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ABSTRACT 

A real-time method for detecting GPS spoofing in a narrow-

bandwidth civilian GPS receiver has been implemented and 

tested, both in the absence of and in the presence of 

spoofing.  The system was implemented as a software-

defined radio system on a personal computer, using a pair of 

narrow-bandwidth radio front-ends that were geographically 

separated, with data transmitted between the two over the 

Internet. 

The presence of a spoofing signal is determined by mixing 

and accumulating the base-band quadrature channel samples 

from the two receivers, with the aim of cross-correlating the 

P(Y) code that should be present in both signals in the 

absence of spoofing. 

Several spoofing attacks were successfully detected in real-

time. 

I. INTRODUCTION 

As the reliance of the civilian community on GPS signals 

for timing and positioning in mission-critical applications 

grows, so does the vulnerability to and potential cost of an 

attack via signal spoofing.  GPS signal spoofing is a type of 

attack whereby a GPS receiver is fooled into tracking 

counterfeit signals, generally with the intention of 

misleading the receiver with regards to position, time, or 

both.  In 2001 the U.S. Department of Transportation 

warned of the vulnerability of civilian GPS receivers to 

attacks such as spoofing
1
, and such attacks have since been 

demonstrated by a variety of parties
2,3

. 

Given the potential damage a successful spoofing attack 

could inflict, detecting this kind of attack is of paramount 

importance.  The spoofing detection method implemented 

here was proposed by Lo et al.
4
, and is based on the 

presumed security of the encrypted P(Y) code.  This method 

has previously been successfully implemented using two 

narrow-bandwidth civil receiver operating in a post-

processing mode (i.e., not done in real-time, and using a 

software receiver written in MATLAB)
5,6

.  This paper seeks 

to examine the efficacy of this method in the context of a 

narrow-bandwidth real-time software receiver using only 

those components that would normally be used in a civilian 

receiver (that is, using only a patch antenna rather than a 

high-gain antenna and no additional timing hardware).  

The Lo method assumes that a spoofer can only spoof the 

C/A code, and in doing so thereby changes the relationship 

between the C/A code and P(Y) for a particular spoofed 

signal.  Let us assume that there exists a “reference” 

receiver that is trusted (that is, the signals are believed 

genuine), and a “user equipment” receiver which may or 

may not be under a spoofing attack.  If one can isolate that 

portion of the signal that should contain the P(Y) code from 

the reference receiver, a cross-correlation of this data and 

similar data from the user equipment receiver can be carried 
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out.  Only if the user equipment receiver is not being 

spoofed should there be a large correlation value due to the 

cross-correlation of the P(Y) code from both sets of data.  

Properly executing this cross-correlation requires isolating 

the portion of the signal that should contain the P(Y) code 

and temporal alignment of the two data streams. 

A good discussion on the probable efficacy of several other 

spoofing detection methods can be found in the paper by 

Humphreys. 

Section II of this paper contains a description of the 

hardware used in this work.  Section III is an overview of 

the software used in implementing this spoofing detection 

method including the algorithm in general terms, derivation 

and analysis of the spoofing detection statistic threshold, 

and peculiarities that are necessary due to the particular 

software receiver used.  Section VI contains initial results 

from testing the algorithm under a variety of conditions 

including when the UE receiver is being subjected to a 

spoofing attack.  Section V contains a discussion of the 

results, including the possibility of spoofing of the reference 

receiver, and Section VI contains conclusions. 

