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ABSTRACTA real-time interoperable GPS and Galileo L1 softwarereceiver has been developed and tested. The receiverhas 12 channels for tracking GPS satellites and 12 chan-nels for tracking Galileo satellites. The receiver consistsof a GPS L1 RF front end, data parallelizing and ac-quisition hardware, and software routines running on a3.4-GHz Pentium processor. The software is composedof bit-wise parallel correlation routines, code and carriertracking loops, data demodulation routines, and navi-gation solution code.
The main contributions of this work are the demon-stration of a GPS L1 C/A code RF front end be-ing used with the Galileo L1 binary-o�set-carrier(1,1)(BOC(1,1)) signals and the demonstration of an in-teroperable GPS and Galileo real-time software re-ceiver. This RF front end uses a commercial o�-the-shelf (COTS) GPS RF front end designed for the L1C/A code signal. To accommodate the Galileo L1-BBOC(1,1) signal, modi�cations to the delay-locked-loop(DLL) were required. The downside to the approach isthat this particular RF front end induces a 4.6 dB lossin carrier-to-noise in the Galileo signals, because of thenarrow �ltering intended for the narrower GPS L1 C/Acode signal. The successful live tracking of GPS andGalileo satellites using this RF front end demonstratesthe feasibility of using RF front ends designed for theGPS L1 C/A code signals in interoperable GPS andGalileo receivers or Galileo receivers.
The GPS and Galileo L1 software receiver tracks 24channels in real time. It requires 46% of the processingcapabilities of a 3.4 GHz Intel Pentium 4 PC.
I. INTRODUCTIONA real-time global navigation satellite system (GNSS)receiver provides distinct advantages in an evolving sig-nal and code environment. The current Global Posi-tioning System (GPS) has began the process of modern-ization to expand its capabilities to include new civiliancodes on the L2 frequency, and evenutally on the L5 fre-quency. Already, two GPS Block IIR-M satellites are in

2321



orbit and broadcasting the civilian L2 signal. In addi-tion, the European Union's Galileo satellite navigationsystem has launched its �rst test satellite, GIOVE-A,nearly nine months ago. In the near term, a receiverdesigned will have to weigh the pros and cons of devel-oping complex hardware correlator chips to take advan-tage of the rapidly-evolving signal environment. Sincecertain users will want access to these signals imme-diately and others will be willing to wait until a fullconstellation is available to provide the maximum per-formance bene�t, the trade-o�s from receiver design andmarketing perspective are, to say the least, bewildering.A software receiver can utilize the new signals withoutthe need for a new correlator chip. Given a suitableRF front end, new frequencies and new pseudo-randomnumber (PRN) codes can be used simply by makingsoftware changes. Thus, software receiver technologywill lessen the risks involved for designers during theperiod of transition to the new signals. It is clear that aclear advantage can gained from using a software radioapproach to design Global Navigation Satellite System(GNSS) receivers.
This work focuses on the evaluation and testing of aGPS and Galileo L1 RF front end and the testing of aGPS and Galileo software receiver that utilizes the GPSL1 C/A code and the Galileo L1-B BOC(1,1) code. TheGIOVE-A L1-B PRN code was obtained from [1]. TheGalileo L1-C BOC(1,1) code is not used in this softwarereceiver, but it is straightforward to add functionalityto acquire and track it.
Current GPS and Galileo hardware receivers are hard tocome by, primarily due to the lack of Galileo satellitesin orbit and the uncertainty about the Galileo Inter-face Control Document (ICD) and assoicated licensingfees. Regardless of these issues, it is instructive to con-trast hypothetical GPS and Galileo hardware receiverswith a software receiver. A hardware GPS and Galileoreceiver can be broken down into various components.First, an L1 antenna, possibly followed by a pre-amp,receives the L-band GPS and Galileo signals. After theantenna comes an RF section that �lters and down con-verts the GHz signals to intermediate frequencies in theMHz range. The RF section also digitizes the signal.The next section contains a correlator chip that sepa-rates the signal into di�erent channels allocated to eachsatellite. A modern receiver has 12 for GPS signalsand 12 channels for Galileo signals. For each satel-lite and each carrier frequency, the correlator mixes theDoppler-shifted intermediate frequency signal to base-band and correlates it with a local copy of a PRN code.The �nal components of the receiver consist of softwareroutines that track the signals by controlling carrier andcode numerically-controlled oscillators in the correlatorchip, that decode the navigation messages, and that

