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ABSTRACT

A real-time GPS L1 C/A-code software receiver has been
implemented on a Digital Signal Processor (DSP). The
receiver exploits FFT-based techniques to perform au-
tonomous acquisition down to a threshold of C/N0 = 33
dB-Hz. Efficient correlation algorithms and robust track-
ing loops enable the receiver to track an equivalent of 43 L1
C/A-code channels in real time with a tracking threshold
of 25 dB-Hz. This accomplishment represents a milestone
in an ongoing effort to develop a low-cost, flexible, and ca-
pable GNSS receiver for use as a scientific instrument and
for GNSS receiver technology development. This paper

reports on the current design and capability of the DSP-
based receiver, provides an overview of the challenges that
are particular to embedded GNSS software receiver design,
and discusses the prospects of DSP-based GNSS software
receivers in relation to the multiple frequencies and higher
bandwidths offered by modernized GNSS.

INTRODUCTION

Over the last five years, several researchers have capital-
ized on the software radio concept to design GPS receivers
whose real-time correlators, tracking loops, and navigation
solver are all implemented in software on a programmable
processor.1–6 Software GNSS receivers require fewer hard-
ware components and offer greater flexibility compared to
traditional receivers whose correlators and accumulators
are implemented in dedicated integrated circuit hardware.

Originally used only for post-processing of GPS signals,
software receivers broke into the real-time domain with the
introduction of the gpsSrx receiver, first implemented on a
personal computer (PC) microprocessor and then on a 160-
MHz DSP.1,2 The latter was the first implementation of an
embedded real-time GPS software receiver, where the term
embedded is used to distinguish small, low-power, stand-
alone receivers—implemented, for example, on a DSP, an
FPGA, or a small applications processor—from software
receivers implemented on a PC.

The current work can be viewed as modernization and an
extension of the work reported in Ref. 1. Whereas the re-
ceiver in Ref. 1 was limited to 4 real-time L1 channels, sep-
arate acquisition and tracking stages, and modest (30 m)
positioning accuracy, the current receiver is capable of 43
parallel L1 channels, continuous background acquisition,
and 5-m positioning accuracy (position solutions are calcu-
lated off-line using the RINEX-type files produced by the
receiver). The receiver owes these advances to increased
DSP capability and to improved processing techniques.

Embedded software GNSS receivers are attractive to the
GNSS research community both as a platform for receiver
technology development and as a scientific instrument use-
ful for studying the ionosphere and neutral atmosphere.
The arrival of a second civilian signal at L2—broadcast
presently by only two Block IIR-M GPS satellites but
projected to be available from 6-8 satellites by about De-
cember of 20077—offers the prospect of a low-cost, dual-
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frequency, science-grade GNSS receiver. Such an instru-
ment will be an essential component in future work that
calls for large arrays of GNSS receivers whose combined
measurements will be used to investigate the spatial irreg-
ularity, dynamics, and height of structures in the disturbed
ionosphere.

This work will focus on the DSP as the target for an
embedded GNSS receiver implementation. Alternatives
to the DSP include general applications processors (e.g.,
Intel’s XScale and TI’s OMAP processors) and FPGA
and FPGA/DSP hybrid platforms.5,8 The authors fa-
vor the DSP over applications processors because high-
performance DSPs are currently better suited for carry-
ing out the demanding correlation operations required in
a GNSS receiver (although with the introduction of the
OMAP III the DSP’s advantage is thinning). Preference
for the DSP over the FPGA and FPGA/DSP hybrids is
motivated by simplicity: the DSP is easier to program
than the FPGA, and the additional throughput that the
FPGA offers is unnecessary for L1 C/A-code receivers and
likely unnecessary for GPS L1 + GPS L2C + Galileo L1
BOC(1,1) receivers. On the other hand, processing the
wideband civil GNSS signals at L5/E5 may only be prac-
tical in the short term on an FPGA or FPGA/DSP hybrid
platform.

The remainder of this paper is divided into eight sections.
These are listed here for ease of navigation:
I: Embedded Platform Considerations
II: Correlation, Acquisition, Tracking, and Calculation of
Observables
III: Code Architecture
IV: Further Details on Implementation
V: Code Development and Testing Methodology
VI: Performance
VII: Prospects
VIII: Summary

I. EMBEDDED PLATFORM CONSIDERATIONS

A. Overview of the DSP-based GNSS receiver
Platform

The DSP-based GNSS receiver platform on which this
work reports is shown schematically in Fig. 1; a photo-
graph of the prototype hardware is seen in Fig. 2. The
RF front end consists of a Zarlink GP2015 and support-
ing hardware. The GP2015 mixes the incoming L1 signal
to 4.309 MHz and then samples at 5.714 MHz, yielding
a 2-bit sampled IF centered at 1.405 MHz. Separate sign
and magnitude data streams are fed directly into the Texas
Instruments (TI) TMS320C6416 DSP (‘C6416) via two in-
dependent multi-channel buffered serial ports (McBSPs).
A series of binary counters and AND gates (seen on the
prototyping board in Fig. 2) is used to generate a syn-

chronizing pulse for the McBSPs every 32 clock cycles. A
DSP Starter Kit (DSK) board has been used for ease of
development. The components of the DSK board that are
essential to the receiver are the DSP chip (outlined in red)
and the off-chip SDRAM (located just above the DSP).
Subsequent sections will comment on the features of DSPs
in general and on those of the ‘C6416 specifically.

GP2015

TMS320C6416 DSP

RF Front End

sign

clk

mag

FFT-based

Software

Observables

Data Decoding,

Calculations

Correlators

Acquisition Tracking Loops,

Fig. 1. Schematic representation of the DSP-based GNSS software
receiver.

RF Front End

Circuitry
DSK BoardFrame Sync.

Fig. 2. Photograph of the DSP-based GNSS software receiver proto-
type. The DSP chip is outlined in red on the DSP Starter Kit (DSK)
board.

B. Digital Signal Processors (DSPs)

The DSP can be thought of as a specialized processor de-
signed to support repetitive, numerically intensive tasks.9

As such, the DSP may be contrasted with a general-
purpose processor, such as is found in a modern desktop
PC, which is designed to handle a variety of hardware man-
agement tasks in addition to the processing of data. In
truth, however, DSPs are no longer so clearly differentiated
on the basis of processor architectures. This is because
the increased importance of signal processing has moti-
vated general-purpose processor vendors to add DSP func-
tionality to their processors (e.g., the single-instruction,
multiple-data instruction set extensions in the Pentium
MMX processors).10 Nonetheless, the highest performance
DSPs still retain a decided advantage in power consump-
tion over x86-type processors (∼1 W vs. ∼20 W), and
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an advantage in processing capability over general-purpose
embedded applications processors (e.g., ARM, XScale,
OMAP).

