive one.

The first step in deriving an analytic solution is to develop an analytic expression
for the quaternion state transition matrix. It is probably possible to de-
rive an analytic expression for for a general moment-of-inertia matrix

[13], but the expression is likely to be too complicated to help in deriving an an-
alytic solution to the restricted second generalized Wahba problem. In the case of
axial symmetry, however, the expression for is relatively simple. It can
be derived in terms of two rotations that model the rolling of the “body cone” on
the “space cone,” as discussed in reference [6] on pp. 491–492. This expression
takes the form (reference [6], p. 530)
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(25)

where

(26)

with 

(27a)

(27b)

These formulas assume that the nominal spin axis is the body z axis and that
The z-component of the spin rate is , a constant. The

body-axes nutation rate is and the nutation rate with respect
to inertial space is Thus, is the moment of inertia about the nom-
inal spin axis, is the moment of inertia about the two transverse axes,

parameterizes a rotation about the nominal spin axis at the body-axes
nutation rate, and parameterizes a rotation about the angular mo-
mentum vector at the inertial nutation rate.

One possible strategy for developing an analytic solution to the restricted second
problem is to equate the rotation quaternion of equation (14) with

from equation (26), where This equation might be used
to solve for or for as a function of and . The resulting solution
could then be used to form , and this rotation could be used to set up
the three equations 

(28)

in the three unknowns , , and . This equation makes use of the formulas for
, and that are given in equations (12a)–(13). Although equation (28) has

four components, only three of them are independent due to the quaternion nor-
malization constraint. If these three independent equations could be solved analyt-
ically for , , and , then the result could be used to determine the solution to
the restricted second problem .�q0, �0�
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An alternative solution strategy is to deal directly with six independent equations
in six unknowns. Such an approach might work with the six unknowns , , and

and the three elements of . One possible set of six independent equa-
tions is 

(29a)

(29b)

Actually, there are eight equations here, but only six are independent due to the nor-
malization constraints of the quaternions.

It is not clear whether the above strategies and related methods will yield ana-
lytic solutions. Even if they do not, they might be useful for developing numerical
solution procedures based on iterative equation solving techniques. It might be pos-
sible to manipulate equations like those above in order to reduce the number of un-
knowns that need to be determined numerically. Alternatively, these and related
equations might enable the derivation of bounds on the space of the unknowns that
delimit a finite region which is guaranteed to contain the global solution.

Candidate Solution Strategies for the Two Generalized 
Wahba Problems

This section proposes strategies that could be used for solving the two original
generalized Wahba problems. An obvious strategy is to use an inner-analytic solu-
tion for based on the q method. This would be augmented by an outer optimiza-
tion for either or . The outer optimization might proceed numerically. This
section outlines how a Newton-like optimization could be performed on this outer
optimization.

Inner and Outer or Optimizations

The performance metric of the first generalized Wahba problem,
suggests a possible solution algorithm that decomposes the

problem into an inner optimization of with an outer optimization of wrapped
around it. For any given value of , the inner optimization can compute the globally
maximizing by solving an eigenvalue problem, as in the original q method of equa-
tions (5a) and (5b). The performance metric can then be reduced to 
The outer optimization must find the scalar that maximizes 

The performance metric of the second generalized Wahba problem,
is also amenable to an inner/outer solution procedure. The

inner problem determines the globally optimal for any given initial attitude rate
The performance metric for the outer optimization reduces to 

This optimization is more complicated than the outer optimization of the first gener-
alized Wahba problem because this performance metric is a function of three scalar
unknowns rather than just one.

An important property of the inner/outer approach is that the corresponding 
estimate is guaranteed to be the global optimum for the given estimate of or 
If a global outer optimization can also be performed, then the solution will be the
global optimal solution to the corresponding generalized Wahba problem.

Figure 1 plots the performance metric vs. for a typical outer
optimization of the first problem. This metric has been generated from a truth-model
simulation that uses eight vector measurements that are distributed over 1.37 spin
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periods; the truth spin period is 45.32 sec. The accuracies of the attitude measure-
ments range from 1.3 to 2.2 deg. The figure shows that the global maximum of the
outer problem clearly falls very near the truth spin rate, within about

The corresponding optimal estimate of has a total attitude error
of 0.85 deg from the truth value of , with errors about the individual body axes
ranging from 0.09 deg to 0.72 deg. Thus, the global outer optimization, which has
been performed by brute-force calculation of on a very fine grid of val-
ues, yields accurate estimates for the attitude and the spin rate.