Fig. 1. A GPS and Galileo software receiver showing the sep-aration between special-purpose hardware and general-purposehardware.
compute the navigation solution.
A software receiver di�ers from a hardware receiver inone important way. The functions of the correlator chipare moved to software that runs on a general-purposemicroprocessor. This processor could be a Pentium 4processor in a personal computer or a digital signal pro-cessor (DSP). This move is illustrated in Fig. 1, wherethe software correlator is shown running on a general-purpose microprocessor. The RF front end outputs abinary bit stream. A data bu�ering and acquisitionsystem reads the bit stream into the microprocessor'smemory. The bit stream is then processed by the soft-ware correlator. The multi-channel correlator shown inFig. 1 processes inputs from a bit stream containingGPS and Galileo L1 signals.
GPS software receivers have received a lot of interestrecently [2], [3], [4], [5], [6], [7]. The work presentedin this paper improves upon the software receiver of[6]. The receiver described here uses an analog mixingGPS L1 RF front end and has been tested using liveGPS satellite signals and the �rst Galileo test satellite,GIOVE-A.
The remaining portions of this paper review the in-ternal workings of a 24-channel real-time interoperableGPS and Galileo software receiver, describe the GPSRF front end, and present experimental performanceresults for this system. The second section providesan overview of the components of the software receiver.Section III describes the system con�guration includingthe data acquisition system and the use of previously-existing GPS software for tracking and navigation. Sec-tion IV describes the evaluation and testing of a GPSand Galileo L1 RF front end. Section V reviews thebit-wise parallel software correlation technique of [4]and [5]. Section VI reviews the real-time generationof over-sampled PRN codes in [6] and [7]. Section VIIdiscusses computational and memory requirements ofthe software correlator. Section VIII presents receiverperformance results. The last section gives a summaryand concluding remarks.
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II. OVERVIEW OF THE SOFTWARE RE-CEIVER COMPONENTS
The software receiver described in this paper is com-posed of both hardware and software components. TheRF front end is described in detail, but the software al-gorithms are simply reviewed as they have been coveredin previous works.
Fig. 1 illustrates the general functionality of the soft-ware receiver. A commercial o�-the-shelf (COTS) GPSL1 C/A code RF front has been re-used to provide acommon RF signal path for both the GPS and GalileoL1 signals. The data bu�ering and acquisition hard-ware transfers the digital data stream into the PC forprocessing. One important aspect of the data bu�er-ing hardware is that it bit packs RF samples into shiftregisters before the data is read into the PC. This bothreduces the bandwidth needed to read the data into thePC and sets up the software correlation process.
The remainder of the software receiver consists of soft-ware running on the 3.4 GHz PC. The digital datastream output from the RF front end is processed bythe software correlator. This correlator processes 24 ormore channels of the GPS L1 C/A code signals andGalileo L1-B BOC(1,1) code signals in real time. Thecorrelator uses two technologies in order to process theRF front end data in an e�cient manner. Without thesetwo technologies, it would be reasonably challenging tobuild a real-time 24-channel GPS and Galileo softwarereceiver using current microprocessors. The �rst tech-nology, called bit-wise parallel signal processing, is amethod for processing 32{64 RF samples in parallel.This method requires that the RF front end samplesare bit packed into words prior to being read into thePC. Base-band mixing, code mixing, and accumulationare performed using bit-wise parallel processing of thesebit-packed words. This speeds up the processing in thecorrelator by a factor of 2{4 as compared to using �xed-point multiply-and-accumulate (MAC) operations [4].
The second technology is a method for e�cient real-time generation of over-sampled bit-packed PRN codes.This technology is helpful since Galileo L1 signals havelonger periods than the L1 C/A code signals. In soft-ware receivers, it is computationally advantageous topre-compute and store PRN code replicas, but the rel-atively long length of Galileo L1-B and L1-C BOC(1,1)PRN codes makes this approach less attractive, dueto the required memory for storing the code replicas.Conserving memory can be particularly important onembedded platforms. The downside to this technologyis that it adds a signi�cant computational cost to thesoftware receiver, increasing the required computationalcost by roughly 40% [7]. Note that it is not necessary

to use this second technology, unless fast memory is inshort supply.
The aspect of real-time generation of over-sampled bit-packed PRN codes that is new here is how to deal withthe BOC(1,1) signals. This signals e�ectively increasesthe nominal L1-B chipping rate by a factor of two.This induces an unreasonable increase in the memoryrequired for the real-time generation of over-sampledGalileo L1 BOC(1,1) codes. A �x-up for the algorithmdescribed in [7] is included in Appendix A.
The remaining components of the receiver are softwarefor tracking the GPS and Galileo satellite signals, de-coding the 50 bps GPS navigation message, comput-ing the GPS navigation solution, displaying the re-ceiver's operation, interacting with the user, etc. Manyof these components were available using previously-existing GPS software. Some e�ort was needed to adaptthese algorithms to the Galileo L1 signals. Note thatthe GIOVE-A's navigation message does not conformto the Galileo ICD, thus the functionality for decodingand interpreting the Galileo navigation message havenot been included in this receiver.
III. SYSTEM CONFIGURATIONA software receiver relies on a general-purpose micro-processor to handle the signal processing of the correla-tor, tracking algorithms, navigation solution, etc. Thecurrent system uses a personal computer with a 3.4 GHzIntel Pentium 4 processor running the Real Time Ap-plication Interface (RTAI) (http://www.rtai.org) oper-ating system. RTAI is a hard real time variant of Linuximplemented as a set of patches to the standard Linuxkernel. Due to its real-time optimized design, RTAI pro-vides low-latency interrupt responsiveness along withthe ability to execute threads at regular intervals. Thistranslates into a highly e�cient and responsive operat-ing system that reliably executes time critical code. Anadditional feature of RTAI is that it retains the func-tionality of Linux by running the kernel as the lowestpriority thread. Thus, it is surprisingly easy to develop,test, debug, and run real-time software.
The GPS L1 RF front end, which is described in thenext section, outputs a digital data stream that is in-put into a data acquisition system. The data acquisitionsystem reads the pair of digitized sign and magnitudebits from the RF front end into the PC. To make theprocess of reading data into the PC more e�cient and toprepare for e�cient correlation calculations, the DAQcard reads 32 bits of bu�ered samples at a time. Aseries of shift registers bu�er the data, packing the L1front end sign and magnitude bits into a 32-bit word.A divide-by-16 counter converts the 5.714 MHz clockdown to 357.14 KHz, which provides a signal indicating
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when the bu�er is full.
The data acquisition system consists of a PC card anddriver software. The card is a National InstrumentsPCI-DIO-32HS (6533) digital I/O card. Important fea-tures of this card are its 32 digital input lines, its directmemory access (DMA), and the availability of a driverfor RTAI. The driver comes from a suite of open sourcedrivers and application interface software for DAQ cardsknown as COMEDI (COntrol and MEasurement andDevice Interface), which is freely available.
Use of Existing Receiver SoftwareExisting receiver software is important to the imple-mentation of this real-time GPS software receiver. TheMitel GPSArchitect GPS L1 C/A code receiver wasported to RT-Linux [8], subsequently ported to RTAI,and herein is referred to as Cascade. Since Cascade pro-vides standard GPS functions such as signal tracking,data demodulation, and computation of the navigationsolution, it is included as part of the real-time softwarereceiver.
Two new developments to the Cascade software wererequired for it to operate with the new Galileo signals.First, a set of code and carrier tracking loops for theGalileo L1-B BOC(1,1) signals have been developed.The Cascade software already has a delay-locked loop(DLL) for code tracking and both a frequency-lockedloop (FLL) and a phase-locked-loop for (PLL) for car-rier tracking. These loops are for tracking the L1 C/Acode signal and GPS L2 CM/CL code signals. Mod-i�ed versions of these loops were implemented for theGalileo L1-B BOC(1,1) signals. The most importantmodi�cations involved changing the DLL discriminatorand code phase error estimate to deal with the band-limited BOC(1,1) code and increasing the accumula-tion interval to 4 ms. Adjusting the PLL and FLL wasstraightforward, and [9] can be used as a reference. Thesecond main development was adding an FFT-based ac-quisition routine.
The modi�cations to the DLL were required due to theGalileo BOC(1,1) signal's new early-minus-late correla-tion function and the band-limiting �lter in the GPS L1RF front end. The code phase error can be computed:

ecodek =
" 1
jdRemld� j0

#"IemlkIpk +QemlkQpkI2pk +Q2pk
# (1)

where Ipk andQpk are the prompt accumulations for theaccumulation interval tk to tk+1, Iemlk and Qemlk arethe early-minus-late accumulations, and jdReml=d� j0 isthe absolute value of the slope of the early-minus-latecross correlation function evaluated at � = 0 chips.

A simple carrier-aided discriminator has the form:

tk+2 = tk+1 + 0:0041 + !k+12� � 1575:42� 106 �H ecodek1:023� 106
(2)where !k+1 is the carrier PLL's Doppler shift estimatein rad/sec and the value H = 0:025 gives a 1-Hz DLLbandwidth.

The correct value for jdReml=d� j0 is a function of thebandwidth of the RF front end and of the time o�setbetween the early and late codes. The narrowest �l-ter in the RF front end used with this receiver has a1-dB pass-band of 1.9 MHz [10]. Choosing a 0.3 chipearly-minus-late spacing for the 2:046 � 106 chips/secL1-B BOC(1,1) code with this �lter bandwidth givesa slope magnitude of the early-minus-late function ofapproximately 4.5970 per chip.
Second, an FFT-based acquisition method for detectingthe Galileo L1-B BOC(1,1) signal has been developed.There are two compelling reasons why FFT-based ac-quisition is needed for the Galileo BOC(1,1) signals.First, the signals have 4 ms code periods, which makesbrute-force time-domain acquisition take four times aslong as that for the GPS L1 C/A code. Second, theBOC(1,1) signal in code-phase space contains a mainlobe and two side loads that nominally have 25% asmuch power as the main lobe. In brute-force time-domain acquisition, where the correlator is linearly pro-gressing through di�erent code phase o�sets, it wouldbe easy to mistake one of the side lobes as the mainlobe. This mistake would cause a ranging and carrierphase bias that would perturb the navigation solution.
FFT-based acquisition can take a signi�cantly long timeto complete for a full set of Doppler shift o�sets andcode phase o�sets. If it takes too long, it is di�cultto extrapolate the code start times forward using theestimated code chipping rate from the carrier Dopplershift rate. Because of this time concern, a revised ap-proach has been used. For each channel, a full FFT-based acquisition is performed. This can take up to 10sof seconds on a Pentium 4 when 12 channels are at-tempting acquisition simultaneously. After each chan-nel completes the full FFT-based acquisition, an FFT-based acquisition is performed again, but only at theDoppler shift corresponding to the peak I2 + Q2 acqui-sition statistic output from the previous full acquisition.This provides a reliable way to perform a cold start forthe receiver. If almanac or ephemeris data is available,along with a reasonable estimate of the receiver clockdrift rate, this approach can be simpli�ed.
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IV. USE OF A COTS GPS RF FRONT-END
One of the design goals of this project has been to re-use a GPS L1 C/A-code RF front-end for receiving theGalileo L1 BOC(1,1) signal. The COTS front-end thathas been chosen is the Zarlink/Plessey GP2015 [10].This front-end has been chosen because the project al-ready had several of them along with the necessaryhardware interfaces and software to stream their out-puts to a computer. An advantage of this RF front-end is that its sampling rate is only 5.714 MHz. Thisrelatively low sampling rate yields a manageable com-putational burden for the real-time software receiver'ssoftware correlator. The challenge associated with us-ing this RF front-end is its narrow bandwidth: The 1dB bandwidth of its narrowest �lter is 1.9 MHz. Thisnarrow bandwidth is needed in order to avoid aliasingof out-of-band noise when sampling at 5.714 MHz. Itis su�cient to pass all of the main lobe of the GPS L1C/A code.
This bandwidth is not wide enough to pass all of theGalileo L1 BOC(1,1) signal's two main lobes. Severaldi�erent options have been tried in order to determinehow best to use this narrow bandwidth to pass a signi�-cant part of the BOC(1,1) signal. Each of these optionshas two design goals: to minimize the loss of carrier-to-noise ratio (C/N0) that is caused by the loss of out-of-band parts of the signal and to minimize distortionof the BOC(1,1) signal. Distortion can cause additionalprocessing losses of C/N0, and it can complicate the de-velopment of discriminators for the code-tracking delay-lock loop (DLL).
The three di�erent design options that have been con-sidered are illustrated in Fig. 2. The design problem athand can be understood by considering the signal spec-tra that are illustrated by the small power spectrum plotat the center of the left-hand side of the �gure. The bluepart of the plot is the main lobe of the L1 C/A-code, andthe red parts are the two main lobes of the BOC(1,1)signal. The 1.9 MHz pass band of the narrowest �lterof the GP2015 is depicted by the black curves on the�gure's other three power spectrum plots, which are theplots associated with outputs of GP2015 RF front-ends.The pass band is wide enough to accommodate the en-tire C/A code main lobe, but not wide enough to fullyaccommodate both BOC(1,1) lobes. Thus, the problemof passing the BOC(1,1) signal through this RF front-end can be compared to the problem of trying to pass aTexas football player through a Volkswagen Beetle: heis too big to �t.
The three di�erent solutions to the RF front-end designproblem are shown in Fig. 2 separated by the horizon-tal dash-dotted lines. The top-most design is the �rst