Several features of the DSP make it well suited as a GNSS
software receiver processor. First, the DSP’s signature
feature—the single-instruction multiply-and-accumulate
(MAC)—speeds up the correlation operation, which con-
stitutes the bulk of the processing demand in a real-time
GNSS software receiver. Second, because of the wide-
spread use of the Fast Fourier Transform (FFT) in sig-
nal processing, the DSP’s addressing modes have been
designed to enable efficient FFT execution. This fea-
ture can be used to speed acquisition in a software GNSS
receiver. Indeed, in the original paper that introduced
FFT-based acquisition to the GPS community, a DSP was
used to implement the acquisition routine.11 Third, the
modern DSP’s extensive suite of peripherals (e.g., timers,
external memory interfaces, direct memory access, serial
ports, etc.) offloads the I/O and some housekeeping tasks
from the DSP’s CPU and makes interfacing with the DSP
straightforward.

Of course, the DSP also has its limitations as a proces-
sor for a GNSS software receiver. Most notable are the
DSP’s limited on-chip memory and the fact that the DSP’s
vaunted high throughput can only be realized using fixed
point arithmetic. Section IV treats these challenges in
more detail.

C. The TMS320C6416

The decision to adopt the Texas Instruments TMS320C6416
DSP as the target for the DSP-based GNSS receiver was
made after an earlier attempt failed to develop a receiver
on a smaller, less expensive, but less capable target—the
Analog Devices Blackfin DSP. Thereafter, the authors re-
formulated the development question: instead of asking
whether a particular software GNSS receiver could be im-
plemented on a particular DSP, they expanded the ques-
tion to ask, “What can be done on the best available DSP?”
When this phase of work began, the best available DSP
was arguably the 720 MHz TMS320C6416.12

The ‘C6416 is a fixed-point, very long instruction word
(VLIW) DSP with 1 MB on-chip memory that is targeted
for high-performance applications.13 It has two indepen-
dent data paths, each with four execution units. The eight
execution units are capable of executing up to eight 32-bit
instructions in parallel. For example, the ‘C6416 can per-
form eight 8-bit multiplications in parallel. Clearly, such
an architecture is well suited for the demanding correlation
operations involved in a GNSS software receiver.

Besides the DSP chip itself, the ‘C6416 is well supported
by TI’s integrated development environment and by ad-
equate documentation. The optimizing compiler accepts

ISO standard C source code and, with minor limitations,
ISO standard C++ source code.14 This allows code to be
written and tested on a PC and then quickly ported to
the DSP. It also means that the code can be easily trans-
ferred to other DSPs that support C/C++. Section VII
considers alternatives to the ‘C6416.

D. Tradeoffs in Embedded Software Design

As is common in embedded software design, the challenge
of squeezing a GNSS software receiver into a DSP is pri-
marily one of negotiating pairwise or groupwise trade-
offs between desirable but conflicting performance mea-
sures. One would like to design embedded code that is
at once memory-efficient, flexible, readable/maintainable,
and, above all, fast. Unfortunately, an improvement in
one of these characteristics tends to diminish one or more
of the others. Storing local code and carrier replicas in
lookup tables is, for example, much faster than generating
them in real time, but requires more memory. Similarly,
implementing assembly code as opposed to C/C++ en-
hances speed and memory use at the expense of flexibility
and readability/maintainability.

The best approach to negotiating these tradeoffs is not
necessarily to seek out some delicate balance between the
opposing performance measures, but rather to seek out de-
vices and algorithms that allow one to cheat the tradeoffs
by improving one aspect of performance without a signif-
icant detriment to the others. FFT-based acquisition and
bit-wise parallel correlation, introduced in the next sec-
tion, are two examples of such algorithms.

II. CORRELATION, ACQUISITION, TRACK-
ING, AND CALCULATION OF OBSERV-
ABLES

A. Bit-wise Parallel Correlations

The bit-wise parallel correlation methods introduced in
Ref. 15 were implemented on the DSP-based GNSS re-
ceiver and proved to be a key to the performance results
reported in this paper. The following paragraphs describe
the adaptations made to the bit-wise approach of Ref. 15
for implementation on the ‘C6416.

In the DSP-based receiver, the bit-wise correlation method
is based on coherent accumulations spanning one C/A
code interval (1 ms). Longer coherent accumulations are
synthesized by adding successive 1-ms accumulations af-
ter performing a “fix-up” rotation of the (I, Q) vector so
that resulting sum is phase coherent. At a sampling rate
of Fs = 5.7143 MHz each 1-ms accumulation nominally
involves Ns = 5714.3 data samples from the RF front
end. In the bit-wise parallel correlation approach, the
Ns sign and magnitude bits are packed into 32-bit words
and correlation is performed in parallel on 32 bits. In
the DSP implementation, the Ns samples are truncated to
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32 ∗ floor(Ns/32) samples to optimize the efficiency of the
pipelined correlation loop. For Ns = 5714.3, this amounts
to a negligible 0.03-dB loss in signal power. Higher sam-
pling rates (as required for processing the Galileo L1
BOC(1,1) signal) further lessen the effect.

In the current DSP implementation, local carrier replicas
are precomputed and stored in on-chip memory. This ap-
proach sets up a tradeoff between frequency resolution and
memory use. To examine this tradeoff, let ∆f be the max-
imum frequency difference between the incoming Doppler-
shifted carrier and the nearest local carrier replica, and let
θn = π∆fT be half the maximum rotation angle of the
(I, Q) vector over a T = 1 ms accumulation. Figure 3
shows the loss of signal power as function of θn. For track-
ing, it was decided to limit power loss to 0.11 dB, which
corresponding to a loss factor of 0.975 (indicated by the
upper horizontal line in Fig. 3). This implies a maximum
∆f of 87.5 Hz, or a frequency spacing of 2∆f = 175 Hz.
Using a simple compression scheme, local carrier replicas
at this frequency spacing and spanning a ±10 kHz occupy
a modest 81 kB of on-chip memory (cf. Fig. 9). For acqui-
sition, the search frequency spacing is doubled to 350 Hz,
which corresponds to a maximum 0.442-dB loss in signal
power and a loss factor of 0.9032 (indicated by the lower
horizontal line in Fig. 3).
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Fig. 3. Normalized power as a function of the half rotation angle
θn.

