
A Real-Time GPS Civilian L1/L2 Software
Receiver

B. M. Ledvina, M. L. Psiaki, D. J. Sheinfeld, A. P. Cerruti, S. P. Powell, and P. M. Kintner,
Schools of Electrical and Computer Engineering and Mechanical and Aerospace Engineering, Cornell University
BIOGRAPHY

Brent M. Ledvina is a Postdoctoral Associate in the
School of Electrical and Computer Engineering at Cor-
nell University. He received a B.S. in Electrical and
Computer Engineering from the University of Wiscon-
sin at Madison and a Ph.D. in Electrical and Computer
Engineering from Cornell University. His research in-
terests are in the areas of ionospheric physics, space
weather, estimation and filtering, and GPS/GNSS tech-
nology and applications.

Mark L. Psiaki is an Associate Professor of Mechanical
and Aerospace Engineering at Cornell University. He
received a B.A. in Physics and M.A. and Ph.D. degrees
in Mechanical and Aerospace Engineering from Prince-
ton University. His research interests are in the areas of
estimation and filtering, spacecraft attitude and orbit
determination, and GPS technology and applications.

Daniel Sheinfeld is a graduate student in the Depart-
ment of Aeronautics and Astronautics at Stanford Uni-
versity. He received a B.S. in Mechanical Engineer-
ing from Cornell University. His research interest is
in the area of automatic controls with applications to
aerospace systems.

Alessandro Cerruti is a Ph.D. student in the School of
Electrical and Computer Engineering at Cornell Univer-
sity. He received B.S. and M.Eng. degrees in Electri-
cal and Computer Engineering from Cornell University.
His current interests include development of GNSS re-
ceivers and their applications to studying ionospheric
scintillations.

Steven Powell is a Senior Engineer with the Space
Plasma Physics Group in the School of Electrical and
Computer Engineering at Cornell University. He has
been involved with the design, fabrication, testing, and
launch activities of many scientific experiments that
have flown on high altitude balloons, sounding rock-
ets, and small satellites. He has M.S. and B.S. degrees
in Electrical Engineering from Cornell University.

Dr. Paul M. Kintner, Jr. is a professor of Electrical
and Computer Engineering at Cornell University. His
interests as a rocket scientist range from exploring the
northern lights to understanding space weather. His re-
cent work with GPS receiver design and scintillations
led NASA to appoint him chair of the Living With a
Star Geospace Mission Definition Team.

ABSTRACT

A dual-frequency civilian GPS receiver has been devel-
oped that runs 10 tracking channels in real time using a
software correlator. This work is part of an effort to de-
velop a flexible receiver that can use the new GPS L2C
CM/CL signals as they become available on L2 with-
out the need for new correlator hardware. The receiver
consists of an RF front end, a system of shift registers,
a digital data acquisition (DAQ) system, and software
that runs on a 3.2 GHz PC. The direct RF sampling
front end uses intentional aliasing and converts the GPS
L1 C/A codes and L2 CM and CL codes into a 1-bit dig-
ital data stream sampled at a frequency between 8 and
12.5 MHz. The shift registers parallelize the 1-bit data
stream, which the DAQ reads into the PC’s memory us-
ing direct memory access. The PC performs base-band
mixing and PRN code correlations in a manner that di-
rectly simulates a hardware digital correlator. It also
performs the usual signal tracking and navigation func-
tions, under the control of a real-time Linux operating
system.

The main contribution of this work is a method for real-
time generation of over-sampled bitwise-parallel repre-
sentations of PRN codes via a table look-up function.
The over-sampled PRN codes need to be in a bitwise-
parallel format in order to be used in the software re-
ceiver’s bitwise-parallel correlation algorithms. On-line
generation of the over-sampled codes is required because
it is impractical to pre-compute and store over-sampled
representations of very long codes, such as the L2 CL
code.

The GPS civilian L1/L2 software receiver tracks 10
channels in real time and has a navigation accuracy of
2–5 meters. It requires 80% of the processing capabili-
ties of a 3.2 GHz Intel Pentium 4 PC.

I. INTRODUCTION

A real-time global navigation software receiver provides
distinct advantages in an evolving signal and code en-
vironment. The current Global Positioning System
(GPS) is slated to expand its capabilities to include

new civilian codes on the L2 frequency and a new L5
frequency. A receiver that uses a hardware digital cor-
relator will require hardware modifications in order to
use these new signals. In the near term, a receiver de-
signer will be faced with a complex trade-off in order to
decide whether the extra complexity is worth the im-
proved performance that will accrue only very slowly
as new GPS satellites replace older models. A software
receiver can use new signals without the need for a new
correlator chip. Given a suitable RF front end, new fre-
quencies and new pseudo-random number (PRN) codes
can be used simply by making software changes. Thus,
software receiver technology will lessen the risks in-
volved for designers during the period of transition to
the new signals. Furthermore, a software receiver can be
reprogrammed to use the Galileo system, GLONASS,
or both, which provides an added benefit from the use
of a software radio architecture. Thus, there are good
reasons to develop practical real-time software GPS re-
ceivers.

This work focuses on the development of a dual-
frequency GPS software receiver that utilizes the L1
C/A code and the new L2 civilian CM/CL code. This
receiver will be useful for performing dual-frequency
ionospheric corrections. It will also be useful for study-
ing the ionosphere.

A hardware dual-frequency GPS receiver can be broken
down into various components. First, a dual-frequency
antenna, possibly followed by a pre-amp, receives the
two L-band GPS signals. After the antenna comes an
RF section that filters and down converts the GHz GPS
signals to intermediate frequencies in the MHz range.
The RF section also digitizes the signal. The next
section contains a correlator chip that separates the
signal into different channels allocated to each satel-
lite. A modern receiver has 10 or more channels. For
each satellite and each carrier frequency, the correlator
mixes the Doppler-shifted intermediate frequency sig-
nal to base-band and correlates it with a local copy of a
PRN code. The final components of the receiver consist
of software routines that track the signals by control-
ling carrier and code numerically-controlled oscillators
in the correlator chip, that decode the navigation mes-
sage, and that compute the navigation solution.

A software receiver differs from a standard hardware
receiver in one distinct way. The functions of the corre-
lator chip are moved to software that runs on a general-
purpose microprocessor. This move changes the layout
of the receiver, see Fig. 1. The RF front end outputs
a binary bit stream. A data buffering and acquisition
system reads the bit stream into the microprocessor’s
memory. The bit stream is then processed by the soft-
ware correlator. The dual-frequency correlator shown
Signal Tracking,
Data Demodulation,

and User Interface
Navigation Solution

Multi−Channel
Dual−Frequency
Software
Correlator

Data Buffering
and Acquisition
System

Dual−Frequency Antenna

Microprocessor
General−Purpose

���������
	�

�������������
��	 ��

�����
����

Fig. 1. A typical GPS software receiver showing the separation
between special purpose hardware and general hardware.

in Fig. 1 processes inputs from one or two data streams
containing the signals at the two GPS frequencies.

GPS software receivers have received a lot of interest
recently [1], [2], [3], [4]. The work presented in this pa-
per improves upon the software receiver of [3] and [4] in
two ways. First, the software receiver discussed here is
dual-frequency, thus enabling a more capable receiver
able to produce a more accurate navigation solution.
Second, this paper explains how to efficiently generate
over-sampled PRN codes in real time. This capabil-
ity is required in order to adapt the software correlator
method of [3] and [4] to use long PRN codes, such as
the CL code, without using unreasonable amounts of
memory.

The remaining portions of this paper explain the in-
ternal workings of a 10-channel real-time GPS civilian
L1/L2 software receiver and present experimental per-
formance results for this system. The second section
describes the system configuration. The third section
reviews the structure of spread-spectrum signals and
standard correlation accumulation calculations. Sec-
tion IV reviews the bit-wise parallel software correla-
tion technique of [3] and [4]. Section V describes real-
time generation of bit-wise parallel over-sampled PRN
codes. Section VI discusses computational and memory
requirements of the software correlator. Section VII
presents receiver performance results. Section VIII dis-
cusses future work. The last section gives a summary
and concluding remarks.

II. SYSTEM CONFIGURATION

A principal component of the GPS software receiver is
a personal computer. The current system uses a PC
with a 3.2 GHz Intel Pentium 4 processor running the
Real Time Application Interface (RTAI) operating sys-
tem. RTAI is a hard real time variant of Linux imple-
mented as a set of patches to the standard Linux ker-
nel. Due to its real-time optimized design, RTAI pro-
vides very low latency interrupt responsiveness along
with the ability to execute threads at regular intervals.
This translates into a highly efficient and responsive op-
erating system that reliably executes time critical code.

An additional feature of RTAI is that it retains the func-
tionality of Linux by running the kernel as the lowest
priority thread. Thus, it is easy to develop, test, debug,
and run real-time software.

The next component of the software receiver is the RF
front end. It is a direct RF sampling front end similar
to the one described in [5]. The heart of this front end
is an analog-to-digital converter (ADC) that can func-
tion with an input bandwidth of up to 2.2 GHz and
that can perform 8-bit conversion at continuous sample
rates up to 1 GHz. The ADC samples the GPS signals
at 12.199 MHz, which aliases the L1 carrier down to
a nominal frequency of 1.749 MHz and the L2 carrier
down to a nominal frequency of –4.499 MHz. Each 8-bit
sample gets processed by a separate logic unit to create
a sign bit after subtraction of an appropriate bias that
minimizes the signal-to-noise ratio’s digitization loss.

A data acquisition system reads the digitized sign bits
from the RF front end into the PC. To make the process
of reading data into the PC more efficient and to pre-
pare for efficient correlation calculations, the DAQ card
reads 32 bits of buffered samples at a time. A series
of shift registers buffer the data, packing the sign bits
into a 32-bit word. A divide-by-32 counter converts the
12.199 MHz clock down to 381.22 KHz, which provides
a signal indicating when the buffer is full.

The data acquisition system consists of a PC card and
driver software. The card is a National Instruments
PCI-DIO-32HS digital I/O card. Important features of
this card are its 32 digital input lines, its direct memory
access (DMA), and the availability of a driver for RTAI.
The driver comes from a suite of open source drivers and
application interface software for DAQ cards known as
COMEDI (COntrol and MEasurement and Device In-
terface), which is freely available.

The software receiver is written entirely in ANSI C us-
ing tools available from standard Linux distributions.
To promote portability of the software, no processor-
specific assembly language or special instructions are
used.

