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ABSTRACT

A 12-channel real-time GPS software receiver has been
tested in order to determine its accuracy and tracking
performance under dynamic conditions. The motivation
for this work is to demonstrate that this receiver’s per-
formance is equivalent to a hardware receiver despite the
fact that it implements all of its base-band mixing, cor-
relation, and accumulation operations in software in a
general-purpose PC. Such receivers offer an attractive
route to the development of products that exploit new
signals that will be available in the future such as the L2
civilian signal and Galileo signals. A software receiver can
be developed to track such signals without the need to de-
velop a new hardware correlator chip. All that needs to
be done is to adjust the parameters of the RF front-end to
receive the new carrier frequencies and upgrade software



to calculate correlations using the new spread-spectrum
codes.

The real-time software receiver is reviewed, and its oper-
ation is compared to that of receivers which use hardware
correlators. Also discussed is an upgrade to the original
implementation that uses processor-specific x86 assembly
code (MMX). This upgrade provides a 25% increases in
processing speed. Another aspect that is discussed is the
use of 1-bit RF front end data and the related speed-
up. The software receiver is tested under static and dy-
namic conditions and is compared to a hardware receiver
in terms of its tracking stability and the accuracy of its
observables. The dynamic test conditions include a rocket
scenario that is generated using a GPS signal simulator
and road vehicle motion that is tested using car-mounted
receivers.

INTRODUCTION

A real-time software receiver architecture can provide GPS
user equipment with operational flexibility that will prove
more and more useful as time goes by. The current GPS
system is slated to expand its capabilities to include new
civilian codes on the L2 frequency and a new L5 fre-
quency. A receiver that uses a hardware correlator will
require hardware modifications in order to use these new
signals. In the near term, a receiver designer will be faced
with a complex trade-off in order to decide whether the
extra complexity is worth the improved performance that
will accrue gradually as new GPS satellites replace older
models. A software receiver can use new signals without
the need for a new correlator chip. New frequencies and
new pseudo-random number (PRN) codes can be used
simply by making software changes. Thus, software re-
ceiver technology will lessen the risks involved for design-
ers during the period of transition to the new signals.
Furthermore, a software receiver could be reprogrammed
to use the Galileo system, which provides an added ben-
efit from the use of a software radio architecture. Thus,
there are good reasons to develop practical real-time soft-
ware GPS receivers.

A GPS software receiver differs from a hardware receiver
by performing correlations in software running on a gen-
eral purpose microprocessor. A software receiver can be
broken down into various components (see Figure 1). First,
an antenna, possibly followed by a pre-amp, receives the
L-band GPS signals. After the antenna comes a RF sec-
tion that filters and down converts the GHz GPS sig-
nal to an intermediate frequency in the MHz range. The
RF section also digitizes the signal, outputing a binary
bit-stream. The next section is a buffering and data ac-
quisition section that reads that data into the micropro-
cessor’s memory. The final section is the general pur-
pose microprocessor that runs software to perform the
remaining GPS receiver functions. The software correla-
tor separates the signal into different channels allocated
to each satellite. For each satellite, the correlator mixes
the Doppler shifted intermediate frequency signal to base-
band and correlates it with a local copy of the satellite’s
PRN code. The final components of the receiver involve
standard software routines that track the signals, demod-
ulate the navigation message, and compute the navigation
solution.

GPS software receivers have been around for several years.
In the recent past, GPS software receivers have been de-
veloped that either post-process stored signals or operate
in real-time. Previous real-time software receivers func-
tion with 12 channels running on a high-end PC [Thor et
al., 2002, Ledvina et al., 2003a] or 8 channels on a DSP
chip [Akos et al., 2001b]. The work presented in this pa-
per improves upon these previous works by demonstrat-
ing that a software receiver can operate in a dynamic
environment. Previous works show only static receiver
operation.

The remaining portions of this paper describe the soft-
ware receiver, the experiments, and present performance
results for this system. The second section describes the
hardware including the RF front end and the PC. The
third section reviews the software receiver’s bit-wise par-
allel software correlation process. Section 4 describes the
static performance of the receiver. Section 5 investigates
the receiver’s dynamic navigation performance. Section
6 gives a summary and concluding remarks.