Fig. 2. Three design options for using a narrow-band L1 C/A-code RF front-end to receive Galileo L1 BOC(1,1) signals.
approach that has been considered. It uses two sepa-rate GP2015 RF front-ends. The lower of the two isused without modi�cation in order to receive the GPSL1 C/A code. The upper front-end processes a signalthat has �rst been mixed with a 1 MHz sine wave. Thismixing signal is generated from the front-ends' 10 MHzreference oscillator by using a frequency divider. Thismixing signal translates the center of the upper lobe ofthe BOC(1,1) signal to a point just below the L1 fre-quency, and it translates the lower lobe's center to apoint just above the L1 frequency. This result is de-picted by the power spectrum plot that is attached tothe output of the upper front-end. Each such spectrumplot depicts the intermediate value of the nominal L1frequency as a green vertical line and the pass bandof the front-end's narrowest �lter as a black curve Thetwo BOC(1,1) lobes' heights have been halved becausehalf of the power in each lobe gets translated 1 MHzin the wrong direction, which places it outside of the�lter's pass band. Note that the blue C/A code lobegets split into two lobes by this mixing process, and the�lter attenuates out-of-band portions of each of theselobes.
The e�ectiveness of the top RF front-end design strat-egy has been analyzed by using the experimental set-updepicted in Fig. 3. This set-up uses a wide-band RFfront-end that is based on direct RF sampling in or-der to receive, digitize, and record a signal with a 20MHz bandwidth centered at the L1 frequency. Next,this signal is processed o�-line in a Matlab simulationthat uses mixers, �nite-impulse response (FIR) �lters,down-sampling via interpolation, and low-bit digitiza-tion in order to simulate the processing and outputs ofany given design for a narrow-band RF front-end andassociated analog hardware.
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Fig. 3. Evaluation test bed for RF front-end design options.

It was originally thought that the upper front-end de-sign of Fig. 2 would be an e�ective means of receivingthe BOC(1,1) signal by virtue of its strategy of squeez-ing both main lobes through the �lter's 1.9 MHz passband. Simulation and analysis of this design has shownthat it is feasible, but less e�ective than had been an-ticipated. This design causes a loss of 4.6 dB of C/N0in comparison to a wide-band RF front-end. 3 dB ofthe loss comes from the fact that noise from the upperlobe gets mapped onto the lower lobe and vice versa.This noise mapping e�ectively doubles the noise densitywithout doubling the signal power. A loss of 0.7 dB oc-curs because of the loss of side-lobe power, and a loss of0.9 dB occurs because of signal distortion; the receiver'ssignal replica does not exactly match the �ltered versionof the signal. These latter contributions to the net losshave been determined by an FFT-based analysis of theBOC(1,1) signal's passage through a simple model ofthe GP2015 RF front-end that includes a "brick-wall"�lter. In addition to these C/N0 losses, this design hasthe negative feature that it places double the processingburden on the receiver's software correlator because thecorrelator must process separate accumulations for theupper and lower lobes of the signal.
The disappointing performance of the top RF front-endled directly to consideration of the middle design of Fig.2. Like the top design, its lower GP2015 front-end isunmodi�ed, and it receives the C/A code. The upperGP2015 in the middle design is used to receive only theupper lobe of the BOC(1,1) signal, as depicted in thepower spectrum that is attached to the output of thisfront-end. The upper lobe of the BOC(1,1) signal getsmapped approximately to the center of the �lter passband by modi�cation of the reference oscillator input tothe GP2015: the 10 MHz reference signal is multipliedby 1537/1536 in a frequency synthesizer before input tothe front-end.
The middle RF front-end design experiences BOC(1,1)C/N0 losses that are comparable to those of the upper