Use of Existing Receiver Software

Existing receiver software is important to the imple-
mentation of this real-time GPS software receiver. The
Mitel GPSArchitect GPS L1 C/A code receiver was
ported to RT-Linux [6], subsequently ported to RTAI,
and herein is referred to as Cascade. Since Cascade pro-
vides standard GPS functions such as signal tracking,
data demodulation, and computation of the navigation
solution, it is included as part of the real-time software
receiver.
Three new developments to the Cascade software were
required for it to operate with a dual-frequency corre-
lator. First, a set of code and carrier tracking loops for
the L2 CM signal were developed. The Cascade soft-
ware already has a delay-locked loop for code tracking
and a frequency-locked loop for carrier tracking. These
loops are for tracking the L1 C/A code signal. Mod-
ified versions of these loops were implemented for the
L2 CM signal. The modifications involved changing the
nominal carrier frequency from L1 to L2 and adjusting
the integration interval to match the nominal 0.002 sec-
ond accumulation interval of the CM code. Code and
carrier tracking loops for the L2 CL code have not yet
been developed.

Second, a method has been developed to remove the
ionospheric delay from the L1 C/A code pseudorange
measurement. The method involves low-pass filtering
the high bandwidth difference of the L2 CM code and
L1 C/A code start times to produce an estimate of the
differential code delay. This estimate is output at 0.1
Hz. In the Cascade software, the estimated differential
code delay is re-scaled to an equivalent range delay at
the L1 carrier frequency. The L1 C/A code pseudor-
ange is then corrected by this equivalent range delay.
Alternate methods for performing this correction can
be found in [7].

Third, an acquisition method for detecting the L2
CM/CL signal has been developed. The Cascade soft-
ware uses a brute-force code phase offset and Doppler
frequency search routine for C/A code acquisition.
Since the CL and CM code periods are respectively 20
and 750 times longer than the C/A code period, it is eas-
ier to acquire the C/A code first if the signal is strong.
The modified Cascade software first acquires the L1
C/A code, and the L1 carrier Doppler shift is used to
program the L2 carrier NCO. The correct L2 carrier fre-
quency is determined via re-scaling of the acquired L1
Doppler shift by the ratio of the L2 to the L1 frequen-
cies. This reduces the CM acquisition search space to
one dimension, the code start time dimension. The CM
acquisition then carriers out a brute-force search for the
start time. In the future a better acquisition strategy
will be implemented, one that recognizes that the L2
CM code start time can fall only within a limited range
of offsets from the L1 C/A code start time.

One missing component of the Cascade software is
a data demodulation routine for the convolutionally-
coded 50 symbol per second data stream on the CM
code. This data stream provides ephemeris and clock
information that is also available on the L1 C/A code
50 bit per second data stream. Because the receiver is
configured to track the C/A code, it is not necessary to
decode the CM code data stream.

The dual-frequency software correlator has been de-
signed as an independent software module that inter-
acts with other parts of the receiver according to well-
defined interface specifications. This modular approach
provides flexibility in the internal workings of the re-
ceiver. One benefit of this modularity is that the mix-
ing methods and correlation routines are transparent
to the other standard software modules. This enables
quick changes in correlator design that do not signifi-
cantly affect other parts of the GPS receiver. Another
benefit is that the receiver can be reconfigured on the fly
to operate as a single-frequency L1 C/A code receiver.

III. REVIEW OF THE SPREAD SPECTRUM
GPS SIGNAL AND CORRELATION AC-
CUMULATIONS

The direct RF sampling front end outputs a single RF
data stream that contains both the L1 and L2 signals.
The following is a model of the output data stream of
the RF front end:

y(ti) =
∑

j

(
AL1jDL1jkCL1j

[
0.001

(
ti − τL1jk

τL1jk+1 − τL1jk

)]

× cos[ωIF,L1ti + φL1j(ti)]

+AL2j

{
DL2jkCL2M0jk

[
0.001

×
(

ti − τL2jk

τL2jk+1 − τL2jk

)]

+CL20Ljk

[
0.001

(
ti − τL2jk

τL2jk+1 − τL2jk

)]}

× cos[ωIF,L2ti − φL2j(ti)]

)
+ nj

(1)
where ti is the sample time, the subscript j refers to a
particular GPS satellite, AL1j is the L1 signal amplitude
for satellite j, AL2j is the L2 signal amplitude, DL1jk is
the L1 signal navigation data bit, DL2jk is the L2 signal
navigation data bit, CL1j [t] is the C/A code, CL2M0jk[t]
is the CM code applicable in the nominal 1 ms time
span from τL2jk to τL2jk+1 interspersed with 0s every
other chip, CL20Ljk is the CL code applicable on this
same interval interspersed with 0s every other chip on
the opposite chips to the zeros from the CM code, τL1jk

and τL1jk+1 are the start times of the received kth and
k+1st C/A code periods, τL2jk and τL2jk+1 are the start
and stop times of the received kth 1023 chip interval of
the CM/CL code, ωIF,L1 is the intermediate frequency
corresponding to the L1 carrier frequency, ωIF,L2 is the
intermediate frequency corresponding to the L2 carrier
+1

−1

t

Time−Interlaced Civilian CL/CM Code

+1

−1

and C/A code

1 chip

���������
	��� �����
	��� �����
	���
�����
	��� ������	

����� ������	������ �����
	������ �����
	������ �����
	������ �����
	������ �����
	

����������	

� ������������ �!

"$#�% "�& ')(*# "+& ,.-)/ "0& 1324/ "+& 56#�% "+& 78#�%

":9;, #�% "<9;, #�% ":9;,=& ' (*# ":9;,>& , -)/":9;,?& , -)/"<9;,>& ' (*#

Fig. 2. Illustration of the time-division multiplexed L2 CM/CL
code and the L1 C/A code.

frequency, φL1j(ti) is the L1 carrier phase perturbation
due to accumulated delta range and ionospheric effects,
φL2j(ti) is the L2 carrier phase perturbation due to ac-
cumulated delta range and ionospheric effects, and nj

is the receiver noise. The summation is over all visible
GPS satellites. The negative sign in front of φL2(ti)
comes from the effective high-side L2 mixing that oc-
curs in the RF front end that has been used. The C/A
code has a length of 1023 chips and a chipping rate of
1.023 MHz. The CM code has a length of 10230 chips
and the CL code has a length of 767,250 chips. These
latter two codes each have a chipping rate of 511.5 KHz.
The combined CM/CL code contains time-division mul-
tiplexed chips from the CL and CM codes, and has an
equivalent chipping rate of 1.023 MHz [8]. Fig. 2 illus-
trates an example of the multiplexed CM/CL code and
the C/A code.

A second type of RF data stream is possible. Instead of
a single data stream, two RF front ends could output
two separate data streams, one containing the L1 sig-
nal and the other containing the L2 signal. The two RF
data streams would be processed independently. Using
an RF data stream of this type would separate eq. (1)
into two components, one containing the L1 C/A code
signal and the other containing the L2 CM/CL code
signal. Although the remainder of this paper assumes
a single dual-frequency data stream in the form of eq.
(1), the methods used can be applied equally well when
there are two independent data streams.

A GPS receiver works with correlations between the
received signal and a replica of it. The correlations are
used to acquire and track the signal. A replica is re-
quired for each satellite. The replica is composed of
two parts, the carrier replica and the PRN code replica.

Two carrier replica signals are used, an in-phase signal
and a quadrature signal. When mixed with the code
replica they form the in-phase and quadrature replicas.
The in-phase and quadrature replicas for the L1 C/A
code signal are

yI,L1j(ti) = CL1j

[
0.001

(
ti − τ̂L1jk

τ̂L1jk+1 − τ̂L1jk

)]

× cos{ωIF,L1ti + [φ̂L1jk

+ω̂Dopp,L1jk(ti − τ̂L1jk)]}

(2)

yQ,L1j(ti) = CL1j

[
0.001

(
ti − τ̂L1jk

τ̂L1jk+1 − τ̂L1jk

)]

× sin{ωIF,L1ti + [φ̂L1jk

+ω̂Dopp,L1jk(ti − τ̂L1jk)]}
(3)

where equations (2) and (3) apply during the kth C/A
code period. In these equations τ̂L1jk and τ̂L1jk+1 are
the receiver’s estimates of the start times of the kth and
k + 1st code periods, φ̂L1jk is the estimated L1 carrier
phase at time τ̂L1jk, and ω̂Dopp,L1jk is the estimated L1
carrier Doppler shift during the kth code period.

The in-phase and quadrature replicas for the L2 CM
code signal interspersed with zeros are

yI,L2j(ti) = CL2M0jk

[
0.001

(
ti − τ̂L2jk

τ̂L2jk+1 − τ̂L2jk

)]

× cos{ωIF,L2ti − [φ̂L2jk

+ω̂Dopp,L2jk(ti − τ̂L2jk)]}
(4)

yQ,L2j(ti) = CL2M0jk

[
0.001

(
ti − τ̂L2jk

τ̂L2jk+1 − τ̂L2jk

)]

× sin{ωIF,L2ti − [φ̂L2jk

+ω̂Dopp,L2jk(ti − τ̂L2jk)]}

(5)
where eqs. (4) and (5) apply during the kth CM/CL
code 1023-chip interval. In these equations τ̂L2jk and
τ̂L2jk+1 are the receiver’s estimates of the start times
of the kth and k + 1st code intervals, φ̂L2jk is the es-
timated L2 carrier phase at time τ̂L2jk, and ω̂Dopp,L2jk

is the estimated L2 carrier Doppler shift during the kth

1023-chip interval. The replicas for the L2 CL code sig-
nal interspersed with zeros can be formed by replacing
CL2M0jk[t] in equations (4) and (5) with CL20Ljk[t].

A typical dual-frequency receiver computes the esti-
mates τ̂L1jk, τ̂L1jk+1, φ̂L1jk, ω̂Dopp,L1jk, τ̂L2jk, τ̂L2jk+1,
φ̂L2jk, and ω̂Dopp,L2jk by various means described in
[9]. These include open-loop acquisition methods and
closed-loop signal tracking methods such as a delay-
locked loop to compute τ̂L1jk and τ̂L1jk+1 and a phase-
locked loop or a frequency-locked loop to compute φ̂L1jk

and ω̂Dopp,L1jk. The software receiver developed here
uses standard techniques for forming these estimates.
These techniques are not discussed in detail here.