II. HARDWARE OVERVIEW 
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Fig. 1. Spoofing Detection System Architecture 

Data for this experiment was collected using custom 

designed radio-frequency front-ends (RFEs) paired with 

data acquisition units.  The RFEs used have intermediate 

frequency filters with a bandwidth of 2.5 MHz, and produce 

2-bit quantized data at a sampling frequency of 

approximately 5.7 MHz.  The quantized data is recorded to 

a personal computer using a data acquisition peripheral and 

then transmitted over the internet from the user equipment 

receiver to the reference receiver, where all processing is 

done.  This system is symmetric in the sense that it does not 

matter if the spoofing detection is done at the reference or 

UE receiver; it was done this way for convenience, though it 

is likely more scalable if processing is done at the UE 

receiver.  It is important to note that this data should be 

transmitted in some secure manner to ensure the avoidance 

of man-in-the-middle type attacks where the data is 

intercepted by a third party and tampered with.  In this 

implementation, a secure shell tunnel was used, which adds 

somewhat to the computational burden.  As the sampling 

rate is only 5.7 MHz and the data are sampled with 2-bit 

quantization, this means the data link between the reference 

and user equipment receivers need only support rates of 

11.4 megabits per second, which is well within the 

capabilities of standard internet connectivity.  A block 

diagram of the system architecture is shown in Fig. 1. 

In order to perform a realistic spoofing attack without 

broadcasting any signals over the air, the receiver-spoofer 

was connected via an RF combiner to the UE receiver as 

shown in Fig. 2.  Although in a real attack the spoofing 

signals would be transmitted wirelessly to the UE receiver, 

the setup-up used presents a very similar signal from the 

point of view of the UE receiver. 
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Fig. 2. Receiver/Spoofer Connection. 

All processing was done on a personal computer with a 

quad-core Intel i7 930 CPU, and only standard 

hemispherical patch antennas were used at both the 

reference and user equipment receivers.  The current 

implementation can process data with 10 signals common to 

both receivers at approximately 3 times faster than real-

time, implying up to 30 common channels can be processed 

in real-time. 

 

III. SOFTWARE OVERVIEW 

In this section we will examine the general theory behind 

the spoofing detection method implemented here, how the 

spoofing detection statistic threshold was calculated, and 

general algorithms required due to the particular software 

receiver that was used. 

A.  Spoofing detection algorithm 

In this implementation of the Lo spoofing detection method, 

temporal alignment of the two data streams is the first step 

taken.  Rather than time-stamping the data streams using 

additional equipment, the embedded navigation message 

data is used.  To do this, both data streams are tracked until 

the time of week (TOW) has been decoded in both.  Using 

this information, the latency between the two streams can be 

determined.  Whichever stream lags is then tracked while 

the other stream is buffered, until the receiver is processing 

the exact same C/A code period on both data streams.  The 

estimated start time of the n
th

 C/A code period for the 

reference receiver is defined as tref(n).  Similarly, the 

estimated start time of the n
th

 C/A code period for the user 

equipment receiver is defined as tue(n).  Given that we know 

tref(n) and tue(n) from the normal, continuous tracking of the 

C/A signal, and given that any group delay between the C/A 
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and P(Y) codes is determined by the transmitter and 

common to both the reference and UE receivers, the P(Y) 

code phase in the reference receiver data stream at tref(n) 

should be the same as the P(Y) code phase in the UE 

receiver data stream at time tue(n).  The effects of different 

multipath errors on the C/A and P(Y) codes are assumed 

negligible due to the low-multipath environment of the 

antennas used here, although in general this may not be true. 

Due to the low sampling rate (5.7 MHz) of the receivers 

used in this work as compared to the chipping rate of the 

P(Y) code (10.23 MHz) there is the question of sub-sample 

alignment as well as the coarse alignment described above.  

That is, to achieve a large cross-correlation value, we must 

temporally align the P(Y) codes to within a fraction of a 

chip.  The P(Y) chip period of about 97 ns and the data 

sampling period of 175 ns means that if alignment is done 

only to the nearest sample it could be off by as much as ½ 

sample, or 0.9 chips, leading to significant correlation loss.  