design. The loss of the lower lobe and the loss of out-of-band parts of the upper lobe add up to 4.2 dB. Signaldistortion mismatch between the received code and thereceiver replica adds an additional 0.4 dB of loss to yielda total loss of 4.6 dB. The same simulation and analysistechniques have been used to determine these losses ashave been used for the upper RF front-end design.
Despite having comparable C/N0 losses, this secondBOC(1,1) front-end design is superior to the �rst de-sign. Its superiority comes from the simpli�ed signalprocessing that it allows in the real-time software re-ceiver. Only one set of correlations are required in or-der to deal with the single lobe that passes throughthe RF front-end. These correlations are computed us-ing the pseudo-random number (PRN) code part of theBOC(1,1) signal as though it were mixed with a carriersignal using simple bi-polar phase-shift keying (BPSK).The only impact of the binary-o�set carrier (BOC) sig-nal is a shift of the nominal carrier frequency to 1575.42+ 1.023 MHz.
The disappointing C/N0 losses in the upper two RFfront-end designs of Fig. 2 led naturally to the consid-eration of the lower design. Its single GP2015 front-endis unmodi�ed, just like the lower GP2015 front-ends inthe other two designs. In this design, however, it isused to receive both the GPS C/A code and the GalileoBOC(1,1) code. This �lter is too narrow to pass allof the two main BOC(1,1) lobes, but given the lossesof the other two designs, it seemed plausible that thedistortion and C/N0 losses associated with this designmight be no worse than those associated with the otherdesigns. In fact, this is exactly what happens. The lossof out-of-band BOC(1,1) power amounts to 2.3 dB, anddistortion mismatch causes an additional 2.3 dB of pro-cessing loss to yield a total loss of 4.6 dB. Thus, thelower RF front-end of Fig. 2 performs no worse thanthe other front-ends.
Note that the 2.3 dB distortion loss could be avoidedif the receiver could use a replica of the band-limitedBOC(1,1) signal in its correlation and accumulation cal-culations. A practical receiver, however, must corre-late the received signal with a replica of the non-band-limited BOC(1,1) signal because it is much easier togenerate.
The third front-end has been chosen for the �nal de-sign. There is no reason to prefer either of the othertwo designs based on C/N0 loss considerations. The up-per front-end is the least desirable because it involvesthe use of 2 GP2015 units and double the computa-tional load on the software correlator. The middle front-end has the disadvantage of requiring a second GP2015and a frequency divider, but it has the simplest signal
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Fig. 4. Distortion of BOC(1,1) correlation function due to band-limiting in the RF front end.
processing in its software correlators. The lower front-end has the simplest RF hardware design: that of anL1 C/A-code receiver. Its software correlation calcu-lations are somewhat more complex than those of themiddle design, but this additional complexity has notbeen deemed signi�cant enough to outweigh its advan-tage in terms of reduced hardware complexity and theelimination of the need to develop any new hardware.
Figure 4 illustrates the distortion of the BOC(1,1) sig-nal that is caused by the band-limiting in the chosenRF front-end. The red curve is the BOC(1,1) signal'sautocorrelation function for the GIOVE-A L1-B signalii. The blue curve is the cross correlation between theoriginal BOC(1,1) signal and the band-limited versionthat comes out of an FFT-based model of the RF front-end that has a "brick-wall" �lter with a bandwidth of1.9 MHz. The blue curve is what will be sensed by areceiver when doing acquisition and DLL code phasetracking. It has signi�cant attenuation of its peak, sig-ni�cant displacement of its side-lobes, and ringing, butit retains a distinct enough central peak to be usefulfor acquisition and for development of a code phase dis-criminator for a DLL. The shape of this curve can beused to develop a discriminator based on early, late,and prompt accumulations which has an output thatapproximately equals the code phase error measured inPRN code chips.
V. REVIEW OF BIT-WISE PARALLEL COR-RELATION AND ACCUMULATIONThe software receiver tested here uses bit-wise paral-lel Boolean logic computations to calculate correlations.This approach di�ers from other software receivers thatperform integer-based computations in either the timedomain or frequency domain. Bit-wise parallel corre-

lation processes 32 RF output data samples at a time.This reduces the number of instructions by a factor of2 or more [4]. Bit-wise parallel correlation is similar tohow a hardware correlator functions. The bit-wise na-ture of this correlation method is aided by how the RFfront end output data is read into the PC's memory.32-bit words, representing 8 samples from the L1 frontend and 8 from the L2 front end, are synchronouslyread into the PC's memory. There is no translation toan integer representation of the signal. Boolean logicoperates on 32-bit words, each of which represents thesign or magnitude of various signals at 32 successivesamples.
The software receiver requires both code and carrierreplicas. The code replicas are computed in real-timeusing the method described in the next section. In or-der to reduce the computational load during correla-tion, the carrier replicas are pre-computed and storedin memory. In-phase and quadrature L1 and L2 car-rier signals are computed on a coarse frequency gridwith respective 175 Hz and 87.5 Hz spacings. The ini-tial phase o�set for these replicas is 0. These replicasrequire a total of 1328 kilobytes of storage. The cor-relator compensates for the use of carrier replica sig-nals of the incorrect frequency and phase. The in-phaseand quadrature accumulations are rotated by an an-gle that represents the average phase di�erence betweenthe available base-band signal and the intended signalat the correct frequency and phase. This procedure isthoroughly explained in [4], [5], and [6].
Base-band mixing is performed by computing the bit-wise exclusive-or of the RF data sign words and car-rier replica sign words over a C/A code period. Forthe Galileo L1-B BOC(1,1) codes, accumulations arecomputed over 4092-chip intervals which are nominally0.004 secs. The RF data magnitude words and carrierreplica magnitude words are not operated on, and aresimply passed to the next stage. The resultant base-band signal has a 3-bit representation consisting of a 32-bit sign word, a 32-bit low magnitude word, and a 32-bithigh magnitude word for 32 successive samples. Codemixing for the C/A code also involves a sequence ofbit-wise exclusive-or operations. To mix the base-bandsignal with the C/A code, the base-band sign words areexclusive-ored with the code replica's sign words. Theresultant signal also has a 3-bit representation.
VI. REVIEW OF REAL-TIME GENERA-TION OF OVER-SAMPLED PRN CODESThis section reviews the method for real-time gener-ation of bit-wise parallel representations of the over-sampled versions of the required PRN codes. The soft-ware correlator needs to generate bit-wise parallel rep-resentations of the prompt and early-minus-late over-
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sampled PRN codes, because they are too long to pre-compute and store in memory.
The real-time generation of over-sampled bit-wise par-allel PRN codes requires several values: the length ofa PRN code chip, the sample interval, the early-minus-late delay, the end time of the �rst code chip relativeto the �rst sample time, and the actual +1/{1 values ofthe PRN code chips. This generation method of the bit-wise parallel PRN codes is dependent on the assumptionthat the sampling frequency, the chipping rate, and theearly-minus-late code delay are all constant.
Over-sampling and translation into a bit-wise par-allel representation are accomplished simultaneouslythrough the use of three pre-computed tables, one forthe prompt code, one for the magnitude of the early-minus-late code, and one for the sign of the early-minus-late code. The three tables' size is relatively small and isindependent of the PRN code period. In fact, it can bereused for PRN codes in a multi-channel receiver. ThePRN code chip length, the sample interval, the early-minus-late delay, and a desired code phase resolutionare used to pre-compute the look-up tables. This tablescontains the bit-packed 32-bit representations for all thepossible PRN code combinations and initial phase o�-sets found in 32 successive samples.
The tables have 2 variable inputs: the sequence of codechip values that span a 32-bit data word and the endtime of the initial prompt chip relative to the dataword's �rst sample. A calculation is made using thesevalues that gives an index into the 3 tables, which inturn outputs the correct bit-wise parallel representationof the prompt and early-minus-late codes. An exhaus-tive description of this technique is given in [7]. It wasapplied to a civilian L1/L2 software reciever in [6].
The bitwise-parallel software correlation calculationsrequire a bitwise-parallel representation of each over-sampled BOC(1,1) code. There are two methods forgenerating such representations. The �rst method pre-computes tables of such representations for entire codeperiods i. The second method computes these repre-sentations in real-time by using a tabulated function ii.The �rst method executes more rapidly, but it requiresmore storage, and its storage requirement grows linearlywith the length of the PRN code. The 4 msec GalileoL1-B PRN code is long enough to warrant using thesecond method in order to save memory.
5 illustrates a section of a BOC(1,1) code and the cor-responding bitwise-parallel representation of the over-sampled versions that are needed by the software corre-lator. The four digital time histories shown in the �gureare, from top to bottom, the prompt, early, late, and