The receiver uses the carrier and code replicas to com-
pute the following L1 C/A code in-phase and quadra-
ture correlation accumulations:

IL1jk(∆) =
ik+Nk∑

i=ik

y(ti)CL1j

[
0.001

×
(

ti + ∆− τ̂L1jk

τ̂L1jk+1 − τ̂L1jk

)]

× cos{ωIF,L1ti + [φ̂L1jk

+ω̂Dopp,L1jk(ti − τ̂L1jk)]}

(6)

QL1jk(∆) =
ik+Nk∑

i=ik

y(ti)CL1j

[
0.001

×
(

ti + ∆− τ̂L1jk

τ̂L1jk+1 − τ̂L1jk

)]

× sin{ωIF,L1ti + [φ̂L1jk

+ω̂Dopp,L1jk(ti − τ̂L1jk)]}

(7)

where ik is the index of the first RF front end sample
time that obeys τ̂L1jk ≤ tik

and Nk + 1 is the total
number of samples that obey τ̂L1jk ≤ ti < τ̂L1jk+1.
The time offset ∆ causes the replica PRN code to play
back early if it is positive and late if ∆ is negative.

The L2 CM code in-phase and quadrature correlation
accumulations are

IL2CMjk(∆) =
ik+Nk∑

i=ik

y(ti)CL2M0jk

[
0.002

×
(

ti + ∆− τ̂L2jk

τ̂L2jk+2 − τ̂L2jk

)]

× cos{ωIF,L2ti − [φ̂L2jk

+ω̂Dopp,L2jk(ti − τ̂L2jk)]}

(8)

QL2CMjk(∆) = −
ik+Nk∑

i=ik

y(ti)CL2M0jk

[
0.002

×
(

ti + ∆− τ̂L2jk

τ̂L2jk+2 − τ̂L2jk

)]

× sin{ωIF,L2ti − [φ̂L2jk

+ω̂Dopp,L2jk(ti − τ̂L2jk)]}

(9)

where ik is the index of the first RF front end sample
time that obeys τ̂L2jk ≤ tik

and Nk + 1 is the total

number of samples that obey τ̂L2jk ≤ ti < τ̂L2jk+2.
The L2 CL code accumulations are formed by replac-
ing CL2M0jk[t] with CL20Ljk[t] in equations (8) and (9).
Note how equations (8) and (9) sum over a nominal ac-
cumulation interval of 2 ms as opposed to 1 ms for the
C/A code accumulations in equations (6) and (7). This
is done purely for convenience. Note also that ik and
Nk in eqs. (8) and (9) will differ from ik and Nk in eqs.
(6) and (7).

IV. REVIEW OF BIT-WISE PARALLEL SOFT-
WARE CORRELATION

Base-Band Mixing

In order for a software receiver to efficiently perform
base-band mixing, as in eqs. (8) and (9), the sine
and cosine replicas must be pre-computed and stored
in memory. It is desirable to minimize the number of
sine and cosine signals that are stored in memory. The
method implemented in this receiver was first demon-
strated in [3]. This reference demonstrates a base-band
mixing method which involves storing sine and cosine
signals on a rough frequency grid. The method mixes
the input RF signal with the carrier replicas that are
closest in frequency to the estimated Doppler shift. The
signals have an initial phase offset of zero. The resul-
tant I and Q accumulations are rotated in such a way
that they mimic mixing by carrier replicas with the ap-
propriate frequency and phase. The resulting L1 C/A
code accumulations are

IgL1jk(∆) =
ik+Nk∑

i=ik

y(ti)

×CL1j

[
0.001

(
ti + ∆− τ̂L1jk

τ̂L1jk+1 − τ̂L1jk

)]

× cos[(ωIF,L1 + ωgL1jk)(ti − t0gL1jk)]
(10)

QgL1jk(∆) =
ik+Nk∑

i=ik

y(ti)

×CL1j

[
0.001

(
ti + ∆− τ̂L2jk

τ̂L1jk+1 − τ̂L1jk

)]

× sin[(ωIF,L1 + ωgL1jk)(ti − t0gL1jk)]

(11)
where ωL1gjk is the grid Doppler shift frequency that is
closest to the estimated frequency ω̂Dopp,L1jk and where
t0gL1jk is the time at which this carrier replica has zero
carrier phase. These accumulations are then rotated in
order to create accurate approximations of what would
have been computed had the estimated carrier phase
time history in equations (6) and (7) been used:
IL1jk(∆) = IgL1jk(∆) cos(∆φL1avgjk)
+QgL1jk(∆) sin(∆φL1avgjk) (12)

QL1jk(∆) = −IgL1jk(∆) sin(∆φL1avgjk)
+QgL1jk(∆) cos(∆φL1avgjk) (13)

where ∆φL1avgjk is the average phase difference be-
tween the grid carrier phase and the estimated carrier
phase averaged over the accumulation interval:

∆φL1avgjk = ωgL1jk

(
τ̂L1jk + τ̂L1jk+1

2
− t0gL1jk

)

−φ̂L1jk − ω̂Dopp,L1jk

(
τ̂L1jk+1 − τ̂L1jk

2

)

−ωIF,L1t0gL1jk.

(14)

The correlation of the time-division multiplexed CM
and CL codes is complicated by the fact that naviga-
tion data is modulated on the CM code. This requires
a modification to the code replicas used for correlation.
Two CM/CL code replicas are generated. One replica
has a +1 data bit on the CM code and is denoted the
+CM/CL replica. The other one has a –1 bit on the
CM code and is denoted the –CM/CL replica. The ac-
cumulations from the two replicas can produce either
the CM code accumulation via subtraction or the CL
code accumulation via addition.

The resulting L2 CM/CL code accumulations are

IgL2plusjk(∆) =
ik+Nk∑

i=ik

y(ti)CL2plusjk

[
0.002

×
(

ti + ∆− τ̂L1jk

τ̂L2jk+2 − τ̂L2jk

)]

× cos[(ωIF,L2 − ωgL2jk)
×(ti − t0gL2jk)]

(15)

QgL2plusjk(∆) = −
ik+Nk∑

i=ik

y(ti)CL2plusjk

[
0.002

×
(

ti + ∆− τ̂L2jk

τ̂L2jk+2 − τ̂L2jk

)]

× sin[(ωIF,L2 − ωgL2jk)
×(ti − t0gL2jk)]

(16)

IgL2minusjk(∆) =
ik+Nk∑

i=ik

y(ti)CL2minusjk

[
0.002

×
(

ti + ∆− τ̂L1jk

τ̂L2jk+2 − τ̂L2jk

)]

× cos[(ωIF,L2 − ωgL2jk)
×(ti − t0gL2jk)]

(17)

QgL2minusjk(∆) = −
ik+Nk∑

i=ik

y(ti)CL2minusjk

[
0.002

×
(

ti + ∆− τ̂L2jk

τ̂L2jk+2 − τ̂L2jk

)]

× sin[(ωIF,L2 − ωgL2jk)
×(ti − t0gL2jk)]

(18)
where CL2plusjk is a portion of the over-sampled
CM/CL code with a +1 data bit on the CM code,
CL2minusjk is a portion of the over-sampled CM/CL
code with a –1 data bit on the CM code, ωL2gjk is the
grid Doppler shift frequency that is closest to the esti-
mated frequency ω̂Dopp,L2jk, and t0gL2jk is the time at
which this carrier replica has zero carrier phase.

The in-phase CM code accumulation is formed by sub-
tracting the accumulations in eqs. (15) and (17). The
quadrature accumulation is formed by subtracting eqs.
(16) and (18):

IgL2M0jk(∆) = [IgL2plusjk(∆)− IgL2minusjk(∆)]/2
(19)

QgL2M0jk(∆) = [QgL2plusjk(∆)−QgL2minusjk(∆)]/2
(20)

The in-phase CL code accumulation is formed by adding
the accumulations in equations (15) and (17). The
quadrature accumulation is formed by adding equations
(16) and (18):

IgL20Ljk(∆) = [IgL2plusjk(∆) + IgL2minusjk(∆)]/2
(21)

QgL20Ljk(∆) = [QgL2plusjk(∆) + QgL2minusjk(∆)]/2

(22)

These accumulations are then rotated in order to cre-
ate accurate approximations of what would have been
computed had the estimated carrier phase time history
in equations (8) and (9) been used. The CM code ac-
cumulations are

IL2M0jk(∆) = IgL2M0jk(∆) cos(∆φL2avgjk)
+QgL2M0jk(∆) sin(∆φL2avgjk)

(23)

QL2M0jk(∆) = −IgL2M0jk(∆) sin(∆φL2avgjk)
+QgL2M0jk(∆) cos(∆φL2avgjk)

(24)
and the CL code accumulations are

IL20Ljk(∆) = IgL20Ljk(∆) cos(∆φL2avgjk)
+QgL20Ljk(∆) sin(∆φL2avgjk) (25)

QL20Ljk(∆) = −IgL20Ljk(∆) sin(∆φL2avgjk)
+QgL20Ljk(∆) cos(∆φL2avgjk)

(26)
where ∆φL2avgjk is the average phase difference be-
tween the grid carrier phase and the estimated carrier
phase averaged over the accumulation interval:

∆φL2avgjk = ωgL2jk

(
τ̂L2jk + τ̂L2jk+2

2
− t0gL2jk

)

−φ̂L2jk − ω̂Dopp,L2jk

×
(

τ̂L2jk+2 − τ̂L2jk

2

)
+ ωIF,L2t0gL2jk.

(27)

A slight loss in C/N0 occurs when the grid frequency is
not the true Doppler shift.The worst-case loss function
is expressed as a function of the frequency grid spacing
∆f and is given by

∆SNR = 20 log10

[
sin(π∆fT/2)

π∆fT/2

]

(28)

where ∆f is in units of Hz, and T is the integration
period in sec. With ∆f equal to 175 Hz, the worst-case
SNR loss is 0.11 dB for the C/A code. The worst-case
SNR loss for the CM/CL code is 0.11 dB if T=0.002 and
∆f=87.5 Hz. The use of a closer frequency spacing for
the grid of L2 Doppler shifts counteracts the use of a
longer accumulation interval for the L2 codes.

The nominal accumulation interval of 0.002 seconds for
the CM/CL code is used for programming convenience,

��� �����	��
 ��
 �����

� � � � � � �� � � � � �

������������������� ����� �

!#" " �$�&%&'�()%+*

�-,/.0�21�1
 354
�567�98;: < ,�=?>A@ 'CB/D @FE ' ! �HG @ �I'J�-�

!#" *LKM'NK
>A@ 'O�

Fig. 3. Schematic diagram of how the RF front end’s 1-bit sam-
ples are bit-packed into a shift register prior to being read into
memory.

but it can be changed. It is clear from eq. (28) that
lengthening the accumulation interval causes a decrease
in SNR due to accumulated phase differences of the re-
ceived signal and the carrier replica. Decreasing the fre-
quency grid step size decreases this loss, but increases
the required memory for storing the receiver’s required
±10 KHz range of carrier replicas. Therefore, it has
been decided not to lengthen this interval.