SYSTEM CONFIGURATION

Central to the software GPS receiver is a personal com-
puter (PC). The current system consists of a PC with a
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Figure 1: A typical GPS software receiver showing the separation between special purpose hardware and general
hardware.
1.73 GHz AMD Athlon processor running the RT-Linux
operating system. RT-Linux is a hard real-time variant
of Linux implemented as a set of patches to the standard
Linux kernel. Due to its real-time optimized design, RT-
Linux provides low latency interrupt responsiveness along
with the ability to execute threads at regular intervals.
This translates into a highly efficient and responsive op-
erating system that reliably executes time critical code.
An additional feature of RT-Linux is that it keeps the
functionality of Linux by running the kernel as the lowest
priority thread. By retaining the functionality of Linux,
it is easy to develop, test, debug, and run real-time soft-
ware. Another benefit of using Linux is that tools such
as drivers, a C complier, and text editors are readily and
freely available.

The next component of the software receiver is the digitiz-
ing RF front end, also known as a bit-grabber. The heart
of the bit-grabber is a Mitel/Zarlink GP2015 RF front-
end. The front-end down converts the nominal 1.57542
GHz GPS L1 signal to an intermediate frequency of
(88.54/63) ×106 Hz ∼=1.40539 MHz and then performs
analog-to-digital conversion. The resultant, digitized sig-
nal has two binary bits per sample corresponding to a
sign and a magnitude. The possible values for the dig-
itized signal are ±1 and ±3. The two binary bits are
available as outputs from the bit-grabber. In order to
provide accurate timing, the sign and magnitude bits are
synchronized to a (40/7)×106 Hz ∼= 5.714 MHz clock sig-
nal, which is the third output from the bit-grabber card.

A data acquisition system reads the digitized sign and
magnitude bits from the bit-grabber into the PC. To make
the process of reading data into the PC more efficient and
to prepare for efficient correlation calculations, the DAQ
card reads 32 bits of buffered samples at a time. The 32
bits consist of 16 sign bits and 16 magnitude bits. A se-
ries of shift registers buffer the data, packing the sign and
magnitude bits into separate 16-bit words. A divide-by-
16 counter converts the 5.714 MHz clock down to 357.14
KHz, which provides a signal indicating when the buffer
is full.

The data acquisition system consists of a PC card and
driver software. The card is a National Instruments PCI-
DIO-32HS digital I/O card. Pertinent features of this
card are the 32 digital input lines, direct memory ac-
cess (DMA) and availability of a driver for RT-Linux. A
suite of open source drivers and application interface soft-
ware for DAQ cards known as COMEDI (COntrol and
MEasurement and Device Interface) is freely available.
COMEDI provides Linux/RT-Linux support for nearly
one hundred DAQ cards spanning numerous manufactur-
ers.

The software receiver is written entirely in ANSI C code
using tools available from standard Linux distributions.
To promote portability of the software, no processor-specific
assembly language or special instructions are used.

REVIEW OF THE SOFTWARE CORRELATOR

IMPLEMENTATION

The software receiver tested here uses bit-wise parallel
Boolean logic computations to calculate correlations. This
approach differs from other software receivers that per-
form integer-based computations in either the time do-
main or frequency domain. Bit-wise parallel correlation



processes 32 RF output data samples at a time. This re-
duces the number of instructions by a factor of 2 or more
[Ledvina et al., 2003a]. Bit-wise parallel correlation is
similar to how a hardware correlator functions. The bit-
wise nature of this correlation method is aided by how the
RF front end output data is read into the PC’s memory.
32-bit words, representing 16 samples, are synchronously
read into the PC’s memory. There is no translation to an
integer representation of the signal. Boolean logic oper-
ates on 32-bit words, each of which represents the sign or
magnitude of various signals at 32 successive samples.

In order to reduce the computation load during corre-
lation, the code and carrier replicas are pre-computed
and stored in memory. Prompt and early-minus-late C/A
codes are pre-computed for each PRN number at code
phases that allow for 1.8-meter measurement accuracy.
These pre-computed codes require 930 kilobytes of stor-
age. In-phase and quadrature carrier signals are com-
puted on a coarse frequency grid with 175 Hz spacing at a
0 initial phase offset. These replicas require 320 kilobytes
of storage. The correlator compensates for the use of car-
rier replica signals of the incorrect frequency and phase.
The in-phase and quadrature accumulations are rotated
by an angle that represents the average phase difference
between the available base-band signal and the intended
signal at the correct frequency and phase. This proce-
dure is thoroughly explained in Ledvina et al., [2003a]
and Ledvina et al., [2003b].