Fig. 5. A bit-packed over-sampled BOC(1,1) code and its real-time generation via tabulated functions.
early-minus late versions of the BOC(1,1) code. No-tice how the prompt code includes two full chip periodsof length �tc with a +1 chip followed by a -1 chip.Each chip is mixed with one +1/-1 oscillation period ofthe sine-phased BOC. The green vertical dash-dottedlines indicate 16 sample times with sample spacing �ts.Representations of the values of the prompt and early-minus-late BOC(1,1) codes at these sample times arepacked into three 16-bit data words using bit-wise paral-lelism. These words are the over-sampled prompt codeword, the over-sampled early-minus-late zero mask codeword, and the over-sampled 2's sign code word. Theblock with inputs and outputs at the top of the �g-ure indicates that these three words can be generatedas functions of two inputs: the end time of the �rstBOC(1,1) PRN code chip measured relative to the timeof the �rst sample, �t0, and the actual PRN code chipvalues that span the samples in question (a +1 followedby a -1 for this example).
Ref. [7] explains how to compute and use the real-time code generation table of Fig. 5 when operatingon BPSK PRN codes such as the GPS L1 C/A code.It is possible, in theory, to directly apply the meth-ods of [7] to BOC(1,1) codes. In this scenario, theBOC(1,1) signal is treated as a straight PRN code thatchips at twice the chipping rate and that has twiceas many chips. Thus, the BOC(1,1) signal of Fig. 5would be modeled as being a PRN code with a chip-ping rate of 2.046 MHz, which would halve its �tc value,and it would be modeled as having 4 chips during the16-sample interval in question: +1,-1,-1,+1. Unfortu-nately, the size of the tables that generate the real-timeover-sampled codes grows dramatically if one uses thisapproach. This growth occurs because this approachtabulates 24 = 16 possibilities for the chip values even
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Fig. 6. Computational performance comparison processing ei-ther 2-bit or 1-bit RF data streams on either a 3.4 GHz IntelPentium 4 microprocessor or a dual-core 2.16 GHz Pentium CoreDuo microprocessor.
though the BOC(1,1) nature of the signal implies thatonly 22 = 4 of these possibilities can be realized.
The required table size for real-time generation of theover-sampled BOC(1,1) code has been greatly reducedthrough the development of special forms of the tabu-lated functions, forms that account for the BOC(1,1)structure. Appendix A describes the modi�cations tothe algorithms of Re that are needed in order to gener-ate these special tables.
VII. COMPUTATIONAL LOAD AND MEM-ORY REQUIREMENTSThe computational load and memory requirements of asoftware receiver are two important factors. The soft-ware receiver described here has a signi�cant compu-tational load, demanding a high-end PC or DSP chipin order to track 24 or more channels. Its memory re-quirements are modest, requiring only a few megabytesof storage for both the code and data.
Computational LoadThe bit-wise parallel correlation and accumulation cal-culations use mostly simple logic and table look-up op-erations in order to form the 4 accumulations for eachPRN code. Generating the over-sampled PRN codesrequires additional computations. A description of thecomputational requirements in terms of instructions peraccumulation can be found in [6].
Fig. 6 shows the computational performance require-ments for the software receiver to track 12 GPS L1 C/Acode signals and 12 Galileo L1-B BOC(1,1) signals inreal time. The �gure demonstrates the computational