The cosine and sine signals on the Doppler frequency
grid are stored as 2-bit binary sign and magnitude rep-
resentations. These carrier replicas are stored in a bit-
packed fashion such that successive samples of a replica
signal are stored in successive bits in 32-bit words. Each
tabulated carrier replica’s sign bits are stored in a se-
quence of 32-bit sign words, and the magnitude bits are
stored in a sequence of 32-bit magnitude words. This
format is the same as in [3], [4].

Recall from the System Configuration section that 32
successive 1-bit RF data samples are bit-packed into a
32-bit shift register prior to being read into memory.
Fig. 3 shows the RF front end, the RF front end sign
bits, and the shift register. The sign bits are input into
the shift register at the sampling rate of 12.199 MHz.
When the 32-bit shift register is full, its contents are
read into memory. The 32-bit words, once in memory,
are called the RF data sign words. Successive words
are stored in a circular buffer for processing by the soft-
ware correlator. Bit-packing of the RF data samples
motivates the use of bit-wise parallel correlation and
accumulation of the GPS signals.

Bit-wise parallel base-band mixing makes use of the
EXCLUSIVE OR operation and the fact that the RF
1 1 10 1 0 0 0 1 1 1 1 0 1 1

1 1 11 0 0 1 1 1 1 111 1 0

1 10 1 1 0 1 10 1 0 11 0 0

01 1 1 1 00 1 1 1 0 0 0 0 0

XOR

Input Output
Base−Band Mixing

Base−Band
Mag Word

Carrier Replica
Mag Word

Carrier Replica
Sign Word

RF Sign Word

Base−Band
Sign Word

Fig. 4. Illustrative example of bit-wise parallel base-band mixing
of a 16-bit RF data sign word and a 16-bit carrier replica with
magnitude and sign words.

data stream is bit-packed into words prior to being
read into memory. The base-band signal’s sign words
are computed by taking the EXCLUSIVE OR of the
RF data sign words and the carrier replica sign words.
The base-band signal’s magnitude words are simply the
transcripted carrier replica magnitude words. This pro-
cedure is repeated for all the words that constitute an
accumulation interval. The resultant base-band signal
has a 2-bit representation with possible values of±1 and
±2. Fig. 4 shows an example of bit-wise parallel base-
band mixing of a 16-bit RF data sign word and 16-bit
carrier replica sign and magnitude words. 16-bit words
are used in place of this receiver’s 32-bit words solely
for illustrative purposes. Fig. 4 shows how a single EX-
CLUSIVE OR operation of the RF data sign word and
carrier replica sign word produces the base-band sign
word. The carrier replica magnitude word is simply
renamed the base-band magnitude word. A thorough
explanation of bit-wise parallel base-band mixing can
be found in [3], [4].

Mixing of the Base-Band Signal with a Local
PRN Code

Both prompt and early-minus-late correlations are
needed to track the carrier frequency, carrier phase,
and code phase in a GPS receiver. The L1 C/A
code and L2 CM code prompt correlations are de-
fined by the equation pairs (6), (7) and (8), (9) with
∆ = 0. The early-minus-late correlations for the L1
C/A code are IL1jk(∆teml/2) − IL1jk(−∆teml/2) and
QL1jk(∆teml/2) − QL1jk(−∆teml/2) and for the L2
CM code IL2M0jk(∆teml/2) − IL2M0jk(−∆teml/2) and
QL2M0jk(∆teml/2)−QL2M0jk(−∆teml/2), where ∆teml

is the spacing between the early and late PRN code
replicas. The L2 CL correlations are defined similarly

but with CL2M0jk[t] replaced by CL20Ljk[t] in equations
(8) and (9).

The prompt and early-minus-late PRN code replicas
can be mixed with the base-band mixed signal by bit
redefinitions and a simple EXCLUSIVE OR operation
of the two input signals’ sign words. The mixing of the
early-minus-late code with the base-band signal also re-
quires a transcription of zero mask bits. These opera-
tions are described in [3], [4].

Bit-Wise Parallel Accumulation of Correlations

The final operation in the correlation calculations is to
sum the results over all of the samples in a given es-
timated PRN code interval. This operation requires
additional bit-wise parallel operations followed by op-
erations that form totals over the bits in a given word.

The code-correlated base-band signals have a 2-bit rep-
resentation. The possible values are ±1 and ±2. To
sum this resultant signal in an efficient manner, the
four different combinations of the 2-bit representation
are represented by four 32-bit words. These four 32-
bit words are called value words. The four value words
are denoted the +1 value word, the –1 value word, the
+2 value word, and the –2 value word. A value word
contains a 1 in the bit location where the resultant
signal’s 2-bit representation matches the value word’s
corresponding value. For example, the +1 value word
contains 1s in all the bit locations in which the resul-
tant signal has a sign bit equal to 1, which indicates a
positive sign, and a magnitude bit equal to 0, which in-
dicates a magnitude of 1. Boolean logic operations are
used to generate the four value words. [3] and [4] give
a full description of this process.

The accumulation operation must sum the number of 1
bits in each of the four value words. The summations
are accomplished using a table look-up. The value word
is used as the address in the memory table, and the ta-
ble’s output is set up to deliver the number of 1 values
in the address. A 16-bit table has been used. This gives
it a memory size of 216 bytes or 64 Kbytes, which makes
it able to fit into the microprocessor’s cache and allows
for very fast execution. If this code is implemented on
a DSP chip, then it can use a machine instruction for
summing the 1 bits.

V. REAL-TIME GENERATION OF OVER-
SAMPLED PRN CODES

The software correlator needs to generate bit-wise par-
allel representations of the over-sampled PRN codes
used in eqs. (10), (11), and (15)–(18). The needed
over-sampled PRN codes are CL1j [t], CL2plusjk[t], and
CL2minusjk[t]. The software correlator needs prompt
and early-minus-late versions of these three codes, and
Prompt

Code

1

-1 t

1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1
Over-Sampled Prompt

Code Word

Late

Code

1

-1 t

Early

Code

1

-1 t

�
ts

�
tc

0.5
�

teml

0.5
�

teml

0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0

Over-Sampled Early-

Minus-Late Zero Mask

Code Word

Early-

Minus-

Late

Code

2

-2 t

X X 0 0 X X X X X X X X X 1 X X
Over-Sampled Early-

Minus-Late 2's Sign

Code Word

�
t0

Fig. 5. Example sections of prompt, early, late, and early-minus-
late PRN code time histories and 16-bit word representations of
their over-sampled equivalents.

it needs them in bit-wise parallel format. The software
receiver described in [3] and [4] only needed the CL1j [t]
code. It pre-computed a full 1 msec period of this code
and made a table of pre-computed code period time
histories for a range of code phases as measured with
respect to the sample time. Such an approach is im-
practical in the present case because the CL2plusjk and
CL2minusjk code segments have to be generated in 2
msec segments for 750 different possible values of k, 31
different possible values of j, and at multiple code phase
offsets. Pre-computation would require an impractical
amount of computer memory.

Over-Sampling and Bit-Wise Parallel Storage of
PRN Codes

This section describes an efficient method for real-time
generation of bit-wise parallel representations of the
over-sampled versions of the required PRN codes. The
CL1j , CL2plusjk, and CL2minusjk PRN codes are se-
quences of +1 and –1 chip values. Suppose that the re-
ceiver’s code replica progresses through its values at the
chipping rate fc = 1/∆tc, where ∆tc is the chip length.
Suppose, also, that the receiver’s early chips start and
stop 0.5∆teml seconds before the prompt chips and that
its late chips start and stop 0.5∆teml seconds after the
prompt chips. Fig. 5 depicts example segments of the
prompt, early, and late code replicas of a typical PRN
code. The early-minus-late code, which equals the dif-
ference between the early and late codes, is also shown
in Fig. 5.

The receiver processes a raw RF input signal that is
sampled at the rate fs = 1/∆ts Hz, where ∆ts =
ti+1 − ti. Recall that fs = 12.199 MHz for the present
receiver. It also needs prompt and early-minus-late code

replicas sampled at the same times as the raw RF data.
Sixteen RF sample times are depicted in Fig. 5 as
vertical dash-dotted lines. The receiver’s sampled ver-
sions of the PRN codes are called over-sampled because
∆ts < ∆tc, as shown in Fig. 5, which implies that
fs > fc.

The sampled values of the prompt and early-minus-
late PRN codes can be represented in a bit-wise par-
allel format as integer words. The prompt code can be
represented by its sign bit at each sample time, with
a 1 bit representing +1 and a 0 bit representing –1.
The bit-wise parallel representation of the prompt code
at the 16 sample times of Fig. 5 is shown immedi-
ately below the prompt code’s time history plot. It
starts with three 1s, continues with ten 0s, and fin-
ishes with another three 1s. It is stored as the integer
215 + 214 + 213 + 22 + 21 + 20 = 57351.

The early-minus-late code requires a 1.5-bit represen-
tation. A zero-mask bit is 0 if the sampled early-minus-
late code equals 0, and it is 1 if the early-minus-late
code equals +2 or –2. The parallel representation of
the zero-mask bits at the 16 sample times of Fig. 5 ap-
pears immediately below the early-minus-late code plot.
Its integer equivalent is 213+212+22 = 12292. The rep-
resentation’s 2’s sign bit equals 1 if the early-minus-late
code equals +2, and it equals 0 if the code equals –
2. The 2’s sign bit is irrelevant if the corresponding
zero-mask bit equals zero. The bit-wise parallel repre-
sentation of the 2’s sign bits for the 16 sample times on
Fig. 5 is shown below the zero-mask representation. Its
X values indicate bit values that are irrelevant because
the corresponding zero-mask bits equal 0.

Table Look-Ups of Bit-Wise Parallel Represen-
tations of Over-Sampled Codes

Table look-ups are used to translate from a PRN code
and its timing information to bit-wise parallel represen-
tations of its over-sampled prompt and early-minus-late
versions. The table designs exploit the constancy of the
sampling rate, the nominal chipping rate, the receiver’s
nominal early-to-late code delay, and the known maxi-
mum number of chips that span a data word. The tables
have 2 variable inputs: the sequence of code chip values
and the end time of the initial prompt chip relative to
the data word’s first sample, ∆t0. A separate table is
used for each of the three output code words defined
in Fig. 5, the prompt sign word, the early-minus-late
zero-mask word, and the early-minus-late 2’s sign word.