However, as the sampling period is not a multiple of the 

P(Y) code chipping period, this error will vary over the 

course of each accumulation, sometimes being close to zero, 

and having a mean value 0.45 chips.  The computational 

resources that would be required to interpolate the data on a 

sample-by-sample basis to the estimated start times of the 

P(Y) code chips was deemed prohibitively expensive, so 

instead we have elected to simply choose the sample nearest 

the estimated P(Y) code chip start time, updating it every 

millisecond based on the estimated C/A code start time. 

The GPS C/A and P(Y) codes are both transmitted on the 

L1 frequency, with the C/A code being transmitted ninety 

degrees out of phase with respect to the P(Y) code.  As the 

P(Y) code is encrypted and generally unavailable to 

civilians, it is necessary to track the C/A code in such a way 

that the phase is known.   

A phase-locked loop (PLL) is used to accurately measure 

the phase of the desired C/A code signal.  The PLL 

discriminator requires mixing of the signal with both an in-

phase and a quadrature carrier replica.  The PLL is 

formulated to steer the carrier such that the C/A code power 

lies entirely in the in-phase channel after carrier wipe-off.  

As the P(Y) code is in quadrature with the C/A code, all that 

is required to isolate the portion of the signal that should 

contain the P(Y) code is to save a replica of the data after 

mixing with the quadrature carrier replica. 

Once the portion of the signal containing P(Y) code has 

been isolated in both the reference receiver and the user 

equipment receiver, it only remains to multiply the two data 

streams on a sample-by-sample basis and accumulate the 

result.  If the receiver is not being spoofed, one is essentially 

computing the autocorrelation of the P(Y) code as modified 

by the receiver front-end and with the inclusion of noise. 

B.  Detection Threshold Calculation and Analysis 

It is necessary to analyze the cross-correlation spoofing 

detection statistic in order to determine how much 

integration time would be required in order to achieve a 

reasonably small probability of false alarm and, at the same 

time, a reasonably large probability of detecting an actual 

spoofing attack.  This analysis is particularly important 

given the unusual approach used here, one which relies on a 

heavily filtered version of the P(Y) code that retains only 

the central 2.5 MHz of its 20 MHz bandwidth. 

A full treatment of the spoofing detection statistic derivation 

is not provided here; the reader is referred to Refs. 5 and 6 

for thorough coverage of this topic.  An abbreviated 

discussion is provided in the interest of highlighting some of 

the challenges addressed in making this system operate in 

real-time. 

The un-normalized spoofing detection statistic is defined as: 
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where yqai is the quadrature base-band-mixed signal from 

Receiver A that is sampled at time ti, and yqbi is the 

quadrature base-band-mixed signal from Receiver B 

sampled at the same time.  The number of samples summed 

together to produce the spoofing detection statistic is M, and 

i indicates the index within the summation period.  The 

quadrature base-band mixed signal from Receiver A can be 

modeled as: 

qaiiYfpaqai ntPAy += )(5.0  (2) 

where Apa is the P(Y) code amplitude at receiver A, PYf is 

the P(Y) code after filtering by the RF front-end at time ti, 

and nqai is the quadrature base-band noise term, which is an 

element from a discrete-time Gaussian white noise 

sequence.  Replacing the subscript a in equation 2 with b 

gives the model for the signal from Receiver B.  The 

statistics of nqai are given by: 
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Here, 2

RFaσ  indicates the effective variance of the noise in 

the raw RF samples from Receiver A.  The subscript a here 

can similarly be replaced with b to describe the quadrature 

base-band noise term for Receiver B.  The expected value of 

the spoofing test statistic under the hypothesis H0 that there 

is no spoofing at Receiver B is: 
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The C/N0 terms here are the carrier-to-noise ratios of the 

P(Y) code at Receivers A and B.  This quantity is computed 

from the carrier-to-noise ratios of the C/A code at each 

receiver, and takes into account various loss factors.  Loss 

factors include the decrement in transmitted P(Y) code 
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power as compared to C/A code power, the effect of the 

front-end filtering on both the C/A and the P(Y) codes, and 

other minor factors.  Again, see Refs. 5 and 6 for the 

complete derivations.  Using the methods described in Refs. 