requirements of bit-wise parallel correlation using 32-bit signal processing and either 2-bit or 1-bit RF datastreams. Two di�erent microproccessors were tested.The �rst is an Intel Pentium 4 running at 3.4 GHz, andthe second is a dual-core Intel Core Duo, with each corerunning at 2.16 GHz.
The cases that show processing of 2-bit and 1-bit RFdata streams demonstrate the reduction in complexitywhen going from 2 bits to 1 bit when computing the bit-wise parallel accumulations. A reduction of less than afactor of 2 is expected when reducing the RF front endbits from a 2-bit digitization to a 1-bit digitization andusing the real-time generation of the over-sampled PRNcodes [6]. The computational requirements of the bit-wise parallel processing are dependent on the number ofRF data bits, but the generation of over-sampled PRNcodes is independent of the number of RF data bits.This translates into a decrease of 25%, as seen in Fig.6, when going from 2-bit RF front end data streams to1-bit RF front end data streams. Note that roughly a2-dB loss in C/N0 occurs when reducing the number ofRF front end data bits from a 2 to 1 [9].
Note that this algorithm can be adapted to work with adi�erent number of bits in the representation of the RFfront end output data and of the cosine and sine mixingsignals. Increases in the number of bits tends to increasethe complexity of the bit-wise parallel correlation, and,in turn, the computational requirements. Using morethan 3 bits with the bit-wise parallel algorithms tendsto degrade the performance enough, that algorithms us-ing �xed-point multiply-and-accumulate operations willwin.
To produce the results from the dual-core micropro-cessor in Fig. 6, a non-real-time version of the soft-ware receiver code was modi�ed. This was performedas a last-minute investigation into the ease of re-writingparts of the code into a multi-threaded application andto demonstrate its performance on newer dual-core mi-croprocessors. The performance results from the dual-core microprocessor illustrate the ease at which perfor-mance gains can be achieved by parallelizing GNSS sig-nal processing code. The 2-bit RF front end data caserequires about 41% of each 2.16 GHz core to run in realtime. Thus, the two independent cores act like a singlecore running at roughly twice the speed of each indi-vidual core, giving the 11% reduction in computationalcost. Note, that if the scaling was perfect, a 27% de-crease in computational cost would have been realized.Oher factors such as memory speed may explain thisdiscrepancy. In summary, these results illustrate howparallelizable GNNS correlator signal processing is.
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Memory Requirements
The pre-computed base-band mixing signals and PRNcode over-sampling tables require a certain amount ofmemory. Each replica base-band mixing signal mustoccupy 180 32-bit words for the L1 C/A code signalacnd 715 32-bit words for the Galileo L1-B code sig-nal. These sizes guarantee covering the full 5,714 and22,857 RF front end samples for, respectively, the 1 msL1 C/A code accumulation and 4 ms Galileo L1-B codeaccumulation intervals. Thus, 180�4=720 bytes are re-quired for each bit of each carrier signal that must bestored for the C/A code signal, and 715�4=2860 bytesare required for each bit of each carrier signal that mustbe stored for the CM/CL code signal. The sine andcosine signals each have two-bit representations, whichtranslates into a total storage requirement of 2880 bytesfor the GPS L1 carrier replicas and 11,440 bytes for theGalileo L1 carrier replicas. For the L1 C/A code sig-nal, there are 115 Doppler shifts that must be stored inorder to cover the {10 KHz to +10 KHz range with a175 Hz grid spacing. For the Galileo L1-B signal, 230Doppler shifts must be stored to cover the {10 KHz to+10 KHz range with a 87.5 Hz grid spacing. Since theGalileo L1-B signal has a longer period, it is advisableto use a �ner grid size for the carrier replicas. Thistranslates into 2893 kilobytes of storage for all of thecarrier replica signals, which is a substantial amount.
One signi�cant improvement in storing the carrier repli-cas is possible. The GPS and Galileo L1 carrier repli-cas are spaced about the same intermediate frequency,but have di�erent lengths and di�erent grid sizes. Theproposed method to reduce the size of the table is tocreate a set of carrier replicas with 1-ms lengths withDoppler shifts covering the range {10 KHz to +10 KHzusing a 87.6-Hz grid spacing. These are adequate forthe shorter GPS L1 C/A code accumulation interval.However, for the Galileo L1-B accumulation interval of4 ms, one has to perform 4 non-coherent accumulationsover 1-ms intervals, and compute a �x-up to the in-phase and quadrature accumulations before summingthem together to produce an e�ective 4 ms coherentaccumulation. The �x-up is a simple rotation on the1-ms accumulations which is a function of the desiredinitial phase o�set and the actual initial phase o�set ofthe carrier replica. This new set of carrier would havea size of 646 kilobytes, which is a reduction in memorysize by a factor of 5 over the above approach. The onlydownside is a very small increase in the computationalcost due to the �x-up of the accumulations.
The GPS L1 C/A and Galileo L1-B BOC(1,1) codelook-up tables require a modest amount of memory.The required memory is given by equation (56) in [6].The equation is not repeated here because it requires

explanation of a number of variables that are beyondthe scope of this review. The required memory scaleslinearly with the code phase resolution and exponen-tially with the number of samples per data word.
Three PRN code tables are needed for the GPS L1C/A code, and three are needed for the Galileo L1-BBOC(1,1) code. The need for separate tables is for theGPS and Galileo signals is because the GPS L1 C/Acode chips at 1:023�106 chips/sec, and the Galileo L1-B signal chips at 2:046�106 chips/sec. For the GPS L1C/A code, the early-minus-late code spacing is one-halfa chip, and there are 32 samples per data word. Thissoftware receiver uses the following parameters: an RFsampling interval of 175 nsec and the range-equivalentcode phase resolution is 7.50 m. These values yield atmost 8 code chips per data word, 42 tabulated codestart/stop times, and 3584 entries per PRN code table.These three PRN code tables together require 42 kilo-bytes of memory. For the Galileo L1-B BOC(1,1) code,the early-minus-late code spacing is one-third a chip,and there are 32 samples per data word. The RF sam-pling interval and code phase resolution are the same asabove. These values yield at most 7 code chips per dataword, 42 tabulated code start/stop times, and 1792 en-tries per PRN code table. These three PRN code tablestogether require 21 kilobytes of memory.
One method of simplifying the real-time generation ofsampled codes is to make use of the fact that the C/Acode and the L1-B BOC(1,1) code are relatively short.It is possible to use pre-computed tables of the C/Acode chips and L1-B BOC(1,1) code chips with thismethod. The advantage is that the computational re-quirements are slightly decreased in favor of a modestincrease in the required memory. The total additionalmemory required to store the auxiliary tables for all 32GPS satellites and 32 Galileo satellites is 288 kilobytes.To conserve memory, it may be useful in the future touse Galileo PRN code generators in real time. A PRNcode generator was not available for GIOVE-A L1-Bsignal at the time of writing.
A circular bu�er stores the most recent 21 msec of RFfront end data from each RF front end data. This bu�eroccupies 29.2 kilobytes of memory.
The total amount of memory required for storing thetables is 3337 kilobytes. The machine code and ancil-lary data for the software receiver requires additionalstorage on the order of roughly 1500 kilobytes.
VIII. RECEIVER PERFORMANCE RESULTSAcquisition and tracking performance has been testedusing live data from a roof-mounted antenna in Austin,TX, USA. Since only one Galileo satellite, GIOVE-A,
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Fig. 8. PLL-baseed tracking of the GIOVE-A signal.
is currently in orbit, and its navigation data bit streamis unknown, navigation performance testing using thissatellite was not possible.
Figure 7 shows the prompt I2 + Q2 acquisition statisticversus Doppler shift and code o�set for the GIOVE-AL1-B BOC(1,1) signal. This result is from live datacollected in Austin, TX on September 17, 2006. This�gure shows the main and side lobes of the BOC(1,1)signal. Note that due to the narrow �lter in the RF frontend, the BOC(1,1) side lobes have mean peak powersof about 40% of the main lobe and are o�set by 0.7BOC(1,1) chips from the center of the main lobe. If theRF front end had a wider �lter, one would expect theside lobes to have mean peak powers of only 25% of themain lobe and have spacings of 0.5 BOC(1,1) chips.
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Fig. 9. True and estimated range rate di�erences between GPSPRN 2 and GIOVE-A.