It is an approximation to assume that the chipping rate
equals its nominal value. It usually includes a Doppler
shift. This approximation does not cause significant
code distortion if the data word duration is short and if
one corrects ∆t0 for the average effects of the Doppler
shift.

The time offset input ∆t0 can take on any value in the
continuous range:

−1
2
∆teml < ∆t0 ≤ ∆tc − 1

2
∆teml (29)

This range’s lower limit guarantees that the end time of
the first late chip occurs no earlier than the first sample
time. The upper limit guarantees that the start time of
the first late chip occurs no later than the first sample.

This continuous range of possible ∆t0 values is replaced
with a discrete grid in order to create a practical table.
The grid spacing is ∆ts/m. The integer m is chosen
to be large enough to guarantee sufficient PRN code
timing resolution. In GPS applications, one typically
chooses m so that (c∆ts/m) is on the order of several
meters or less, where c is the speed of light. One avoids
a very large m because the table sizes are proportional
to m. In the present receiver m has been chosen to be
14. Given m, the grid of relative end times of the first
prompt code period is:

∆t0k =
k∆ts
m

for k = kmin, ..., kmax (30)

where the limits

kmin = floor

(
−m∆teml

2∆ts

)
− 2 (31a)

kmax = floor

[
m(∆tc − 0.5∆teml)

∆ts

]
(31b)

provide full coverage of the interval defined in eq. (29).
The floor() function rounds to the nearest integer in
the direction of −∞. These limits are kmin = −44 and
kmax = 125 for the present receiver.

Table construction requires knowledge of the number
of code chips needed to ensure that the prompt, early,
and late code versions all span the entire data word.
Given ∆t0, chip values for

l(∆t0) = floor

[
(ns − 1)∆ts −∆t0 + 0.5∆teml

∆tc

]
+ 2

(32)
code chips are needed in order to determine the prompt,
early, and late codes at all of the ns sample times of a
data word. l(∆t0) is a non-increasing function of ∆t0.
Therefore, the following gives the maximum number of
chips that are needed in order to cover a full data word:

L = l(∆t0kmin) (33)

0 0 ... 0 0 0 0 0

Table Output

Element

Code Time

Offset

Bit Sequence of L Code Chips

(first is left-most, last is right-most)

x(1)
�

t0kmin

0 0 ... 0 0 0 0 1 x(2)
�

t0kmin

0 0 ... 0 0 0 1 0 x(3)
�

t0kmin

1 1 ... 1 1 1 1 1 x(2
L
)

�
t0kmin

0 0 ... 0 0 0 0 0 x(2
L
+1)

�
t0(kmin+1)

0 0 ... 0 0 0 1 0 x(2
L
+2)

�
t0(kmin+1)

�� � �

�� � �

1 1 ... 1 1 1 1 1 x(2
L �

ktot)
�

t0kmax

0 0 ... 0 0 0 1 1 x(4)
�

t0kmin

Fig. 6. Layout of code over-sampling table as a function of code
time offset and chip sequence.

The present receiver uses ns = 32 samples per data
word, and its maximum number of code chips per data
word is L = 5.

The size of each table can be determined from the pa-
rameters kmin, kmax, and L. The time grid contains
ktot = (kmax−kmin+1) different offsets of the first code
chip, and there are 2L possible chip sequences. Thus,
each table contains ktot × 2L entries, and each entry
is an unsigned integer in the range 0 to 2ns − 1. The
number of entries in each table is 5440 for the present
receiver.

Each table is stored as an array with a single index.
The first 2L entries tabulate the 2L different possible
chip sequences when ∆t0 = ∆t0kmin, the next 2L en-
tries correspond to ∆t0 = ∆t0(kmin+1), and so forth.
The tabulated bit sequences for a fixed ∆t0 are ordered
by interpreting the sequence as a binary index counter
with the first chip being the most significant counter bit
and the Lth chip being the least significant bit. This ta-
ble layout is depicted in Fig. 6. The integer elements
of the table output are the x(i) values that are listed in
the right-hand column.

The table index can be computed from the time off-
set index k and the code bit sequence. Suppose that
the code chip sequence is C(1), C(2), C(3), ..., C(L),
where C(j) = 0 represents a –1 code chip and C(j) = 1
represents a +1 chip. Then the Fig. 6 table index is:

i[k, C(1), C(2), C(3), ..., C(L)] = 1 + (k − kmin)× 2L

+
L∑

j=1

C(j)2L−j

(34)
This equation can be inverted to give k and the chip
sequence as functions of the index i:

k(i) = kmin + floor

(
i− 1
2L

)
(35a)

C[j; i] = mod

(
floor

{
mod[(i− 1), 2L]

2L−j

}
, 2

)

for j = 1, 2, 3, ..., L
(35b)

where mod(y, z) = y − z × floor(y/z) is the usual re-
mainder function.

The following computations generate the x(i) entries
of the 3 tables. Given i, the time offset index k(i) is
computed from eq. (35a) and is used to generate 3 se-
quences of chip indices:

jp(n, i) = 2 + floor

{[
n− 1− k(i)

m

][
∆ts
∆tc

]}

for n = 1, 2, 3, ..., ns

(36a)

je(n, i) = 2 + floor

{[
n− 1− k(i)

m

][
∆ts
∆tc

]

+

[
∆teml

2∆tc

]}
for n = 1, 2, 3, ..., ns

(36b)

jl(n, i) = 2 + floor

{[
n− 1− k(i)

m

][
∆ts
∆tc

]

−
[

∆teml

2∆tc

]}
for n = 1, 2, 3, ..., ns

(36c)

where n is the index of the sample time within the over-
sampled data word. The index jp(n, i) identifies the
PRN code chip that applies at sample n for the prompt
code. The indices je(n, i) and jl(n, i) are defined sim-
ilarly for the early and late codes, respectively. These
indices, in turn, are used in eq. (35b) to determine the
chip values that apply at the sample times:

Cp(n, i) = C[jp(n, i); i] for n = 1, 2, 3, ..., ns (37a)

Ce(n, i) = C[je(n, i); i] for n = 1, 2, 3, ..., ns (37b)

Cl(n, i) = C[jl(n, i); i] for n = 1, 2, 3, ..., ns (37c)

���������

�
	���
 �
	���
 ��	���
 ��	�������
 ��	���
 ��	�������

�

���! #" $ �
% '&)(%+*-, $/.

0 1�2&/.
354 � 4 6)47" $-8�(9

:
9
;

9
<

��� ��=�>�?@= ���BA

Fig. 7. Timing relationship between data sample words and
the sequence of prompt code chips that defines an accumulation
interval.

where Cp(n, i), Ce(n, i) and Cl(n, i) are, respectively,
the over-sampled prompt, early, and late code chip val-
ues. These values are used to generate the unsigned
integers that constitute the 3 tables’s bit-wise parallel
code representations:

xp(i) =
ns∑

n=1

Cp(n, i)× 2ns−n (38a)

xemlzm(i) =
ns∑

n=1

mod{[Ce(n, i) + Cl(n, i)], 2} × 2ns−n

(38b)

xeml2s(i) =
ns∑

n=1

mod{[Ce(n, i) + Cl(n, i)], 2}
×Ce(n, i)× 2ns−n

(38c)

where xp(i) is the entry of the prompt sign table,
xemlzm(i) is the entry of the early-minus-late zero-mask
table, and xeml2s(i) is the entry of the early-minus-late
2’s sign table.

Efficient Table Look-Ups of Over-Sampled
Codes During an Accumulation

Delineation of an Accumulation Interval in
Terms of a Prompt Code Chip Sequence Each
set of accumulation calculations in the software corre-
lator works with a fixed sequence of code chips. The
prompt code has a specified timing relationship to the
incoming RF data stream, as shown in Fig. 7. The
accumulation interval starts when prompt chip C(1)
starts and ends when prompt chip C(M) ends. The
receiver uses M = 1023 chips when calculating the 1
msec L1 C/A accumulations in eqs. (10) and (11), and
it uses M = 2046 chips when calculating the 2 msec
+CM/CL and –CM/CL accumulations in eqs. (15)–
(18). The chip sequence starts ∆tstart seconds past the
first sample of data word W1, it chips at the constant
rate fc = 1/∆tc, and it ends (∆tstart + M∆tc) seconds
after the first sample of data word W1. Prompt chip
C(M) ends during data word WN , which implies that
N = ceil

(
∆tstart + M∆tc

ns∆ts

)
(39)

where the ceil() function rounds to the nearest integer
towards +∞.

Some of the initial bits of word W1 and some of the
final bits of word WN may not be included in the accu-
mulation. Let nex0 be the number of initial bits of W1

that are excluded, and let nexf be the number of final
bits of WN that are excluded. Fig. 7 implies that

nex0 = ceil

(
∆tstart

∆ts

)
(40a)

nexf = nsN − ceil

(
∆tstart + M∆tc

∆ts

)
(40b)

These numbers define additional zero-mask words that
the receiver uses to properly process the first and last
data words during its bit-wise parallel accumulation cal-
culations.

The remainder of this sub-section explains how to ef-
ficiently determine the correct xp(i), xemlzm(i), and
xeml2s(i) bit-wise parallel code representations for the
N data words W1 through WN . This amounts to mak-
ing an efficient determination of the correct table index
iν that corresponds to data word Wν for ν = 1, ..., N .

Generation of an Auxiliary Table of Index Com-
ponents from the PRN Code’s Bit Sequence The
first step of the index calculation is to compute an auxil-
iary table of candidate integers for the final summation
term that appears on the right-hand side of eq. (34):

∆i(µ) =
L∑

j=1

C(µ + j − L− 1)2L−j

for µ = 1, 2, 3, ..., (M + L + 1)

(41)

This computation assumes that C(0) through C(M +
1) are known from the outputs of software feedback
shift registers that generate the CL1j , CL2plusjk, or
CL2minusjk code as described in [10] and in Section IV.
It uses 0 values for C(−L + 1), C(−L + 2), C(−L + 3),
..., C(−1) and for C(M + 2), C(M + 3), C(M + 4), ...,
C(M + L). These 0 chips are place holders that affect
the over-sampled codes only for the first nex0 samples of
data word W1 and the last nexf samples of data word
WN . The following iteration constructs the auxiliary
table:

∆i(1) = C(0) (42a)

∆i(µ) = mod[2∆i(µ− 1), 2L] + C(µ− 1)
for µ = 2, 3, 4, ..., (M + 2) (42b)

∆i(µ) = mod[2∆i(µ− 1), 2L]
for µ = (M + 3), (M + 4), ..., (M + L + 1)

(42c)

Note that the mod(2×, 2L) operation in the latter 2
equations can be replaced by a truncated leftward bit
shift, which is available as a single instruction on many
processors.