5 and 6, the loss factor computed for the UE receiver was 

7.92 dB, and the loss factor computed for the reference 

receiver was 8.06 dB.  The variance of the spoofing test 

statistic can be computed under two hypotheses: hypothesis 

H0 that there is no spoofing at Receiver B, and hypothesis 

H1 that Receiver B is being spoofed. 
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The derivation of the variance of the spoofing test statistic 

under hypothesis H1 makes the assumption that the P(Y) 

code power at Receiver B is zero due to code and carrier 

phase misalignment of the spoofed C/A code with the true 

P(Y) code.  Obviously the P(Y) code is still present in the 

data, but due to this misalignment the P(Y) code cross-

correlation power will be negligible.  It will later prove 

useful to normalize the spoofing test statistic; a reasonable 

normalization to use is to divide by the standard deviation 

under the hypothesis H1. 

1|Hu uγ
σγγ =  (7) 

 Given the spoofing test statistic expected value and 

variance, a suitable normalized test statistic threshold is 

given as: 
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where norminv is the inverse normal cumulative distribution 

function in MATLAB.  In order to avoid inclusion of this 

function in the real-time code, the norminv function is pre-

calculated using a fixed probability of false alarm, αfa, and 

the result stored as a constant.  For all tests done here, a 

false alarm probability of 0.2% was used.  The resultant 

value is then scaled by the standard deviation under 

hypothesis H0, and added to the expected value of the un-

spoofed test statistic.  The threshold is then normalized by 

the standard deviation under hypothesis H1.  The probability 

of detecting a spoofing attack is given by: 
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It is important to note here that Pd depends on the value of 

the spoofing detection statistic threshold, which is itself a 

function of the signal carrier-to-noise ratio, the noise 

variance, and the integration time.  The first two quantities 

vary with time due to changing environmental conditions 

(e.g., SV elevation), and the latter quantity is a parameter 

that the user may set.  In the interest of having a fixed 

integration time for all signals and to avoid complications 

from taking into account fluctuations in signal level during 

an integration period, it was deemed expedient to choose a 

fixed integration time for all signals (2.0 seconds was 

chosen in the current implementation).  As the probability of 

false alarm is constant, the probability of detection varies 

with carrier-to-noise ratio.  For a C/A code carrier-to-noise 

ratio of 50 dB-Hz at both the reference and UE receivers,  a 

false alarm probability of 0.2%, and a 2 second integration 

time, Pd is greater than 99.999%. 

C.  Implementation-specific issues 

The code for this work was based on a previously existing 

software GPS receiver
7
 written in the C and C++ 

programming languages.  Bit-wise parallel algorithms as 

described in Ref. 8 were implemented as an optimization.  

In this bit-wise approach, the data are stored as 32-bit 

integers.  The data are quantized to two bits, with the sign 

bits from one set of 32 samples stored in one integer, and 

the associated magnitude bits in another.  The carrier 

replicas are similarly packed into integers with sign and 

magnitude being two separate words.  In the course of 

tracking the C/A code, the receiver stores the quadrature 

carrier replica used for each data stream, as well as a copy 

of the data itself.  Thus to execute a cross-correlation, we 

must multiply and accumulate four things: the carrier 

replicas from both the reference and UE receivers, and the 

associated data from the reference and UE receivers.  To 

enable a look-up table implementation all of the above 

inputs were split into 4-bit chunks.  The sign bits are all 

logically exclusive-or’ed together, leaving the data 

magnitude and carrier replica bits from each receiver.  The 4 

bits chunks of each of the above elements (dataref, dataue, 

carrierref, carrierue, sign) are combined into a 20 bit word and 

then used as an index into a pre-computed look-up table, 

where the value at that index is the result of multiplying and 

accumulating the two base-band mixed data streams.  It was 

determined that the largest possible accumulation value for 

4 samples could be stored in two bytes, so the resultant table 

size was 2
20

 *2 bytes = 2MB. 