The next adaptation of the bit-wise method presented in
Ref. 15 deals with the quantization of the local carrier
replicas. The quantization values used in Ref. 15, which
are {−2,−1, 1, 2}, reflect the original levels used in the
GP2021 chip for which the bit-wise correlation method is
a software substitute. But these values are sub-optimal for
quantization of the sinusoidal carrier replicas. As shown
in Fig. 4, the optimal 2-bit quantization scheme for sinu-
soids involves a selection of three parameters, a0, a1 and
L, leading to a 3-parameter optimization of the form

J(a0, a1, L) =
∫ 2π

0

{q[sin(θ); a0, a1, L]− sin(θ)}2 dθ

where q[sin(θ); a0, a1, L] is the quantized value of sin(θ)
with quantization parameters a0, a1 and L. The cost func-
tion J is minimized subject to the constraints 0 ≤ a0 ≤

L ≤ a1 and
a1

a0
=

k1

k0

where k1 and k0 are small integers. The latter constraint
is applied for practical implementation on the DSP. It en-
sures that the products of the quantized carrier replicas
and the quantized front-end data can be stored in signed
8-bit elements

a1

a0

−L

−a1

L

−a0

Fig. 4. Quantization values {−a1,−a0, a0, a1} and thresholds
{−L, 0, L} for quantization of local carrier replicas.

Using numerical techniques, the quantization parameters
that minimize J subject to the constraints are easily found:
a0 = 0.283, a1 = 0.849, and L = 0.536, with k0 = 1 and
k1 = 3. As it turns out, these are the same k0 and k1 used
by the GP2015 RF front end, which means that the current
implementation of bit-wise parallel correlation saves two
32-bit multiply-and-accumulate operations per iteration of
the correlation loop compared to Ref. 15 because there are
two fewer combinations of incoming data amplitudes and
carrier replica amplitudes.

The final adaptation of the bit-wise technique to the DSP
exploits the bitc4() instruction, one of the ‘C6416’s spe-
cialized signal processing instructions. The bitc4() in-
struction is used to accumulate the number of 1s bits in a
32-bit word, thus obviating the 64-kB look-up table used
for the same purpose in Ref. 15.

B. FFT-based Acquisition

The sequential search technique for GNSS signal acquisi-
tion is the simplest to implement and requires very little
memory beyond what is used for signal tracking, but it is
computationally expensive. This is especially true if one
wishes to increase acquisition sensitivity by extending the
coherent or noncoherent integration time. Moreover, se-
quential search methods become impractical for the higher
sampling rates and longer spreading codes of the Galileo
L1 BOC(1,1) signal. Fortunately, the DSP is well suited
to FFT-based acquisition.

Like other DSP manufacturers, Texas Instruments pro-
vides a library of FFT routines that have been optimized
for use on the DSP.16 For computational efficiency, these
routines are uninterruptible, they require the number of
points N in the FFT to be a power of 2, and they re-
quire N 16-bit complex factors to be computed beforehand
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and stored in (preferably on-chip) memory. The following
FFT-based acquisition strategy has been designed around
these restrictive but efficient FFT library functions.

B.1 Cost/Sensitivity Analysis

Acquisition sensitivity is increased by increasing the co-
herent or noncoherent averaging time in each search cell.
Increasing the coherent averaging time Tc is more effective
than increasing the number K of noncoherent averages (as
measured by the length of the data interval required to
achieve a given acquisition threshold), but, for several rea-
sons, increasing Tc beyond a certain limit becomes com-
putationally impractical.

Consider the following cost/sensitivity analysis for FFT-
based acquisition on the ‘C6416 using the DSP Library
function fft16x32(). It can be shown that the total com-
putation time required for acquisition on one channel with
Fs = 5.714 MHz, Tc = 1 ms, N = 8192, Nf Doppler search
frequencies, and K noncoherent integrations (with all data
stored on chip) is given by

Tacq = 182 + 310 + 415Nf + KNf (204 + 310 + 310)

where time is expressed in µs. In the above equation, the
quantities 182, 415, and 204 scale linearly with N , whereas
the three 310s, which represent FFT calculations, scale
as16

TF = Ct

[(
13N

8
+ 24

)
ceil [log4(N)− 1] +

3(N + 8)
2

+ 27
]

with Ct = 3.36 × 10−3. As Tc increases, N increases to
the minimum power of 2 that can accommodate Ns = TFs

front-end samples (set aside for now issues of limited mem-
ory and limitations on the maximum value of N). Also, as
Tc increases, Nf must increase by the same factor to avoid
loss of signal power over the coherent integration interval.
Finally, as Tc increases, the probability of encountering
a navigation data bit transition increases. To approxi-
mate this event as an equivalent computational penalty,
assume that each coherent integration interval that strad-
dles a navigation bit start/stop time must be discarded
and replaced by another coherent integration interval of
equal length. Thus for Tc = 1 ms and K = 20, a total
of 21 1-ms coherent intervals must be computed, and for
Tc = 10ms and K = 2, a total of 3 10-ms coherent intervals
must be computed.

To complete the cost/sensitivity analysis, assume that the
number K of noncoherent integrations is chosen at each
carrier-to-noise (C/N0) ratio to be the minimum K that
guarantees “reliable” acquisition, where “reliable” is in-
terpreted as a probability of detection PD ≥ 0.95 and a
probability of false alarm PFA = 0.01. (Note that PFA is
the probability that any cell in the Nf × N search space
exceeds the acquisition threshold. For an introduction to

the hypothesis testing methods used to calculate PFA and
PD, see Ref. 17, Appendix B. Note that there is a sign
error in the argument of the exponential function in Ref.
17’s Eq. (B7): the term −2Kβ should be +2Kβ.)

The above analysis can be combined with an assumed
Doppler resolution of Nf/Tc = 35 bins per ms to gener-
ate the plot shown in Fig. 5, which gives the computation
time as a functin of C/N0 for several different values of Tc.
(Note that computation time as expressed in Fig. 5 should
not be confused with the length of the front-end data in-
terval required for acquisition: the latter is much less than
the former.) Figure 5 indicates that an acquisition strat-
egy based on Tc = 1 ms is computationally more efficient
than strategies based on longer coherent integration times
for values of C/N0 down to 24 dB-Hz. Adding to this re-
sult the facts that a longer Tc requires more memory and
that the DSP Library function fft16x32() limits N to
215, the choice of acquisition strategy becomes clear: GPS
L1 C/A-code acquisition in the DSP should be based on
noncoherent sums of Tc = 1-ms coherent integration inter-
vals. Strategies for acquisition of L2C and Galileo signals
will be discussed in Section VII.