Base-band mixing is performed by computing the bit-wise
exclusive-or of the RF data sign words and carrier replica
sign words over a C/A code period. The RF data magni-
tude words and carrier replica magnitude words are not
operated on, and are simply passed to the next stage.
The resultant base-band signal has a 3-bit representation
consisting of a 32-bit sign word, a 32-bit low magnitude
word, and a 32-bit high magnitude word for 32 succes-
sive samples. Code mixing also involves a sequence of
bit-wise exclusive-or operations. To mix the base-band
signal with the C/A code, the base-band sign words are
exclusive-ored with the code replica’s sign words. The
resultant signal also has a 3-bit representation. Accumu-
lation involves summing the resultant signal over the ac-
cumulation interval, which is nominally the C/A code pe-
riod. Accumulation is performed by separating the eight
different combinations of the 3-bit signal and then using
a look-up table to count the instances of each of the eight
combinations.

COMPUTATIONAL PERFORMANCE

The computational performance of a software receiver is
an important issue in determining its real-world applica-
bility. Previous real-time software receivers require large
computational speeds, limiting their usefulness. The re-
ceiver presented in Akos et al. [2001a] requires nearly
100% utilization of a 1 GHz PC to run only 6 chan-
nels. The improved performance of the bit-wise parallel
receiver described in Ledvina et al. [2003a] requires 50%
of a 1.73 GHz PC to run 12 channels.

Two types of computational performance enhancements
have been tested. First, assembly language instructions
provide a method to optimize the inner loop performance
of the software receiver to a particular microprocessor.
The drawback to this method is that the correlation algo-
rithms must be custom tailored to particular processors.
Second, a reduction in the number of bits in the RF data
stream can provide increased computational performance.
This reduction reduces the carrier-to-noise ratio. For ex-
ample, switching from a 2-bit RF data stream to a 1-bit
stream with no change in sampling frequency causes a 2
dB reduction in C/N0 [Van Dierendonk, 1996]. Regard-
less of the drawbacks, these increases in computational
efficiency may be useful in certain applications.

The computational performance of the software receiver
described in Ledvina et al. [2003a] has been tested with
these two enhancements. In order to perform the testing,
a non-real-time version of the software receiver has been
used. This receiver performs correlation, tracking, data
demodulation, and computes a navigation solution. The
receiver processes 24 seconds of data on 4 channels. The
processing time is then multiplied by 3 and divided by
24 to represent a 12-channel receiver’s operation during
1 second. This test excludes the computational require-
ments from the data acquisition system. These latter re-
quirements are typically small because of the use of DMA
data transfers.

The receiver has been tested in four different configura-



tions. All four configurations utilize the same 1.73 GHz
PC and 5.714 MHz RF sampling rate. The first config-
uration is with a 2-bit RF front end data stream. The
second configuration replaces the inner loop code mixing
and sections of the accumulation process with x86-specific
MMX assembly language instructions. MMX instructions
perform 128-bit integer-based computations instead of 32-
bit computations. The third configuration uses a 1-bit
RF front end data stream. The fourth configuration uses
1-bit RF front end data with MMX instructions.

The results from these tests are shown in Figure 2. It
should be noted that the nominal receiver computational
requirement is 40%, which has been reduced from the 50%
stated in Ledvina et al. [2003a]. This reduction is primar-
ily due to performance tuning and profiling that helped
reduce the inner loop processing requirements. The use of
MMX instructions decreases the computational require-
ments by 25% in the 2-bit case and 0% in the 1-bit case.
The lack of reduction in the 1-bit case is thought to be due
a single factor. The MMX instructions were hand-coded
which may not represent the most efficient execution on
a pipelined processor.

A computational decrease of 50% is seen when going from
a 2-bit RF front end data stream to a 1-bit data stream.
This corresponds well with the reduction by a factor of
1/2 in the number of instructions [Ledvina et al., 2003a].
Measured changes in C/N0 indicate a decrease of approx-
imately 2 dB when using a 1-bit RF data stream.

STATIC NAVIGATION PERFORMANCE

The tracking and navigation performance of the GPS soft-
ware receiver is first investigated using a stationary re-
ceiver. Two performance comparisons are made. First,
the software receiver’s tracking performance is compared
to that of an off-line smoother. Second, the software re-
ceiver’s pseudorange errors and navigation performance
are compared to those of a hardware receiver.

The tracking loop performance of the software receiver
code has been evaluated by comparing it to a software
receiver implemented in MATLAB that uses smoother-
based carrier and code tracking loops and that operates
on the same data in an off-line mode. Figure 3 compares
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Figure 2: Percent CPU usage of the software receiver in
various configurations.

the Doppler shift of the carrier from the real-time soft-
ware receiver with that of the MATLAB smoother. The
mean frequency error deviation after the transient period
is less than 2Hz. Thus, the real-time software receiver’s
FLL operates properly with the software-computed accu-
mulations.