Iterative Calculation of Table Indices Determina-
tion of the correct index into the xp(i), xemlzm(i), and
xeml2s(i) tables for data word Wν can be reduced to the
determination of two quantities. One is the time offset
index kν that causes ∆t0kν from eq. (30) to match the
true time offset for data word Wν as closely as possible.
The other quantity is the auxiliary table index µν . It
defines the sequence of code chips that are associated
with data word Wν . Given these quantities, the correct
index for the three x(i) tables is

iν = 1+(kν − kmin)× 2L +∆i(µν) for ν = 1, 2, 3, ..., N
(43)

The determination of kν and µν is accomplished via
timing calculations. The auxiliary index µν is a func-
tion of the position of the Wν data word relative to the
PRN code sequence. The index kν is calculated from
the position of the first code chip that is associated with
µν .

An integer measure of time is used. It allows the µν and
kν computations to be carried out using efficient integer
operations. Integer time is measured in fine-scale time
units of length:

∆tf =
∆ts
mf

(44)

where mf is the integer number of fine-scale time inter-
vals per sample interval. This number is chosen large
enough to preclude any significant build-up of timing
errors during an accumulation interval due to the finite
time resolution ∆tf . A good rule of thumb is to choose
mf > 2mN . Recall that ∆ts/m is the timing reso-
lution of the x(i) tables and that N is the number of
data words in the accumulation interval. The calcula-
tion of the kν values over one accumulation interval in-
volves approximately N iterative time increments, each
of which has a resolution of ∆tf . If mf obeys the in-
equality given above, then the timing errors due to the
finite precision ∆tf will be less than the timing error
caused by the finite timing precision of the x(i) tables.
Normally, it is possible to make mf much larger than
2mN and still keep all of the relevant indexing calcu-
lations within the size limits of a 32-bit signed integer.
One should choose mf to be a power of 2 so that a
rightward bit shift operation can be used to implement
integer division by mf . The value of mf used in the
present receiver is 220.

The new fine-scale time unit can be used to define an
integer that approximately keeps track of the code time
offset ∆t0ν for data word Wν :

kfν
∼= round

(∆t0ν

∆tf

)
= round

(mf∆t0ν

∆ts

)
(45)

where the round() function rounds up or down to the
nearest integer. The interval ∆t0ν is the lag of the end
time of chip C(µν − L) behind the first sample time
of data word Wν – review Fig. 7. The algorithm that
iteratively determines kfν tries to keep the relationship
in eq. (45) exact, but the integer timing calculations
allow small errors to build up. Note that kfν/mf

∼=
kν/m, as implied by a comparison of eqs. (30) and (45).
This relationship will be used to determine kν from kfν .

Several constants are required by the iterative proce-
dure that determines kfν , kν , and µν . The first five
constants account for the difference between the nomi-
nal chip length used to generate the x(i) tables, ∆tcnom,
and the actual chip length used in the accumulation,
∆tc:

kfmid = round

[
(ns − 1)mf

2

]
(46a)

λ =
∆tc −∆tcnom

∆tc
(46b)

afix0 = ceil

[(
kfmid − mfkmin

m

)
λ2

]
sign(λ) (46c)

bfix =

{
1 if ∆tc = ∆tcnom

2ceil[ln(afix0/λ)/ ln(2)] if ∆tc 6= ∆tcnom

(46d)

afix = round(λbfix) (46e)

where the sign() function returns +1 if its input ar-
gument is positive, 0 if the argument is 0, and –1 if
the argument is negative. The index kfmid is approx-
imately half the length of a data word as measured in
∆tf time units. It gets used in conjunction with the ra-
tional factor afix/bfix to compute a corrected kfν value
that removes the average effect of the difference between
∆tcnom and ∆tc:

kfνfix(kfν) = kfν + round

[
(
kfmid − kfν

)afix

bfix

]
(47)

Equation (46d) picks bfix to equal a power of 2 so
that the integer division by bfix in eq. (47) can be ac-
complished using a rightward bit shift operation. The
round() operation in eq. (47) can be accomplished as
part of the division if one first adds sign(afix)× bfix/2
to the quantity (kfmid − kfν) × afix before perform-
ing the rightward bit shift that constitutes division by
bfix. Note that this round implementation presumes
that kfmid > kfν , which is true in most applications.

Five additional constants help to define the kfν and
µν iterations:

Ltyp = round

(
ns∆ts
∆tc

)
(48a)

∆kfc = round

(
mf∆tc

∆ts

)
(48b)

∆kftyp = round

(
mfLtyp∆tc

∆ts

)
− nsmf (48c)

kfmin = round

({[
mf (kmin + 1)

m

]
−

[
afixkfmid

bfix

]}

÷
[
1− afix

bfix

])

(48d)

kfmax = round

({[
mf (kmax − 1)

m

]
−

[
afixkfmid

bfix

]}

÷
[
1− afix

bfix

])

(48e)

The constant Ltyp is the nominal number of code chips
per data word. The constant ∆kfc equals the number
of fine-scale time intervals per code chip. The constant
∆kftyp is the nominal increment to kfν per data word.
The limits kfmin and kfmax are approximately the lim-
its kmin and kmax from eqs. (31a) and (31b) re-scaled
to the new fine time scale and adjusted for the difference
between the nominal code chipping rate of the x(i) ta-
bles and the actual chipping rate of the accumulation.
Note that the extra –2 on the right-hand side of eq.
(31a) is compensated by the increment to kmin on the
right-hand side of eq. (48d) and the decrement to kmax

on the right-hand side of eq. (48e). The original –2
term and the increment and decrement ensure that kf

values which respect the limits in eq. (48d) and (48e)
will be transformed into k values that respect the limits
in eqs. (31a) and (31b).

The joint kfν and µν iteration begins by computing
nominal values for the first data word:

kf1nom = round

{[(
∆tstart

∆tc

)
+ 1

+floor

(
−∆tstart

∆tc

)][
∆tcmf

∆ts

]} (49a)

µ1nom = floor

(
−∆tstart

∆tc

)
+ 1 + L (49b)

It is possible that kf1nom from eq. (49a) will violate its
upper limit kfmax. Therefore, the following conditional
adjustment must be implemented in order to finish the
initialization.

kf1 =

{
kf1nom if kf1nom ≤ kfmax

kf1nom −∆kfc if kfmax < kf1nom
(50a)

µ1 =

{
µ1nom if kf1nom ≤ kfmax

µ1nom − 1 if kfmax < kf1nom
(50b)

The calculation of (kf2, µ2), (kf3, µ3), (kf4, µ4), ...,
(kfN , µN) proceeds according to the iteration:

kfνnom = kf(ν−1) + ∆kftyp for ν = 2, 3, 4, ..., N (51a)

µνnom = µ(ν−1) + Ltyp for ν = 2, 3, 4, ..., N (51b)

kfν =

{
kfνnom + ∆kfc if kfνnom < kfmin

kfνnom if kfmin ≤ kfνnom ≤ kfmax

kfνnom −∆kfc if kfmax < kfνnom

for ν = 2, 3, 4, ..., N
(52a)

µν =

{
µνnom + 1 if kfνnom < kfmin

µνnom if kfmin ≤ kfνnom ≤ kfmax

µνnom − 1 if kfmax < kfνnom

for ν = 2, 3, 4, ..., N
(52b)

Next, kfν is used to compute kν :

kν = round

[
mkfνfix(kfν)

mf

]
for ν = 1, 2, 3, ..., N (53)

The round() operation in eq. (53) can be implemented
by adding mf/2 to m×kfνfix(kfν) before the rightward
bit shift that constitutes division by mf . The result of
the division will be the correct value of kν for any sign of
kfνfix(kfν) if the computer works with 2’s compliment
notation for signed integers and if the rightward bit shift
fills in from the left with the 2’s compliment sign bit.

The values kν from eq. (53) and µν from eq. (52b) can
be used in eq. (43) to compute iν , and iν can be used in
the x(i) tables to determine the over-sampled prompt
sign, early-minus-late zero-mask, and early-minus-late
2’s sign words, xpν , xemlzmν , and xeml2sν :

xpν = xp(iν) for ν = 1, 2, 3, ..., N (54a)

xemlzmν = xemlzm(iν) for ν = 1, 2, 3, ..., N (54b)

xeml2sν = xeml2s(iν) for ν = 1, 2, 3, ..., N (54c)

It is important to implement the computations in eqs.
(51a)–(54c) efficiently because they get performed once
per data word. One economy is to reduce the condi-
tionals in eqs. (52a) and (52b) to a single conditional
per data word during normal operation. This can be
done because the sign of ∆kftyp in eq. (51a) is fixed.
If ∆kftyp < 0, then one only needs to check whether
kfνnom < kfmin. This is true because eq. (51a) only
decrements kfν in this case. Conversely, if ∆kftyp > 0,
then one only needs to check whether kfνnom > kfmax.
The decision about which condition to check can be
made at the beginning of the accumulation because
∆kftyp gets calculated prior to execution of the iter-
ation in eqs. (51a)–(54c).

Additional efficiencies are important when using proces-
sors that create instruction pipelines. One must avoid
”if” statements because they disrupt the pipeline. In
this case, one replaces eqs. (52a) and (52b) with the
following computations:

ηfν =

{
min[0, sign(kfνnom − kfmin)] if kftyp < 0

0 if kftyp = 0
max[0, sign(kfνnom − kfmax)] if kftyp > 0

for ν = 2, 3, 4, ..., N
(55a)

kfν = kfνnom − ηfν∆kfc for ν = 2, 3, 4, ..., N (55b)
µν = µνnom − ηfν for ν = 2, 3, 4, ..., N (55c)

The min() and max() functions return, respectively,
the minimum or maximum of their two input argu-
ments. The variable ηfν is normally 0, in which case
eqs. (55b) and (55c) leave kfνnom and µνnom un-
changed. The value of ηfν will be –1 if ∆kftyp < 0
and kfνnom < kfmin, and it will be +1 if ∆kftyp > 0
and kfνnom > kfmax. Note that efficient code will
not execute the conditional in eq. (55a) once per data
word. Instead, the accumulation calculations will be
performed in one of three different iterative loops, de-
pending on the value of ∆kftyp. Additional economies
can be had in the 1st and 3rd conditional clauses of eq.
(55a). The value of −ηfν for the 1st condition is equal
to the sign bit of the 2’s compliment representation of
kfνnom − kfmin. Similarly, +ηfν for the 3rd condition
is equal to the sign bit of the 2’s compliment represen-
tation of kfmax − kfνnom. In either case, ηfν (or its
equally useful negative) can be computed in 2 opera-
tions, and the conditional execution that is implied by
the min() and max() functions in eq. (55a) is avoided.