Figure 5 is also useful for choosing a practical acquisition
threshold. In the current implementation, a threshold of
C/N0 = 32 dB-Hz was chosen to limit the computation
time for each PRN to less than 2 seconds.
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Fig. 5. Computation time required for reliable acquisition as a func-
tion of C/N0 for several values of the coherent integration interval
Tc.

B.2 Implementation

The implementation of FFT-based acquisition in the DSP
is illustrated in block diagram form in Fig. 6. Before circu-
lar correlation, the front-end sign and magnitude bits must
be converted to integers for use in the FFT and resampled
using linear interpolation to arrive at an even power of 2.
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These operations represent an inefficiency relative to the
bit-wise correlation strategy, which operates directly on
the 5714 sign and magnitude bits, but the DSP handles
the conversion and resampling quickly (24 µs to convert
5174 front-end samples and 52 µs to interpolate these into
8192 samples), and the inefficiency is more than compen-
sated by the efficiency of the FFT-based circular correla-
tion. As an alternative to resampling, one might consider
zero-padding, but this requires N = 16384 and increases
memory use.
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Fig. 6. Block diagram of the FFT-based acquisition implementation
in the DSP

The results of the circular correlation operation are
squared, summed, and accumulated noncoherently K
times at each Doppler search frequency. If the maximum
value of the resulting statistic across all frequencies and
code offsets exceeds a predetermined threshold, then a
successful acquisition is declared and the corresponding
Doppler frequency and code offset are sent to the tracking
loops. During real-time operation with a CPU laboring
to track several channels, this “maximum value” approach
can yield Doppler frequency and code phase estimates that
are up to 2 seconds older than the incoming data. This
latency does not obsolete the Doppler frequency estimate,
which varies little over 2 seconds, but it does require the
code phase estimate to be propagated forward to the epoch
of the current incoming data. This propagation makes use
of the following relation:

Ns =
Ns,0

1 + smfD

fL1

where Ns is the value for the number of samples per C/A
code period that is used for propagation, Ns,0 is the nomi-
nal number of samples per C/A code period assuming zero
Doppler shift and a perfect receiver clock, sm = −1 (1)
for high (low)-side mixing in the RF front end, fD is the
apparent Doppler shift as measured by acquisition, and
fL1 = 1575.42 MHz is the L1 carrier frequency. As an
alternative to the “maximum value” approach, one might
terminate the search process as soon an any cell exceeds
the predetermined threshold, thus eliminating the need for
propagation. This method, however, suffers from a higher

incidence of false alarm because of minor correlation peaks
in the code offset dimension and side lobes in the frequency
dimension (cf. Fig. 3). Hence, the “maximum value” ap-
proach is preferred. For a maximum frequency error of
∆f = 175 Hz, the above propagation relation is accurate
to 0.23 C/A code chips over a propagation interval of 2
seconds.

The acquisition search strategy implemented in the DSP
begins by performing a quick search for strong signals
(C/N0 ≥ 42 dB-Hz) using K = 2. Thereafter, K is gradu-
ally increased to 41. In the steady-state, the search strat-
egy allocates 65% of its time to deep searches (K = 41)
and 35% of its time to shallow searches (K = 2). The to-
tal on-chip memory footprint for the C/A-code FFT-based
acquisition is 240 kB (cf. Fig. 9).

C. Tracking Loops

In the design of the DSP-based receiver, much attention
has been focused on the tracking loops. This is in keeping
with the receiver’s envisioned role as a science-grade re-
ceiver that is capable, for example, of providing accurate
and robust phase and amplitude tracking of ionospheric
scintillations. Figure 7 gives a schematic of the receiver’s
signal tracking strategy; details on each loop follow.

EML dot product discriminator

EML

prompt

Variable bandwidth

First order

Third order
Variable bandwidth

Variable accumulation interval

FLL

PLL

Decison-directed discriminator

DLL
First order
Carrier aided

incoming data Correlation
Bit-wise parrallel

atan2() discriminator

Variable accumulation interval

Fig. 7.

C.1 The Frequency-Locked Loop

The frequency-locked loop (FLL) is used as a bridge
between signal acquisition and phase-locked loop (PLL)
tracking. The first-order FLL employs a four-quadrant
arctangent discriminator whose output δf is given by

δf = atan2(IQcross, IQdot)

with IQcross = IkQk+1 − Ik+1Qk and IQdot = IkIk+1 +
QkQk+1, where Ik and Qk are the prompt in-phase and
quadrature accumulations at time tk.

The FLL begins operation in either a nominal signal mode
or a weak signal mode, depending on whether the initial
C/N0 estimate provided by the acquisition routine is above
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or below 33 dB-Hz. In the nominal signal mode, the FLL’s
closed-loop bandwidth is 5 Hz; in the weak signal mode
it is 1 Hz. Prior to data bit synchronization, the FLL
operates on 1-ms coherent accumulations, which, in com-
bination with the four-quadrant arctangent discriminator,
yields a pull-in range of ±500 Hz. Such a wide pull-in
range makes the FLL remarkably robust, enabling reli-
able bit synchronization down to C/N0 = 25 dB-Hz.17

Before bit synchronization, data bit transitions introduce
noise into the FLL’s Doppler frequency estimate because
the four-quadrant arctangent discriminator is sensitive to
180-degree changes in phase. The noise is well within the
FLL’s pull-in range, however, and does not threaten the
loop’s stability.

After five FLL time constants have elapsed, the FLL at-
tempts data bit synchronization using a standard his-
togram approach.17 In nominal signal mode, the upper
and lower histogram thresholds are τ1 = 12 and τ0 = 7,
which, for C/N0 ≥ 33 dB-Hz, leads to a probability of de-
tection near unity and negligible probabilities of bit sync
error and false alarm. In weak signal mode, the upper
and lower thresholds are τ1 = 80 and τ0 = 70, which,
for C/N0 ≥ 25 dB-Hz, leads to a probability of detection
of 0.64, a probability of bit sync error (signal present) of
0.005, and a probability of false alarm (no signal present)
of 0.025.