The static horizontal navigation accuracy of the receiver
is shown in Figure 4. This figure shows the horizontal
navigation solution error every second for a duration of
15 minutes. This plot demonstrates that the software re-
ceiver nominally performs as well as a typical GPS L1
hardware receiver.

Next, the static navigation performance of the software
receiver is compared with a hardware receiver. The hard-
ware receiver and software receiver are identical, except
for their implementations of the correlator. The hardware
receiver uses a Mitel/Zarlink GP2021 digital correlator
chip, while the software receiver uses a software correla-
tor. All other components of the receiver, including the
RF front end and tracking and navigation software are
identical. The two receivers share a single roof-mounted
antenna. The signal is split by a passive splitter and is
connected to both receivers. The receivers were operated
concurrently during this test.
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Figure 4: Horizontal navigation error of the software re-
ceiver.
0 50 100 150 200 250 300 350 400
0

5

10

15

p
o
s
it
io

n
 e

rr
o
r 

(m
e
te

rs
)

time (seconds)

Position error, Rhodes Hall 9/25/03

Software receiver error
Mitel/Zarlink GP2021 receiver error

Figure 5: Norm of the position error for both the hardware
receiver and the software receiver.

Figure 5 shows a comparison of the static navigation per-
formance of both receivers. This figure shows the norm
of the error with respect to the surveyed antenna loca-
tion. The two plots are similar, showing good correlation
in navigation errors between the two receivers. The dif-
ferences between the two error plots are due to two fac-
tors. First, the receivers did not sample pseudoranges at
the exact same times. This leads to minor discrepancies
between the receivers when computing the navigation so-
lution. The second difference is due to performance dif-
ferences of the correlators. Since neither plot shows a
tendency for a larger error, it is reasonable to assume
that both correlators perform similarly.

Figure 6 shows the residual pseudorange error for a high
elevation satellite, PRN 2, from both the hardware and
software receiver for the same data set as Figures 4 and
5. The residual pseduorange error is calculated by tak-
ing the difference between the measured pseudorange and
the true range to the satellite. Corrections for the receiver
clock offset, the ionospheric delay, and tropospheric de-
lay are made. The result is an estimate of the receiver-
dependent pseudorange error.

These residual pseudorange errors are typical for a GPS
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Figure 6: Residual pseudorange error for PRN 2 for both
the software receiver and the hardware receiver.

L1 receiver. These two receivers have similar error time
histories, which are mostly the result of multipath effects
and antenna noise, which are common to both receivers.
Differences in these residual errors are due to the lack
of synchronization when sampling the pseudoranges, the
receivers’ different thermal noise, and differences in the
receivers’ correlators. The similarity between these resid-
ual errors reinforces the notion that this software receiver
functions as well as a hardware equivalent.

DYNAMIC NAVIGATION PERFORMANCE

The software receiver has been tested in two different dy-
namic scenarios. The first scenario demonstrates typical
automobile dynamics. This scenario has been performed
using a truck-mounted software receiver and a Magel-
lan GPS PROMARK X handheld receiver. The second
scenario tested the software receiver during a simulated
rocket flight.

For the first test, the software receiver was placed in the
back of a truck, and its antenna was mounted on the
truck’s roof. A second GPS receiver, a Magellan hand-
held receiver, was held situated just outside the passenger
window. The separation between the two receivers’ an-
tennas was about 2 meters. The truck was driven for
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Figure 7: Vehicle velocity and acceleration profile used to
test the software receiver.

roughly an hour, during which both receivers collected
1-second-sample pseudorange and Doppler shift data.

The time history of the truck’s position is required in
order to determine the accuracy of the software receiver.
Additionally, the time history of the vehicle velocity and
acceleration are of interest. The truck’s position, velocity,
and acceleration have been derived from the Doppler shift
measurements of the Magellan receiver. These Doppler
shift measurements have been used to compute the re-
ceiver’s velocity using post-processing software. The re-
ceiver velocity and the numerically differentiated acceler-
ation are shown in Figure 7. These velocity and accelera-
tion profiles represent typical automobile dynamics. The
maximum velocity is 30 m/s and the maximum accelera-
tion is 2 m/s2.

The “truth” receiver position time history has been de-
termined by integrating the Magellan’s velocity solution
time history from a best-fit initial point. This position
time history is more precise than the pseudorange-derived
position time history from either receiver, which is why it
has been designated as the “truth” position time history.