Summary and Review of Index Calculations The
following is a review and summary of the operations
that compute the bit-wise parallel representations of the
prompt and early-minus-late codes for an entire accu-
mulation interval. The first operation is the iteration
of eqs. (42a)–(42c) to construct the auxiliary table of
∆i(µ) values. Next comes the computation of the aux-
iliary constants in eqs. (46a)–(46e) and (48a)–(48e).
The third step is to initialize kf1 and µ1 by evaluat-
ing eqs. (49a)–(50b). The last and costliest procedure
is the iteration of eqs. (51a), (51b), (55a)–(55c), (47),
(53), (43), and (54a)–(54c). Each iteration computes,
successively, kfνnom, µνnom, ηfν , kfν , µν , kν , iν , xpν ,
xemlzmν , and xeml2sν .

VI. COMPUTATIONAL LOAD AND MEM-
ORY REQUIREMENTS

The computational load and memory requirements of a
software receiver are two important factors. The soft-
ware receiver described here has a significant computa-
tional load, demanding a high-end PC or DSP chip in
order to track 6 or more channels. Its memory require-
ments are modest, requiring only a few megabytes of
storage for both the code and data.

Computational Load

The bit-wise parallel correlation and accumulation cal-
culations use mostly simple logic and table look-up op-
erations in order to form the 4 accumulations for each
PRN code. They use 6 EXCLUSIVE OR operations
and 26 additional bit-wise logic operations per word.

They use 16 bit-summation operations and 16 additions
per summation word. Suppose that the nominal word
length is 32 bits but that the summation words are only
16 bits long. Then there are respectively 382 words and
763 summation words in a typical 1-msec L1 C/A code
accumulation interval and twice these numbers for a
typical 2-msec L2 CM/CL code accumulation interval.
If one totals the necessary operations, then this method
requires at least 36,640 operations per C/A code accu-
mulation interval. For the CM/CL accumulation inter-
val this method requires ≥73,216 operations.

Generating the over-sampled PRN codes requires ad-
ditional computations. Generation of the C/A code
requires 23 operations per data word, which assumes
that the C/A code chips are pre-computed and stored
in a table as in eq. (43). Generating the CM/CL code
requires 36.7 operations per data word for the computa-
tions of Section V plus 29.5 operations per data word to
generate the +CM/CL and –CM/CL codes using feed-
back shift registers as in [10]. Using the same number of
words per accumulation as above gives a total of 8786
operations per 1-msec C/A accumulation interval and
50,511 operations per 2-msec CM/CL code accumula-
tion. Thus, the real-time bit-wise parallel PRN code
over-sampling imposes about a 46% increase in the com-
putational load of the software receiver.

Bit-wise parallel correlation saves computation time in
comparison to integer mathematical correlation opera-
tions. Integer mathematics requires the following calcu-
lations per channel per sample to generate the L1 and
L2 in-phase and quadrature prompt and early-minus-
late accumulations: 2 code time calculations, 2 prompt
chip number determinations, 2 early chip number de-
terminations, 2 late chip number determinations, 3 sub-
tractions of late from early, 2 carrier phase evaluations,
4 carrier sine and cosine evaluations, 4 base-band mix-
ing computations, 12 code mixing computations, and 12
accumulation summations. The total number of opera-
tions per sample is 45. Using the receiver sampling fre-
quency of 12.199 MHz, the total number of operations
per channel per 1-msec accumulation interval using in-
teger mathematics is approximately 550,000. Totaling
the number of operations from above for the bit-wise
parallel software correlator gives approximately 110,000
operations per channel per 1-msec accumulation inter-
val. This shows that the bit-wise parallel software cor-
relation method is about 5 times more efficient than the
brute-force integer method.

Note that this algorithm can be adapted to work with
a different number of bits in the representation of the
RF front end output data and of the cosine and sine
mixing signals. An increase above 1 bit for the RF data
will make the logic more complex. For example, if the
RF front end uses 2-bit digitization rather than 1-bit
digitization, then the operation count for the mixing
and accumulation operations will increase by a factor
of almost 2, but the cost of the code over-sampling will
remain constant. A 2-bit RF front end output data im-
plementation of a GPS L1 software receiver is described
in [3], [4].

A measure of the efficiency of the algorithms used in
the software correlator is the number of accumulations
per clock cycle. On an Intel Pentium 4 processor, each
instruction requires one clock cycle (if data is loaded
from memory). The L1 correlator processes 88 ×10−6

1-ms accumulations per clock cycle, while the L2 corre-
lator processes 65 ×10−6 2-ms accumulations per cycle.
The number of accumulations per clock cycle for the L1
correlator is less than twice that of the L2 correlator.
Thus, the L2 correlator is slightly more efficient. This
is the result of its re-use of indexing computations in its
code over-sampling calculations.

Additional optimization of the correlation algorithms
is possible. Using an Intel C compiler for Linux, off-
line computational performance testing indicates that
a significant speed-up on the Pentium 4 microproces-
sor is possible. Compared to the code produced by the
GCC 3.3 compiler, the Intel compiler produced code
that runs approximately 27% faster. This improvement
in speed is most likely due to the Pentium-4-optimized
code produced by the Intel compiler. The implementa-
tion of the software receiver reported on in this paper
uses the GCC 3.3 compiler.

Two advances in microprocessors allow for increases
in computational performance. First, as faster PC’s
become available computational performance will in-
crease. Second, the advent of 64-bit microprocessors
allows for twice as many correlation accumulations per
clock cycle. Off-line performance testing of the software
receiver on a 64-bit AMD Athlon 64 FX microprocessor
running at 2.2 GHz indicates a computational perfor-
mance gain of 28% over a 32-bit 3.2 GHz Intel Pentium
4 microprocessor. By factoring in the relative clock
speeds of these two microprocessors it is clear that the
64-bit microprocessor is nearly 2 times faster than the
32-bit microprocessor in this application.

Another computational performance increase can be
gained by using an RF front end that outputs two data
streams at one-half the sampling rate instead of one
data stream at the given sampling rate. In such an RF
front end, the L1 C/A code signal and the L2 CM/CL
code signal are separated into two data streams. Lower
sampling rates are possible in such a system because
each signal stream has half the information bandwidth.
This reduces the computational requirements by a fac-

tor of 2, because the operation count is linearly propor-
tional to the sampling rate.

Memory Requirements

The pre-computed base-band mixing signals and PRN
code over-sampling tables require a certain amount of
memory. Each replica base-band mixing signal must oc-
cupy 382 32-bit words for the L1 C/A code signal and
763 32-bit words for the L2 CM/CL code signal. These
sizes guarantee covering the full 12,199 and 24,398 RF
front end samples for, respectively, the 1 ms C/A code
accumulation and 2 ms CM/CL code accumulation in-
tervals. Thus, 382×4=1528 bytes are required for each
bit of each carrier signal that must be stored for the
C/A code signal, and 763×4=3052 bytes are required
for each bit of each carrier signal that must be stored
for the CM/CL code signal. The sine and cosine signals
each have two-bit representations, which translates into
a total storage requirement of 6112 bytes for the L1 car-
rier replicas and 12,208 bytes for the L2 carrier replicas.
For the L1 C/A code signal, there are 115 Doppler shifts
that must be stored in order to cover the –10 KHz to
+10 KHz range with a 175 Hz grid spacing. For the
L2 CM/CL signal, 179 Doppler shifts must be stored to
cover the –8 KHz to +8 KHz range with a 87.5 Hz grid
spacing. This translates into 2820 Kbytes of storage for
all of the carrier replica signals.

The PRN code look-up tables require a modest amount
of memory. The required memory for the tables in bytes
is:

Memory = 3× ceil
(

ns

8

)
× 2L × ktot

≈ 3× ceil
(

ns

8

)
× 4

×2[(ns−1)∆ts+∆teml]/∆tcnom ×
(m∆tcnom

∆ts

)

(56)
The required amount of memory increases linearly with
m and exponentially with ns. Recall that ns is the num-
ber of samples in a data word and that m is inversely
proportional to the tabulated code start/stop time res-
olution ∆ts/m.

The memory requirements for the three PRN code ta-
bles have been calculated. These calculations assume
that ∆tcnom = (1/1.023× 106) sec, ∆teml = ∆tcnom/2,
and ns = 32 samples per data word. This software re-
ceiver uses the following parameters: ∆ts = 81.97 nsec
and m = 14. The range-equivalent code resolution is
c∆ts/m = 1.76 m. These values yield L = 5 code chips
per data word, ktot = 170 tabulated code start/stop
times, and 2L × ktot = 5440 entries per PRN code ta-
ble. The three PRN code tables together require 64
Kbytes of memory.

One method of simplifying the real-time generation
of sampled codes is to make use of the fact that the
C/A code is relatively short. It is possible to use
pre-computed tables of the C/A code chips with this
method. The advantage is that the computational re-
quirements are slightly decreased in favor of a modest
increase in the required memory. Each pre-computed
code is stored as a pre-computed auxiliary table index
component table ∆i(µ). Each auxiliary table has only
1029 1-byte elements. The total additional memory re-
quired to store the auxiliary tables for all 32 satellites
is only 32 Kbytes.

Additional temporary memory is required to store the
CM/CL code’s auxiliary table. For L ≤ 8 chips per
data word the required memory equals (M + 1 + L)
bytes. For this receiver, M = 2046 and the auxiliary
table requires 2 Kbytes.

The micro-computer stores the most recent 43 msec of
RF front end data in a circular buffer. This buffer oc-
cupies 64 Kbytes of memory.

The total amount of memory required for storing the
tables and data is 2982 Kbytes. The machine code for
the software receiver requires additional storage on the
order of 1500 Kbytes.

VII. RECEIVER PERFORMANCE RESULTS

Two scenarios have been used to test the software re-
ceiver’s tracking and navigation performance. The first
scenario is a non-real-time test in which the receiver
operates on RF front-end output data that has been
generated by a MATLAB simulation.

The tracking loop performance of the software receiver
code has been evaluated by comparing its results to the
simulated truth results. The software receiver’s L1 and
L2 code and carrier tracking loops run independently of
one another. Fig. 8 compares the Doppler shift of the
L1 and L2 carriers from the software receiver with that
of the simulated data. The simulated data has high-
bandwidth Doppler shift variations. It is clear from
Fig. 8 that the two carrier tracking loops performed
well.