If bit lock is successful, the FLL begins a graded transition
from 1-ms accumulations to the nominal accumulation in-
terval Ta. At each intermediate accumulation interval, five
FLL time constants are allowed to pass. This approach en-
sures that the noise at low C/N0 does not cause the FLL
to break lock as its pull-in range narrows. Five FLL time
constants after Ta is reached, frequency lock is declared
and tracking control is transferred from the FLL to the
PLL.

C.2 The Phase-Locked Loop

The DSP-based receiver’s PLL is a variable-bandwidth
third-order Costas loop with a decision-directed discrim-
inator. The PLL’s design is the outcome of a previous
research effort in which the authors determined the loop
structures and parameters that enable good phase track-
ing during ionospheric scintillations.18 It was shown in
Ref. 18 that a variable-bandwidth phase tracking loop
based on a Kalman filter gave the best overall perfor-
mance and was especially effective (relative to competing
designs) at low C/N0. However, because of the Kalman
filter’s prohibitive computational requirements, it was not
implemented directly. Instead, a third-order Costas loop
whose bandwidth can adapt to changes in C/N0 was im-
plemented. This approximation, along with the decision-
directed phase discriminator, yields phase tracking perfor-
mance that is very similar to that of the Kalman filter
tracking loop.

C.3 The Delay-Locked Loop

The delay-locked loop (DLL) is a standard first-order
carrier-aided 0.5-Hz-bandwidth code tracking loop with a
dot-product discriminator whose output δτ before normal-
ization is given by

δτ = IE−LIP + QE−LQP

where IE−L, QE−L, IP , and QP are the early-minus-late
and prompt in-phase and quadrature accumulations.

D. Calculation of Pseudorange and Carrier Phase

Pseudoranges for all channels are calculated simultane-
ously at the beginning of one channel’s next C/A code
period. Receiver time for purposes of pseudorange cal-
culation is redefined at each pseudorange measurement
epoch to be equal to the satellite transmit time for the
first occupied channel. Hence, one pseudorange value is
always equal to zero. For proper carrier phase measure-
ments, the carrier phase in all channels is expressed as a
phase offset from a common carrier phase reference. Car-
rier phase is measured simultaneously with pseudorange
across all channels. A second receiver time expressed as
the total number of samples and fractional samples that
have been generated by the RF front end is output with
the observables to provide a consistent time base for the
carrier phase measurements. Figure 8 shows the outputs
that the receiver sends to the user interface.

III. CODE ARCHITECTURE

Code for the DSP-based receiver is written in C++ and
designed with an object-oriented approach. Historically,
embedded code has been strictly limited to assembly lan-
guage or C, but modern compilers are increasingly sup-
porting C++, with minor limitations (cf. Ref. 14, Ch.
7). For portability, readability, and ease of maintenance,
there was a strong incentive within the project to prefer a
high-level source language such as C or C++ over assembly
language. In choosing between C and C++, it was found
that the TI compiler produces equally efficient object code
from either source. Hence, there appeared to be no reason
not to use C++ and a modern object-oriented approach
in the design of the software receiver source code.

The code architecture for the DSP-based receiver is de-
signed around the Channel class, which encapsulates all
data specific to one GNSS signal (e.g., PRN, current code
phase, carrier phase, Doppler frequency estimate, status,
etc.) with member functions that perform acquisition,
tracking updates, and data reporting. The Channel class
objects themselves contain FLL (frequency-locked loop),
PLL (phase-locked loop), and Navdat (for parsing and stor-
ing navigation data) class objects. Independent supporting
functions combine data reported by each Channel object to
compute pseudorange and carrier phase observables. Such
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an object-oriented implementation makes the code rela-
tively easy to read and modify, and avoids the proliferation
of stray global variables.

IV. FURTHER DETAILS ON IMPLEMENTA-
TION

A. Input

The sign and magnitude data streams produced by the
GP2015 RF front end are fed directly into two indepen-
dent multi-channel buffered serial ports (McBSPs) on the
DSP.19 The McBSPs buffer the incoming data in a series
of 32-bit shift registers, sending a synchronization event to
the Enhanced Direct Access Memory (EDMA) coproces-
sor when the data receive register is full and can be read.
On the ‘C6416, the EDMA supports up to 64 indepen-
dent channels, only two of which are used in the current
implementation: one for sign and one for magnitude RF
front-end data. The EDMA fetches the 32-bit sign and
magnitude words and stores these in independent circular
buffers. When it reaches the end of a circular buffer, the
EDMA sends a Hardware Interrupt (HWI) to the CPU
and promptly renews operation at the beginning of the
circular buffer. The HWI interrupt prompts the CPU to
increment a loop counter used to keep track of the total
number of front-end samples collected. Servicing the HWI
is the only intervention required of the CPU in the data
input process.

B. Output

Using TI’s Real-Time Data Exchange (RTDX) capability,
information is sent from the DSP to a host computer while
the receiver is in operation. An executable on the host
computer displays the data to the screen (Fig. 8) and
stores it to disk in a RINEX-like format.

Fig. 8. The user interface display on the host computer.

C. Fixed-Point Calculations

The highest performance DSPs, including the ‘C6416, are
fixed-point processors, meaning that they provide no hard-
ware support for floating-point operations. Floating point

operations can be simulated by the C/C++ compiler, but
the resulting loss in efficiency discourages their use in sec-
tions of code that must execute quickly.

All but one line of code in the current version of the DSP-
based receiver has been implemented using fixed-point op-
erations. The large dynamic range of some variables within
the receiver source code complicates the fixed-point imple-
mentation, requiring for these variables the use of 64-bit
precision. All scaling for fixed-point operations is carried
out in base-2 arithmetic except in cases where base 10 is re-
quired to avoid large roundoff errors. Base-2 scaling allows
the compiler to exploit the DSP’s single-operation barrel
shifter, increasing fixed-point efficiency.

D. Memory Use

Reducing memory requirements and properly placing vari-
ables within memory are paramount concerns in embedded
software design. Memory for the current system is lim-
ited to the ‘C6416’s 1024-kB on-chip SRAM and 16 MB of
off-chip SDRAM on the DSK. These storage locations are
not interchangeable: operations on off-chip data introduce
severe computational penalties. Consider: a dot-product
operation between two 1000-element, 16-bit-per-element
arrays requires a factor of 73 more clock cycles when per-
formed on data stored off-chip as opposed to on-chip; for a
16384-point FFT, there is a 34-fold loss in efficiency using
off-chip data.