IV. RESULTS 

Several different tests were conducted using this algorithm.  

Both tests shown here utilize data from a receiver located in 

Ithaca, New York (42.44 N, 76.48 W), and a receiver 

located in Austin, Texas (30.287N, 97.736W).  For both 

spoofing tests the receiver in Ithaca, NY was the reference 

receiver and the receiver in Austin, TX was the receiver 

under attack and needing detection of spoofing.  Figs. 3 and 

4 illustrate the spoofing test statistic uγ  and its expected 

value uγ  during the first spoofing test.  For this test, the 

signal was un-spoofed for the first 60 seconds, then the 

receiver was spoofed with the spoofer’s best estimate of the 

true signal for another 60 seconds, then at 120 seconds into 

the test the spoofer started moving the spoofed C/A code 

away from its estimate of the truth.  During this test only 

some of the visible signals were spoofed for the purpose of 

illustrating the receiver response to an unspoofed signal 

during a spoofing attack.  In a real attack, the spoofer would 
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both attempt to spoof all visible signals, and would likely 

not change the signal in the exact manner shown here.   

 
Fig. 3. Receiver response in the presence of spoofing. 

To understand the results presented in Figs. 3 and 4, one 

must first understand the nature of the spoofing attack used.  

In this attack, the spoofer transmits a C/A code replica that 

has its code phase aligned (as much as it is able) with the 

true C/A code phase at the target receiver.  The spoofer then 

increases its transmission power until it is slightly greater 

than the true signal power.  Once the victim receiver is 

tracking the spoofed signal, the spoofer may then alter the 

C/A code phase as desired.  During the un-spoofed portion 

of the first test, the expected value of the spoofing test 

statistic roughly matches the spoofing test statistic value.  

Once spoofing begins (i.e., at 60 seconds), the increased 

spoofer signal power causes the receiver’s automatic gain 

control (AGC) to reduce the gain.  This results in an 

increased expected value of the spoofing test statistic 

because the C/A code carrier-to-noise ratio has increased, 

which implies the P(Y) code carrier-to-noise ratio should 

increase.  This is shown in Fig. 3 at 60 seconds.  In truth, the 

P(Y) code is un-spoofed and the test statistic has a smaller 

but non-zero-mean value for several reasons: the gain has 

been decreased, the spoofer is spoofing with “truth” for this 

period so the spoofed C/A code phase may be still aligned 

with the P(Y) code phase, and the spoofed C/A signal 

carrier may not be exactly in quadrature with the true P(Y) 

signal carrier.  Some time after 120 seconds (once the 

spoofer has moved the true signal more than one P(Y) code 

chip period), the spoofing test statistic becomes zero mean, 

as one would expect in the presence of spoofing.  Fig. 4. 

illustrates the response of an un-spoofed signal while the 

receiver is being spoofed.  The AGC response to the 

spoofing signal results in a lowered (true) C/A code carrier-

to-noise ratio, and the expected value tracks the statistic 

closely the entire test.  These plots indicate that the loss 

factors used in calculating the expected P(Y) code power as 

a function of the C/A code power are correct. 

 

 
Fig. 4. Receiver response for an un-spoofed PRN in the 

presence of spoofing. 

In the second test, there was no spoofing for the first 80 

seconds, after which spoofing was begun.  Selected results 

from this test are shown in Figs. 5 and 6.  Fig. 5 shows the 

actual output of the receiver: the normalized test statistic 

minus the normalized spoofing detection threshold, thγγ − , 

normalized by the standard deviation under hypothesis H1.  

If this quantity is below zero, spoofing has been detected, if 

it is above zero no spoofing has been detected. 

 
Fig. 5. Receiver spoofing detection statistic minus threshold 

during a spoofing attack. 