The code-tracking performance of the software receiver
can be determined by comparing the code start/stop
times of the software receiver to that of the simulation.
The difference of the start/stop times is the residual
code phase error in seconds. Fig. 9 shows the residual
code phase error for the L1 C/A and L2 CM signals.
The errors have post-transient standard deviations of

0 5 10 15 20 25

−140

−138

−136

−134

−132

−130

−128

−126

Time (seconds)

D
o

p
p

le
r

S
h

if
t
(H

z
)

Civilian L1/L2 Carrier Tracking, PRN 19

Simulated Signals
Software Receiver

L1 C/A signal

L2 CM signal

Fig. 8. Carrier Doppler frequency output of two independent
frequency-locked loops tracking simulated L1 and L2 carrier sig-
nals. The L2 signal has been artificially biased to be closer to the
L1 Doppler shift for plotting reasons.

0 5 10 15 20 25
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (seconds)

C
o

d
e

 P
h

a
se

 E
rr

o
r

(n
a

n
o

se
co

n
d

s)

Civilian L1/L2 Code Phase Error, PRN 19

L2 CM

L1 C/A

Fig. 9. Residual code phase error of two delay-locked loops track-
ing simulated L1 C/A and L2 CM signals.
approximately 1.3 ns (0.4 m). These results indicate
that the software receiver is accurately computing cor-
relation accumulations and accurately tracking the GPS
signals.

The second test scenario is a real-time test. Test-
ing has been performed using hardware-simulator-
generated data. A simulator is required because the
current GPS constellation does not include any GPS
satellites that broadcast the new civilian L2 signal. Al-
though GPS civilian L1/L2 simulators are available,
Cornell University does not own one. Fortunately,
Spirent Communications provided an opportunity to
collect RF output data during a simulator demonstra-
tion. They demonstrated a GS7700 simulator, which
is capable of generating signals containing the L1 C/A
code and the L2 CM/CL code. The RF data was col-
lected using a direct RF sampling front end configured
in the same way as the one for the software receiver.
The front end’s 1-bit output RF data stream was bit-
packed using shift registers, read into a PC using a DAQ
card, and stored on a hard drive.

To simulate real-time data output from an RF front
end, the stored data has been played back at the equiv-
alent real-time rate using a digital data playback system
running on a PC. The playback system has been config-
ured in the following way. A PC has been set up with a
digital output DAQ card installed and the recorded RF
output data from the Spirent GS7700 simulator on its
hard drive. The DAQ card is a National Instruments
PCI-DIO-32HS DAQ card. This card has been config-
ured to generate a clock signal at a rate of 12.199/32
MHz = 381.22 KHz. The outputs of the card are a
clock signal and 32 data lines. On each rising edge of
the clock signal, the card outputs 32 bits of data. This
card is connected via a shielded cable to the DAQ card
in the software receiver’s PC. This DAQ card reads the
32 bits of data on each clock signal’s falling edge. To
the software receiver this input data looks exactly as it
would if it had been acquired in real time using an RF
front end.

The playback system has been used to test the software
receiver’s L1 and L2 acquisition and tracking capabili-
ties and its navigation accuracy. The computed naviga-
tion solution for a dual-frequency GPS receiver should
be accurate to within a few meters. The software re-
ceiver has been tested in two real-time configurations.
In the first configuration, pseudorange measurements on
the L1 signal have been corrected using the ionospheric
model that is transmitted with the navigation message.
In the second test configuration, the L1 signal’s pseu-
dorange measurements have been corrected using the
measured L1/L2 differential code delay.

Fig. 10 shows the navigation solution residual error
with respect to the simulator’s truth position for both
test configurations. The navigation solution residual
error for the two test configurations are roughly equiv-
alent. This level of residual error is what one would
expect from a dual-frequency receiver with code-phase-
based navigation. The L1-only navigation solution with

0 200 400 600 800
0

1

2

3

4

5

6

Time (seconds)

R
e

s
id

u
a

l
E

rr
o

r
(m

e
te

rs
)

Navigation Solution Residual Error

L1 C/A
L1 C/A and L2 CM

Fig. 10. Navigation solution residual error with respect to the
truth position output by the simulator.

modeled ionospheric corrections is almost as accurate
as the dual-frequency-corrected navigation solution be-
cause of how the Spirent simulator generated its iono-
spheric group delay. It was configured to generate iono-
spheric group delays using the ionospheric model that is
used by the broadcast corrections. The same model pa-
rameters were output in the navigation data stream as
were used in the simulator’s model. This allowed the
L1-only test configuration to successfully correct the
ionospheric group delay, resulting in a more accurate
navigation solution than nominally would be available
from a single-frequency receiver.

The ad hoc dual-frequency correction algorithm imple-
mented in this receiver is not optimal. A least-squares
or Kalman-filter-based technique may generate more ac-
curate estimates of the ionospheric group delay. The
present method has been used because of its ease of
implementation and because of development time con-
straints.

VIII. FUTURE WORK

Four significant improvements remain to be made to the
current receiver. First, a more intelligent and faster sig-
nal acquisition method is needed for the CM/CL code.
This may be either an FFT-based method or a tradi-
tional time-domain search method that makes better
use of L1 C/A code tracking information.

Second, carrier- and code-tracking loops for the L2 CL
code need to be developed and integrated into the re-
ceiver. Since the CL code does not contain navigation
data, it is useful for weak-signal acquisition and track-
ing.

Third, decoding has not been implemented for the CM
code navigation data stream. It would be advantageous
to add this feature to the software receiver. The pri-
mary benefit of this data stream is that error detection
and correction capabilities are more robust than those
present on the C/A code’s navigation data stream.

Fourth, the software receiver’s computational perfor-
mance could be improved. Significant improvement
would offer an increase in the number of tracking chan-
nels. One plan is to migrate the software to a 64-bit
computing platform.

Additional performance gains are possible by using dual
microprocessors or dual-core microprocessors. To take
advantage of these microprocessor architectures, the
software correlator would need to be modified to run
as a multi-threaded application. This modification is
straightforward and could easily be implemented.

IX. SUMMARY AND CONCLUDING RE-
MARKS

A 10-channel real-time GPS civilian L1/L2 software re-
ceiver that runs on a PC has been implemented and
tested. The hardware consists of a direct RF sampling
front end, a data buffering and acquisition system, and
a PC with a 3.2 GHz Intel Pentium 4 processor running
RTAI. The software consists of a dual-frequency real-
time software correlator and GPS software that provides
the typical GPS functions such as signal acquisition, sig-
nal tracking, and navigation. The software correlator,
running on the PC’s processor, consumes about 80%
of the CPU capacity. The navigation accuracy of this
receiver is on the order of 2–5 m.

ACKNOWLEDGEMENTS

The authors would like to thank Spirent Communica-
tions for providing data to test this software receiver.
This research was supported in part by ONR grant num-
ber N00014-92-J-1822.

REFERENCES
[1] D. M. Akos, P.-L. Normark, P. Enge, A. Hansson, and

A. Rosenlind, “Real-time GPS software radio receiver,”
in Proc. of the Institute of Navigation National Technical
Meeting, Long Beach, CA, January 22–24, 2001, pp. 809–
816.

[2] J. Thor, P. Normark, and C. Stȧhlberg, “A high-performance
real-time GNSS software receiver and its role in evaluating
various commercial front end ASICs,” in Proc. of the Insti-
tute of Navigation GPS, Portland, OR, September 24–27,
2002, pp. 2554–2560.

[3] B. M. Ledvina, M. L. Psiaki, S. P. Powell, and P. M. Kintner,
“A 12-channel real-time GPS L1 software receiver,” in Proc.
of the Institute of Navigation National Technical Meeting,
Anaheim, CA, January 22–24, 2003, pp. 767–782.

[4] B. M. Ledvina, M. L. Psiaki, S. P. Powell, and P. M. Kintner,
“Bit-Wise Parallel Algorithms for Efficient Software Corre-
lation Applied to a GPS Software Receiver,” IEEE Trans-
actions on Wireless Communications, To Appear, 2004.

[5] M. L. Psiaki, “Design and Practical Implementation of
Multi-Frequency RF Front Ends Using Direct RF Sam-
pling,” Proc. of the Institute of Navigation GPS, Portland,
OR, Sept. 9–12, 2003, pp. 90–102.

[6] B. M. Ledvina, F. Mota, and P. M. Kintner, “A coming of
age for GPS: a RTLinux GPS receiver,” Workshop on Real
Time Operating Systems and Applications, in Proc. of the
Workshop on Real Time Operating Systems and Applica-
tions and Second Real Time Linux Workshop (in conjunc-
tion with IEEE RTSS 2000), Orlando, FL, Nov. 27–28, 2000.

[7] J. A. Klobuchar, “Ionospheric Effects on GPS,” in Global
Positioning System: Theory and Applications, Vol. I, B. W.
Parkinson and J. J. Spilker Jr. , Eds., American Institude
of Aeronautics and Astronautics, (Washington, 1996), pp.
485–515.

[8] R. D. Fontana, Cheung, W., Novak, P.M., and Stansell,
T.A., ”The New L2 Civil Signal,” Proceedings of the Insti-
tute of Navigation GPS, Sept. 11–14, 2001, Salt Lake City,
UT, pp. 617–631.

[9] A. J. Van Dierendonck, “GPS Receivers,” in Global Posi-
tioning System: Theory and Applications, Vol. I, B. W.
Parkinson and J. J. Spilker Jr. , Eds., American Institude
of Aeronautics and Astronautics, (Washington, 1996), pp.
329–407.

[10] Anon.,“Navstar GPS Space Segment/Navigation User In-
terfaces,” ICD-GPS-200, Revision C, ARINC RESEARCH
CORPORATION, El Segundo, CA, Jan. 2003.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 986
	02: 987
	03: 988
	04: 989
	05: 990
	06: 991
	07: 992
	08: 993
	09: 994
	10: 995
	11: 996
	12: 997
	13: 998
	14: 999
	15: 1000
	16: 1001
	17: 1002
	18: 1003
	19: 1004
	20: 1005
	footer1: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer2: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer3: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer4: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer5: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer6: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer7: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer8: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer9: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer10: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer11: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer12: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer13: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer14: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer15: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer16: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer17: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer18: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer19: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA
	footer20: ION GNSS 17th International Technical Meeting of the Satellite Division, 21-24 Sept. 2004, Long Beach, CA