One deals with memory limitations by (1) reducing the
software’s on-chip memory requirements, and (2) by ju-
diciously copying data from off-chip to on-chip memory.
As an example of the first approach, consider the mem-
ory required by the local carrier replicas, which, for maxi-
mum efficiency, are precomputed and stored on-chip. For
a Doppler search span of ±10 kHz, a spacing of 175 Hz
(as discussed in Section II), and two-bit quantization at a
sampling rate of Fs = 5.7 MHz, the carrier replicas require
320 kB of on-chip memory—a considerable fraction of the
1024-kB limit. To reduce this demand, one can compress
the carrier replicas by noting that there are no more than
256 different 32-bit words among the bit-packed sign and
magnitude, sine and cosine arrays. This fact allows one
to encode the 32-bit words as 8-bit elements and expand
them very efficiently with a 256-word dictionary. Such an
approach reduces the carrier replica’s memory requirement
to a modest 81 kB.

As an example of the second approach to dealing with
memory limitations, the integer-based (as opposed to bit-
packed) carrier and code replicas for FFT-based acquisi-
tion are stored off-chip and transferred to on-chip buffers
as needed in N -sized chunks. The transfer of data can be
effected either by the EDMA or simply by manually copy-
ing the data in a for loop; the former requires 250 µs per
transfer but does not burden the CPU, the latter requires
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167 µs of CPU time.

A breakdown of the memory use in the current version of
the DSP-based receiver is shown in Fig. 9. The black re-
gion at the base of the on-chip memory block indicates
the few kB of unallocated memory—a tight fit indeed!
Presently, the bit-packed code replicas occupy a relatively
large portion (479 kB) of on-chip memory. Real-time gen-
eration of these code replicas can reduce their memory re-
quirement to less than 250 kB,20 but it is anticipated that
this will increase correlation time by roughly 30%. Hence,
for the current L1 C/A-code receiver, real-time code gen-
eration is an unnecessary burden. For the longer L2C and
Galileo PRN codes, however, real-time generation will be
the only practical option.

Off-chip Memory

Other buffers (50 kB)

BIOS, etc. (60 kB)

Buffers and complex factors
for FFT-based acquisition

(479 kB)

Code (110 kB)

(240 kB)

On-chip Memory

Code Replicas

Carrier replicas (81 kB)
Carrier Replicas

and

for
FFT-based Acquisition

(1184 kB)

Code Replicas

Fig. 9. On-Chip and off-chip memory allocation for the current
version of the DSP-based receiver.

V. CODE DEVELOPMENT AND TESTING
METHODOLOGY

Figure 10 gives an outline of the code development and
testing strategy used in the design of the DSP-based soft-
ware receiver. First, algorithms are designed and tested in
Matlab. These are then implemented in C++ and tested
for correctness on the PC using recorded data. The C++
implementation on the PC, with fixed-point arithmetic and
loops set up to reduce pipeline overhead, is designed with
the DSP target in mind. As needed, #define directives are
used to isolate the DSP-specific sections of the code. Next,
the code is compiled without optimization and loaded onto
the DSP. It is then tested for correctness against the PC
implementation using identical batches of recorded data.
Optimization is then enabled (with compiler options -o3
and -mt) and the code is again tested. This step was found
to be necessary when it was discovered that the TI opti-
mizing compiler introduces errors into certain division op-
erations. To prevent this, variables used in such operations

are declared volatile to protect them from optimization.
Finally, the optimized code is run in real-time on live data.
Such a pedantic approach to code development and testing
is tedious but efficacious.

C/C++
Implementation

optimization
on DSP without

Ensure that optimized

code behaves as

expected

Matlab

on PC

Non real time
C/C++

Implementation

Implementation

Phase I

Phase III

Phase IV

Phase V

Phase II

Develop algorithms,

debug

Implement algorithms

in C/C++; refine and

debug

Adapt code to DSP;

refine and debug

deadlines are met;

perform end-to-end

tests using live data

Non real time

Ensure that real-time

C/C++
Implementation

optimization
on DSP with

Real time
C/C++

Implementation
on DSP

Non real time

Fig. 10. Code development and testing strategy used in the design
of the DSP-based receiver.

VI. PERFORMANCE

In the following sections, the DSP-based receiver’s perfor-
mance is assessed in terms of timing benchmarks, sensi-
tivity, tracking in the face of severe vehicle dynamics, and
positioning accuracy.

A. Timing Benchmarks

The numbers reported here assume that the target DSP
is the TMS320C6416 at 720 MHz with memory allocated
as in Fig. 9, sampling frequency Fs = 5.7 MHz, 2-bit
quantization, and acquisition and tracking of GPS L1 C/A
signals only. It is further assumed that all the processes
used for benchmarking are run uninterrupted except by
the HWIs that increment timers and the circular buffer
counter. Three benchmarks are proposed for evaluating
software receiver execution speed:
1. Execution time for a search of N = 8192 code phase
offsets for one noncoherent sum at one test Doppler fre-
quency (Tc = 1 ms): T1 = 824 µs.
2. Execution time for one set of 1-ms prompt and EML,
in-phase and quadrature correlations: T2 = 11.19 µs.
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3. Average execution time for one complete channel up-
date where updates occur at 1-ms intervals: T3 = 23.1
µs.

Benchmark (1) gives a measure of the speed with which
acquisition can be performed on a software receiver. One
calculates the time required for a complete search for one
PRN signal using a search of N = 8192 code phase offsets
and K noncoherent sums at each of Nf Doppler frequencies
(all based on 1-ms coherent integrations) by

Tacq = 492 + 415Nf + NfKT1 (1)

where Tacq is given in µs. For a standard search window of
±6 kHz, a search interval of 350 Hz, and K = 2 (reliable
acquisition down to C/N0 = 42 dB-Hz), Tacq = 72.7 ms.
In other words, one can search all 32 PRNs down to an
acquisition threshold of 42 dB-Hz in 2.3 seconds. A deeper
search with K = 41 for an acquisition threshold of C/N0 =
33 dB-Hz requires 1.2 seconds per PRN.

Benchmark (2) gives a measure of the execution speed of
complex correlations. T2 = 11.19 µs implies that, absent
any other overhead, the DSP-based receiver could track
floor(1000/11.19) = 89 channels simultaneously.