Figure 9 shows the time history of the norm of the dif-
ference between the software receiver’s position and the
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“truth” truck position. This figure also shows the time
history of the norm of the difference between the Magellan
receiver’s pseudorange-derived position and the “truth”
truck position. Both navigation solutions have been com-
puted by post-processing pseudorange observables using
the same set of satellites in order to make for an equal
comparison.

Figure 8 shows the GDOP time history. This time history
has been computed using the “truth” truck position and
the mutually available satellites. Because of obstructions,
such as buildings and trees, only 4 or 5 satellites were mu-
tually visible to the receivers during certain times. These
times coincide with increases in GDOP that are seen dur-
ing the beginning and end of the test. These increases in
GDOP correspond to the increases in position error as
seen in Figure 9.

Post-processing of pseudorange observables for both re-
ceivers has been used to generate navigation solutions
for this case solely because this technique allows one to
ensure that both receivers’ solutions use the same satel-
lites, which causes them to have the same GDOP. This
constraint makes the accuracy comparison a fair ’apples-
to-apples’ comparison. The receivers both successfully
generated navigation solutions in real time, but these so-
lutions have not been used because of the lack of a guar-
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Figure 9: Position error of the software receiver and a
hardware receiver during typical automobile dynamics.

antee that they would always use the same satellites. In
actuality, had the real-time solutions been used rather
than post-processed solutions, significant differences in
GDOP would have occurred only a few times and only
temporarily because both receivers were generally able to
track the same satellites for most of the time.

Both receivers performed similarly in this test. Differ-
ences between the two receivers can be attributed to three
sources. First, the pseudoranges were not sampled at the
exact same times. With a 1-second sampling rate, the rel-
ative sample times may differ by as much as 0.5 seconds.
Second, the receivers used different antennas separated
by 2 meters. This produces a 2-meter bias in the soft-
ware receiver’s position error. Third, one receiver has a
hardware correlator and the other has a software correla-
tor. This test demonstrates that a software receiver can
perform as well as a hardware receiver in low dynamic
conditions.

The second dynamic test scenario involves a simulation
of a rocket flight. This simulation was performed on a
12-channel single-frequency simulator. Figure 10 shows
the velocity and acceleration profiles of the simulated test
flight. The maximum velocity is 300 m/s and the maxi-
mum acceleration is 50 m/s2. An acceleration limit of 5
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software receiver.

g’s has been used because it does not require re-tuning of
the receivers’ tracking loops.

The hardware receiver in this test is the same one used
in the static test scenario. This receiver is similar to the
software receiver, except for its use of a digital hardware
correlator. This test was run twice; once with the soft-
ware receiver and once with the hardware receiver.

Figure 11 shows the position errors from the software re-
ceiver and the hardware receiver. The errors have been
computed by taking the norm of the difference between
the real-time receiver position time history and the sim-
ulated position time history. During the test, both re-
ceivers remained locked on to all of the satellites in view.
The errors for both receivers are similar in magnitude.
The relatively large error bias is most likely due to the
average GDOP of 5.1. These results further the notion
that a software receiver performs as well as a hardware
receiver in a dynamic environment.

SUMMARY AND CONCLUSIONS

A 12-channel real-time software GPS L1 receiver that
runs on a common PC has been tested. The hardware
consists of a RF front end bit-grabber card, a data acqui-
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Figure 11: Position error of the software receiver and a
hardware receiver during a simulated rocket test.

sition system, and a PC with a 1.73 GHz AMD Athlon
processor running RT-Linux. The software consists of
data acquisition code, a software correlator, and GPS
software that provides the typical GPS functions such as
navigation and tracking.

The computational requirements of the software receiver
have been demonstrated with of 1-bit and 2-bit RF data
sample sizes and processor-specific assembly language
(MMX) instructions. Depending on the combination, the
12-channel real-time software receiver consumes 19-40%
of a 1.73 GHz CPU’s processing power.

The navigation performance of the software receiver has
been shown to be similar to that of a hardware receiver.
This has been shown in both a static scenario and two dy-
namic scenarios. In the static scenario it has been shown
that the measured pseudoranges for both receivers are
similar and that navigation accuracy is on the order of
5-10 meters. In dynamic tests, the software receiver also
has navigation solution errors that are similar to those of
hardware receivers. These tests demonstrate that a soft-
ware receiver can be used in dynamic situations with no
loss in performance.
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