Figure 1 also shows two local maxima of the performance metric that are not
the global maximum. These occur at and at 
There may well be additional local maxima outside the range of values that have
been considered. The possibility of multiple local maxima presents a challenge to any
outer optimization algorithm that seeks to find the global maximum.

The sharp corner in the vs. curve of Fig. 1 indicates a discontinuous first
derivative of the performance metric at This singularity is
caused by a change in which eigenvalue of constitutes the maximum. This
change is illustrated by the grey curve, which plots the second largest eigenvalue
of vs. . This grey curve intersects the black dash-dotted curve at the point
where the latter curve has a discontinuous slope. The original maximum eigenvalue
at lower values decreases with increases of while the second largest eigenvalue
increases with until the two values cross. The possibility of such corners in the
outer performance metric can cause a problem for gradient-based numerical opti-
mization procedures.
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Iterative Numerical Solution of the Outer or Optimization

The outer optimization for the first generalized Wahba problem and the outer
optimization for the second problem could be performed using an iterative non-

linear numerical optimization routine. A natural choice would be Newton’s method.
Newton’s method for nonlinear optimization computes solution increments by

maximizing a local quadratic approximation of the performance metric [15]. In the
outer optimization of the first problem, this quadratic cost function would be 

(30)

where is the current best estimate of the spin rate as determined by the Newton
algorithm and where the optimal would be added to in order to generate the
next estimate. The Newton increment for the second problem would be the 
value that maximized the quadratic performance metric 

(31)

with being the Newton algorithm’s current best estimate of the initial angular
velocity vector and with the optimal being the algorithm’s next increment to
this estimate.

An equivalent method for determining the vector that maximizes the equa-
tion (31) metric is to solve an approximate quadratic optimization problem, one like
equations (22a)–(22c), but with the following modifications: the gradient vectors

and and the Hessian matrices and in equation (22b) must be
computed at and at the value that satisfies , with

and with being the maximum eigenvalue of The term in
equation (22b) must be replaced by . Also, the term in equation (22c) must
be replaced by 

A similar method can be developed for determining for the outer numerical
optimization of the first generalized Wahba problem. This method works by deriv-
ing a local quadratic approximation of the first problem that is similar to equations
(22a)–(22c), except that the needed matrix derivatives and are
calculated using simpler operations than those in equations (A3a)–(A3c) and
(A4a)–(A4c) of the Appendix.

Any gradient-based outer optimization would need to be augmented with strate-
gies for dealing with the two possible difficulties that have been illustrated in Fig. 1.
Gradient-based algorithms can only be guaranteed to find a local maximum, and
this guarantee holds true only if additional guarding operations are added to the
computation of the increment or . An additional outer loop would have to
be wrapped around a gradient-based technique in order to seek multiple local max-
ima in hopes of finding the global maximum. Any gradient-based algorithm would
also need to be augmented to deal with the possibility of one or more isolated dis-
continuities of the first derivative of the performance metric, as illustrated in Fig. 1
at 

Summary and Conclusions

This paper has posed two generalized versions of Wahba’s attitude determination
problem. The generalized problems seek to estimate the attitude and the angular rate
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of a spinning spacecraft based on a time series of vector attitude observations coupled
with a dynamic model of the spacecraft spin. One generalized problem presumes a
known spin axis and solves for the unknown constant spin rate about this axis along
with the initial attitude quaternion. It is applicable to a spin-stabilized spacecraft that
uses a nutation damper. The other generalized problem presumes a known inertia ma-
trix and torque-free motion and solves for the initial quaternion and the initial rotation
rate vector. This second problem is applicable to a spinning spacecraft that is under-
going significant rigid-body nutations. These two problems take similar mathematical
forms: a Wahba problem with a K matrix that depends on unknown rate parameters.

This paper has posed restricted forms of the generalized Wahba problems that
limit the number of vector measurements to the minimum required for observabil-
ity. That number is two for the first problem and three for the second problem. An
analytic solution to the restricted form of the first problem has been presented. The
restricted form of the second problem has been shown to be observable, and solu-
tion strategies for this problem have been suggested.

A semi-analytic solution strategy has been proposed for the unrestricted forms of
the two generalized Wahba problems. This approach solves an inner quaternion op-
timization using the closed-form q method, and it employs an iterative numerical
optimization to solve the outer problem for the attitude rate parameters. This outer
optimization must deal with the possibilities that its performance metric will have
multiple local optima and discontinuities in its first derivative.