Benchmark (3) takes both correlation time and tracking
loop overhead into account. T3 = 23.1 µs implies that
the DSP-based receiver can track floor(1000/23.1) = 43
channels simultaneously. This figure has been verified in
practice by tracking 6 live signals and loading the DSP’s
CPU artificially with an equivalent computational load of
37 more channels. Real-time deadlines were met.

B. Sensitivity

Acquisition and tracking sensitivity were tested using a
Spirent GPS simulator. The thresholds calculated for
“reliable” acquisition performance (cf. Section II-B.1)
were increased by a factor of 1.2 to account for minor
correlation peaks. At the target acquisition sensitivity
C/N0 = 32 dB-Hz, these elevated thresholds provided
the desired PFA ∼ 0.01, but they naturally decreased the
probability of detection to below PD = 0.95. To ensure
PD ≥ 0.95 required C/N0 to increase by 1 dB to 33 dB-
Hz. Hence, the DSP-based receiver’s acquisition threshold
using K = 41 noncoherent summations is 33 dB-Hz. This
threshold was verified in tests with the Spirent simulator.

Acquisition tests were also run under conditions of dis-
parate incoming signal power. It was found that the re-
ceiver experienced a dramatic increase in the false alarm
rate at the acquisition threshold (C/N0 = 33 dB-Hz) when
several strong signals (≥ 49 dB-Hz) were present. In fact,
on rare occasions these false alarms lead to bit lock, fre-
quency lock, phase lock, and subframe lock (with parity
check) even though the PRN used for tracking was not

among the signals present in the incoming data. This be-
havior is known in multiple-access systems as the near/far
problem.21 It occurs whenever cross-correlation with a
strong signal produces correlation peaks that are commen-
surate with the largest peak produced by the autocorrela-
tion of weak signals. The near/far problem is a challenge
for acquisition in indoor environments. Possible strategies
for mitigating the near/far problem are discussed in Sec-
tion VII-A.

Tracking sensitivity is demonstrated in Fig. 11. For this
test, the PLL bandwidth was fixed at 8 Hz (i.e., it was not
allowed to vary with C/N0) for comparison against other
constant-bandwidth PLLs. Hence, the results of Fig. 11,
which demonstrate tracking down to just below C/N0 =
25 dB-Hz, are conservative. Cycle slips were noted near
25 dB-Hz, but the tracking loops did not experience any
total loss of lock and data bit parity was maintained for
C/N0 ≥ 45 dB-Hz.

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45

50

Time (s)

C
/N

0 (
dB

−
H

z)

Fig. 11. Tracking sensitivity tests using a graded reduction in the
C/N0 of signals generated by the Spirent simulator.

The DSP-based receiver software was also tested of-
fline with wideband GPS L1 C/A signal data that was
recorded in Brazil during severe ionospheric scintilla-
tions.18,22 Power fades in excess of 25 dB are common
in the data set. Figure 12 shows the receiver’s C/N0 es-
timate over a 20-s window. In no cases studied did the
receiver experience a total loss of lock, but it did occa-
sionally experience parity failure after deep power fades,
indicating the occurrence of cycle slips. This is consistent
with the results of Ref. 18 for similar PLL parameters and
structure.

C. Tracking in the Presence of Large Vehicle Dy-
namics

As a demonstration of the DSP-based receiver’s ability to
reliably track incoming signals in the presence of large ve-
hicle dynamics, a “fighter aircraft” simulation scenario was
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Fig. 12. Offline tracking through ionospheric scintillations using the
DSP-based receiver software.

generated in which the vehicle banks around a circle of
4-km radius at 695 m/s (a little over Mach 2). Signal
strength levels were set to a nominal 47 dB-Hz. Such ve-
hicle motion results in 12.3 g’s of radial acceleration and
large line-of-sight jerk, which severely stresses the carrier
tracking loop. For this test, the PLL bandwidth was raised
to 15 Hz and the accumulation interval was set to Ta = 1
ms. Figure 13 shows the Doppler frequency estimate of
the carrier signal from a low-elevation satellite. No cycle
slips were detected in the carrier phase measurements.

The “fighter aircraft” test is included here to demonstrate
that the DSP-based receiver does not resort to “duty cy-
cle tracking,” a technique used in some software receivers
to increase the apparent number of channels that the re-
ceiver can simultaneously track. In “duty cycle tracking”
the tracking loops only operate on a fraction of the data
in a given data window and then “coast” to the beginning
of the next data window. This technique limits the band-
width of the tracking loops and is not suitable for tracking
in the presence of large vehicle dynamics.
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Fig. 13. A low-elevation signal’s Doppler frequency estimate during
the “fighter aircraft” simulation.

D. Position Accuracy

The accuracy of the DSP-based receiver’s pseudorange ob-
servables was tested by generating a set of navigation so-
lutions off-line using the RINEX-like files produced by the
receiver. Results are presented in Fig. 14; positioning
errors are consistent with what one would expect for the
Standard Positioning Service GPS signal (cf. Ref. 23, p.
217).

5 m

10 m

Fig. 14. Horizontal code-phase position accuracy for the DSP-based
receiver over a 45-second interval using live data taken from atop
Rhodes Hall, Cornell University. The center of the plot indicates the
true antenna position as defined by a 3-day average using a high-
quality single-frequency commercial GPS receiver.

VII. PROSPECTS

The foregoing performance results make it clear that an
embedded software receiver based on a high-performance
DSP can compete with standard application-specific inte-
grated circuit (ASIC) chipsets over a broad range of rele-
vant performance measures. These results and others that
will surely follow will help to dispel skepticism within the
GNSS community about whether software receivers can
“succeed as as generic high-end receivers or if they can
penetrate the embedded market.”6

In this section, the prospects of the DSP-based receiver are
discussed, first by considering uses for the receiver’s ample
throughput (beside simply performing acquisition in the
background), and then by considering possible alternatives
to the TMS320C6416 DSP.