The probability of detecting a spoofing attack for the same 

three signals shown in Fig. 5 is plotted in Fig. 6.  For the red 

dashed lines in Figs. 5 and 6, the carrier-to-noise ratios of 

both the UE (spoofed) and Reference C/A code signals were 

high, 50 dB-Hz and 47 dB-Hz, respectively, and the 

spoofing detection statistic is below the threshold shortly 

after spoofing begins.  The high carrier-to-noise ratios of 
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these signals leads to a very high probability of detection, as 

shown in Fig. 6, except for a period of approximately 20 

seconds right after spoofing begins, due to a drop in the 

carrier-to-noise ratio for that period when the UE tracking 

loops suffered some trauma from misalignment of the 

spoofed and true C/A codes.  For the black dash-dotted lines 

in Figs. 5 and 6 the UE (spoofed) and Reference C/A code 

signals were somewhat lower at 45 dB-Hz and 42 dB-Hz, 

respectively.  Recall that for the front-ends used in this test, 

the received P(Y) code power is approximately 8 dB lower 

than that of the C/A code.  Given the fixed probability of 

false alarm for all signals, this leads to a lower probability 

of detection, but any detection can be considered reliable 

due to the low probability of false alarm. 

   
Fig. 6.  Probability of detecting spoofing. 

For the solid blue lines in Figs. 5 and 6, the UE (un-

spoofed) and Reference C/A code signals were relatively 

low, at 38 dB-Hz and 42 dB-Hz, respectively.  Although the 

probability of detecting spoofing for this signal is quite low, 

there is no false alarm.  This low probability suggests that 

this spoofing detection method is not ideal for 

differentiating spoofed from un-spoofed signals in the 

presence of spoofing, even though it can successfully detect 

when spoofing is occurring. 

V.  DISCUSSION 

A. Detection Probability 

The low probability of detection for weak signals is of 

concern for this method.  Due to the large amount of 

attenuation of the P(Y) code from the narrow RF filter 

bandwidth, it may be desirable to scale to integration time 

inversely with signal power.  Although that was not done 

here, it is straightforward to implement, though it will add to 

the real-time computation burden. 

B.  Reference Station Spoofing 

One might suspect that spoofing of the reference receiver 

would not be a problem for the proposed architecture.  The 

reference receiver knows its location, and therefore, it might 

be able to use this knowledge in order to detect a spoofing 

attack.  In fact, a spoofer could attack the reference receiver 

using the method of Ref. 2 in a way that does not try to 

spoof its position or its receiver clock time.  Rather, this 

"auxiliary" spoofer would have another, more subtle goal in 

its spoofing attack.  It would seek to spoof the reference 

receiver about what is the proper P(Y) code signal that is in 

phase quadrature with each received C/A code signal.  

Given such spoofing, the reference receiver would not 

detect any error in its position or even in its receiver clock.  

It would, however, transmit an erroneous base-band-mixed 

quadrature signal to the UE receivers that it was supposed to 

aid in detecting spoofing.  If another spoofer, the main 

spoofer, then attacked the UE receivers using the same false 

P(Y) code in phase quadrature with each spoofed C/A code, 

then such an attack would defeat the present method and, 

indeed, the method of Ref. 4. 

VI. CONCLUSIONS 

In summary, a method for detecting spoofing of civil GPS 

signals in real-time has been implemented and tested.  This 

method seeks to verify the absence of spoofing by looking 

for strong cross correlations between two receivers, one a 

reference receiver and the other the potential spoofing 

victim, of the portion of the P(Y) code that passes through 

each receiver's narrow-band RF front-end.  This heavily 

filtered P(Y) code should be present in phase quadrature 

with the C/A codes of both receivers if neither is being 

spoofed.  Lack of a strong cross-correlation should indicate 

a spoofing attack. 

Several spoofing attacks were conducted, with the method 

successfully detecting spoofing (or lack thereof) in real-

time.  In the current implementation, the probability of 

missed detection is high for very weak signals, although all 

signals have a very small probability of false alarm. 
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