The new generalized Wahba problems and the associated solution strategies will
be useful for spin-stabilized spacecraft missions that carry vector attitude sensors
but no rate gyros. A global solution to one of the generalized Wahba problems could
provide a reliable initial state estimate for an extended Kalman filter, or it could be
used as a batch algorithm for attitude and angular rate determination over finite
windows of time.

References 
[1] PSIAKI, M. L., KLATT, E. M., KINTNER, P. M., Jr., and POWELL, S. P. “Attitude Estimation

for a Flexible Spacecraft in an Unstable Spin,” Journal of Guidance, Control, and Dynamics,
Vol. 25, No. 1, Jan.–Feb. 2002, pp. 88–95.

[2] MARKLEY, F. L. and SEDLAK, J. E. “Kalman Filter for Spinning Spacecraft Attitude Estima-
tion,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, Nov.–Dec. 2008,
pp. 1750–1760.

[3] CRASSIDIS, J. L., MARKLEY, F. L., and CHENG, Y. “Survey of Nonlinear Attitude Estimation
Methods,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, Jan.–Feb. 2007, pp. 12–28.

[4] PSIAKI, M. L. “Backward-Smoothing Extended Kalman Filter,” Journal of Guidance, Control,
and Dynamics, Vol. 28, No. 5, Sept.–Oct. 2005, pp. 885–894.

[5] WAHBA, G. “A Least Squares Estimate of Satellite Attitude,” SIAM Review, Vol. 7, No. 3,
1965, p. 409.

[6] WERTZ, J. R., ed. Spacecraft Attitude Determination and Control, D. Reidel Pub. Co., Boston,
1978, pp. 426-428, 487–494, 511–512, 521–531, 758–759.

[7] MARKLEY, F. L. “Attitude Determination and Parameter Estimation Using Vector Observa-
tions: Theory,” The Journal of the Astronautical Sciences, Vol. 37, No. 1, 1989, pp. 41–58.

[8] MARKLEY, F. L. “Attitude Determination and Parameter Estimation Using Vector Observations:
Application,” The Journal of the Astronautical Sciences, Vol. 39, No. 3, 1991, pp. 367–381.

[9] SHUSTER, M. D. “A Simple Kalman Filter and Smoother for Spacecraft Attitude,” The Jour-
nal of the Astronautical Sciences, Vol. 37, No. 1, 1989, pp. 89–106.

[10] BAR-ITZHACK, I. Y. “REQUEST: A Recursive QUEST Algorithm for Sequential Attitude
Determination,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 5, Sept.–Oct. 1996,
pp. 1034–1038.

Wahba Problems for Spinning Spacecraft Attitude Determination 89



[11] PSIAKI, M. L. “Attitude-Determination Filtering via Extended Quaternion Estimation,” Jour-
nal of Guidance, Control, and Dynamics, Vol. 23, No. 2, March–April 2000, pp. 206–214.

[12] SHUSTER, M. D. “The Generalized Wahba Problem,” The Journal of the Astronautical Sci-
ences, Vol. 54, No. 2, 2006, pp. 245–259.

[13] DEPRIT, A. and ELIPE, A. “Complete Reduction of the Euler-Poinsot Problem,” The Journal
of the Astronautical Sciences, Vol. 41, No. 4, Oct.–Dec. 1993, pp. 603–628.

[14] REYNOLDS, R. G. “Quaternion Parameterization and a Simple Algorithm for Global Attitude
Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 4, July–Aug. 1998,
pp. 669–671.

[15] GILL, P. E., MURRAY, W., and WRIGHT, M. H. Practical Optimization, Academic Press, New
York, 1981, pp. 105–115.

Appendix: Partial Derivatives for the Second Order
Approximation of the Second Problem

The gradients of the equation (9b) metric with respect to and 
are the vectors

(A1a)

(A1b)

The corresponding second derivative Hessian matrices are 

(A2a)

(A2b)

(A2c)

The first and second partial derivatives with respect to of the symmetric
matrix can be computed by differentiating equations (10a)–(11) appro-

priately. The needed first derivatives of these equations are 
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(A3a)

(A3b)

(A3c)

for , or z. The initial conditions for the joint vector/matrix initial value prob-
lem in equations (A3a) and (A3b) are 

or and .
The second derivative computation takes the form
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(A4b)

(A4c)

for , or z and , or z. The initial conditions for the joint vector/matrix
initial value problem in equations (A4a) and (A4b) are and

It is usually advantageous to perform numerical inte-
gration of the initial value problems in equations (10a) (10b), (A3a) (A3b), (A4a),
and (A4b) simultaneously because solutions from some of these equations are
needed in others at intermediate times.
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