A. Cross-Correlation Mitigation

Techniques for mitigating the cross-correlations caused by
the near/far problem, which was introduced in Section VI-
B, have been presented in the communications literature.21

These involve canceling the strong (“near”) signals by sub-
tracting them successively from the incoming RF front end
data. For GNSS chipsets based on hardware correlators,
this approach requires the inclusion of specialized cancel-
lation hardware within the hardware correlator chip. For
a software receiver with sufficient throughput, it requires a
software subroutine that takes as arguments the incoming
data stream and the tracking parameters of a strong signal
already being tracked. The subroutine generates a replica
signal whose phase, frequency, and amplitude are aligned
with those of the interfering strong signal and subtracts
the replica from the data stream.
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The above cancellation method mitigates large cross cor-
relations that arise during acquisition. For large cross cor-
relations that arise during tracking, a different approach is
required because the bit-wise parallel correlation method
does not lend itself to signal cancellation by subtraction.
Instead, spare channels can be dedicated to performing
cross-correlation calculations between the code replicas of
the strong signal and the weak signal being tracked. The
result is subtracted from the weak signal’s (I,Q) vector to
perform a cross-correlation “fix-up” after each accumula-
tion.

Efforts are underway to implement both of the foregoing
cross-correlation mitigation strategies on the DSP-based
receiver.

B. Incorporating other Signals

B.1 L2C

The bandwidth of the L2C signal is, like the L1 C/A sig-
nal, approximately 2 MHz. Hence, no changes in sampling
rate would be required to incorporate L2C onto the current
platform. Indeed, Ref. 3 demonstrates an L1 C/A + L2C
software receiver based on two GP2015 front-ends sam-
pling at Fs = 5.7 MHz. For use on the DSP, the L1 C/A
and the L2C data streams from the two front-ends would
need to be interleaved because the ‘C6416 has only three
McBSPs, one of which is currently dedicated to L1 C/A
sign bits and another to L1 C/A magnitude bits. Each
McBSP supports data rates up to 125 Mbps24—more than
adequate for interleaved signals.

Bit-packed L2C medium (CM) and long (CL) codes will
not fit in on-chip memory and must be generated in real
time,20 adding approximately 30% to the cost of correla-
tion. Moreover, the CM and CL codes must be tracked
independently because of the data bits modulated onto
the CM code. Hence, each L2C channel update will be ap-
proximately 2.3 times as expensive as the current L1 C/A
channel updates.

To work within the limitations of the DSP’s FFT routines,
L2C acquisition will either have to be aided by L1 C/A ac-
quisition or be carried out using the techniques introduced
in Ref. 25.

B.2 Galileo L1 BOC(1,1)

The Galileo L1 BOC(1,1) signal’s wider bandwidth (∼ 4
MHz) will require roughly double the sampling rate of the
current implementation. A front-end chip with a variable-
bandwidth low-pass filter that is already available for the
L1 C/A signal can be used as an L1 C/A + Galileo L1
BOC(1,1) front-end.26 The 4-ms PRN codes at the higher
sampling rate will not fit into on-chip memory; hence, as
for L2C, these must be generated in real time,20 adding
approximately 30% to the cost of correlation at the higher

sampling rate. Accordingly, each Galileo channel update
will be approximately 1.6 times as expensive as the current
L1 C/A channel updates. Galileo acquisition will also have
to proceed along the lines of Ref. 25.

As a demonstration of the ease with which the DSP-based
software receiver’s code can be adapted to new GNSS sig-
nals, the authors conducted an experiment in flexibility.
Starting with the L1 C/A framework (admittedly designed
with other GNSS signals in mind), the authors converted
the code to a Galileo L1 BOC(1,1) receiver that could op-
erate off-line on wide bandwidth (41 MHz) recorded data
that included the BOC(1,1) signal transmitted by GIOVE-
A. The conversion took less than 3 hours. Figure 15 shows
the results of tracking the GIOVE-A L1-B signal. The
PRN codes required to track GIOVE-A were provided by
Cornell’s GNSS research group.
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Fig. 15. Results of off-line tracking the GIOVE-A signal using
recorded data. Shown in blue is the difference between the measured
Doppler time histories of PRN 19 and GIOVE-A. The difference cal-
culation removes the receiver clock frequency bias. Shown in green is
the same difference calculated using the broadcast GPS ephemerides
for PRN 19 and the NORAD elements for GIOVE-A. The residual
3-Hz difference between the two plots is likely a result of errors in
the NORAD elements.

C. Alternatives to the TMSC6416

Trends in DSP design look promising for DSP-based GNSS
software receivers. There now exist at least two DSPs more
capable than the ‘C6416. These and the ‘C6416 are listed
below, along with the authors’ projections of what could
practically be implemented on each.
• TI’s TMS320C6416 (current target)
– 720 MHz, 1 MB of internal memory, $120
– 13 L1 C/A + 12 L2C channels (Fs = 5.7 MHz)
• TI’s TMS320C6455
– 1 GHz, 2 MB of internal memory, new C64+ core, $200
– 10 L1 C/A + 8 L2C + 10 Galileo L1 BOC(1,1) channels

(Fs = 10 MHz)
• Freescale’s MSC8144
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– quad 1-GHz processors, 10 MB internal memory, $230
– 12 L1 C/A + 12 L2C + 12 Galileo L1 BOC(1,1) chan-

nels (Fs = 10 MHz)

One might also entertain thoughts of implementing a
GNSS receiver on a smaller, more economical DSP:
• TI’s TMS320C6414
– 600 MHz, 1 MB of internal memory, $80
– 11 L1 C/A + 9 L2C channels (Fs = 5.7 MHz)

VIII. SUMMARY

• Status: An L1 C/A-code GPS receiver has been im-
plemented on a Texas Instruments TMS320C6416 DSP.
The receiver can track up to 43 real-time channels at a
2-bit sampling rate of 5.7 MHz. Its FFT-based acquisi-
tion strategy is capable of searching through 32 nominal-
strength GPS signals in just over 2 seconds. By increasing
the number of noncoherent sums that it uses, its acquisi-
tion threshold can be made as low as C/N0 = 33 dB-Hz.
Reliable tracking down to C/N0 = 25 dB-Hz has been
demonstrated. The receiver produces pseudoranges and
proper carrier phase measurements. Its code can be read-
ily adapted for use with other GNSS signals; to demon-
strate this, the code was used to do non-real-time tracking
of the Galileo GIOVE-A signal.
• Challenges: For high performance, the code implemen-
tation must employ fixed-point arithmetic, configure loops
properly for pipelining, and judiciously allocate the limited
on-chip memory.
• Prospects: High-performance DSPs appear to be
promising targets for dual-frequency science-grade embed-
ded GNSS software receivers. The fastest DSP on the mar-
ket today appears to be capable of handling 12 L1 C/A +
12 L2C + 12 Galileo L1 BOC(1,1) channels at a 2-bit sam-
pling rate of 10 MHz.
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