Figure 8 shows the in-phase and quadrature prompt ac-cumulation time history for GIOVE-A over a 11-secondinterval. The �rst �2 seconds illustrate the transitionfrom acquisition to tracking �rst with a FLL and thenwith a PLL. The PLL forces the power in the 250-Hz prompt accumulations into the in-phase component.The transitions from a positive prompt in-phase accu-mulation to a negative in-phase accumulation, and viceversa, illustrates the data bit transitions in the navi-gation message. It's clear from this �gure that a biasin the distribution of the values of the data bits exists.The distribution of �1 values is about 25%-75%.
One veri�cation of the tracking performance of a GPSand Galileo software receiver is to investigate common-mode errors that are present on both GPS and Galileotracking channels. Estimates of range rate of GPS satel-lites and Galileo satellites will both be biased by thereceiver clock drift rate. To investigate this, the dif-ference of the estimated range rate time histories fromGPS PRN 2 and GIOVE-A is plotted as the green exesin Figure 9. The true values for the range rates historiescan be computed using the broadcast GPS ephemeridesand the North American Aerospace Defense Command(NORAD) two-line orbital elements (TLEs) for the GPSsatellites and GIOVE-A, respectively. The di�erence inthese true range rate time histories is plotted as thestraight black line in Fig. 9. The transient responseduring the �rst 3 seconds of the di�erence in the es-timated range rate time histories is caused by pull-inof the PLLs for GPS PRN 2 and GIOVE-A. After thistime, it is clear that the two plots coincide well, indi-cating that a common-mode range rate bias is seen onGPS PRN 2 and GIOVE-A.
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IX. SUMMARY AND CONCLUDING RE-MARKS
A 24-channel real-time GPS and Galileo L1 softwarereceiver that runs on a PC has been implemented andtested. The hardware consists of a COTS GPS L1 C/Acode analog-mixing RF front end, a data bu�ering andacquisition system, and a PC with a 3.4 GHz Intel Pen-tium 4 processor running RTAI, a real-time variant ofLinux. The software consists of GPS and Galileo L1real-time software correlators and additional softwarethat provides the typical functions such as signal ac-quisition, signal tracking, and navigation. The softwarecorrelator, running on the PC's microprocessor, requires46% of the CPU's computational capacity. The softwarereceiver was tested with live data from the GPS satel-lites and GIOVE-A to verify successful acquisition andtracking.
APPENDIX A. ALGORITHMS THAT GEN-ERATE OVER-SAMPLING TABLES FORBOC(1,1) CODES
This paper uses a modi�ed form of the methods of [7]in order to generate bit-wise parallel representations ofover-sampled BOC(1,1) codes in real time. The modi�-cations are needed in order to transition from the BPSKPRN code format assumed in [7] to the BOC(1,1) codeformat used by the Galileo L1 signal. The only part of[7] that needs modi�cation is the last part of its SectionIV. The following modi�cations are all that are needed:Equations (14)-(16) of [7] are replaced by the followingcalculations (this description of the modi�cations usesthe same notation as is used in [7] and presumes famil-iarity with that reference and its de�nitions of mathe-matical quantities):
Generate the sine-phased binary-o�set carrier for theprompt, early, and late signals:

Bp(n; i) = mod floor(2 �n� 1� k(i)m
� ��ts�tc

�); 2!
for n = 1; 2; 3; :::; ns (3)

Be(n; i) = mod floor(2 �n� 1� k(i)m
� ��ts�tc

�
+2 ��teml2�tc

�); 2! for n = 1; 2; 3; :::; ns
(4)

Bl(n; i) = mod floor(2 �n� 1� k(i)m
� ��ts�tc

�
�2 ��teml2�tc

�); 2! for n = 1; 2; 3; :::; ns
(5)

The 3 binary signals Bp(n; i), Be(n; i), and Bl(n; i) takeon 0 values when the binary-o�set carrier equals +1,and they take on 1 values when it equals -1.
Mix the prompt, early, and late PRN code chip valuesCp(n; i), Ce(n; i), and Cl(n; i) with the prompt, early,and late binary-o�set carrier in order to get the prompt,early, and late sine-phased BOC(1,1) signals:

BOCp(n; i) = mod [Bp(n; i) + Cp(n; i); 2]for n = 1; 2; 3; :::; ns (6)
BOCe(n; i) = mod [Be(n; i) + Ce(n; i); 2]for n = 1; 2; 3; :::; ns (7)
BOCl(n; i) = mod [Bl(n; i) + Cl(n; i); 2]for n = 1; 2; 3; :::; ns (8)

The 3 binary signals BOCp(n; i), BOCe(n; i), andBOCl(n; i) take on 0 values when the product of thePRN code and the binary-o�set carrier equals -1, andthey take on 1 values when it equals +1. These valuesare used to generate the unsigned integer entries of the3 tables:
xp(i) = nsX

n=1BOCp(n; i)� 2ns�n (9)

xemlzm(i) = nsX
n=1modf[BOCe(n; i) +BOCl(n; i)]; 2g

�2ns�n (10)
xeml2s(i) = nsX

n=1modf[BOCe(n; i) +BOCl(n; i)]; 2g
�BOCe(n; i)� 2ns�n (11)

where xp(i), xemlzm(i), and xeml2s(i) are, respectively,the entries of the prompt sign table, the early-minus-late zero-mask table, and the early-minus-late 2's signtable.
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