
Copyright © 2012 by Brady W. O’Hanlon, Mark L. Psiaki, Preprint from ION GNSS 2012

Jahshan A. Bhatti, and Todd E. Humphreys.

All rights reserved.

Real-Time Spoofing Detection Using Correlation

Between Two Civil GPS Receiver

Brady W. O’Hanlon, Mark L. Psiaki, Cornell University, Ithaca, NY

Todd E. Humphreys, Jahshan A. Bhatti, The University of Texas at Austin, Austin, TX

BIOGRAPHY

Brady W. O’Hanlon is a Ph.D. candidate in the School of

Electrical and Computer Engineering at Cornell University.

He received both his M.S. and B.S. in Electrical and

Computer Engineering from Cornell University. His

interests are in the areas of GNSS technology and

applications, GNSS security, and space weather.

Mark L. Psiaki is a Professor in the Sibley School of

Mechanical and Aerospace Engineering. He received a B.A.

in Physics and M.A. and Ph.D. degrees in Mechanical and

Aerospace Engineering from Princeton University. His

research interests are in the areas of GNSS technology,

applications, and integrity, spacecraft attitude and orbit

determination, and general estimation, filtering, and

detection.

Todd E. Humphreys is an assistant professor in the

department of Aerospace Engineering and Engineering

Mechanics at the University of Texas at Austin and Director

of the UT Radionavigation Laboratory. He received a B.S.

and M.S. in Electrical and Computer Engineering from Utah

State University and a Ph.D. in Aerospace Engineering from

Cornell University. His research interests are in estimation

and filtering, GNSS technology, GNSS-based study of the

ionosphere and neutral atmosphere, and GNSS security and

integrity.

Jahshan A. Bhatti is pursuing a Ph.D. in the Department of

Aerospace Engineering and Engineering Mechanics at the

University of Texas at Austin, where he also received his

M.S. and B.S degrees. He is a member of the UT

Radionavigation Laboratory. His research interests are in

the development of small satellites, software-defined radio

applications, space weather, and GNSS security and

integrity.

ABSTRACT

A real-time method for detecting GPS spoofing in a narrow-

bandwidth civilian GPS receiver has been implemented and

tested, both in the absence of and in the presence of

spoofing. The system was implemented as a software-

defined radio system on a personal computer, using a pair of

narrow-bandwidth radio front-ends that were geographically

separated, with data transmitted between the two over the

Internet.

The presence of a spoofing signal is determined by mixing

and accumulating the base-band quadrature channel samples

from the two receivers, with the aim of cross-correlating the

P(Y) code that should be present in both signals in the

absence of spoofing.

Several spoofing attacks were successfully detected in real-

time.

I. INTRODUCTION

As the reliance of the civilian community on GPS signals

for timing and positioning in mission-critical applications

grows, so does the vulnerability to and potential cost of an

attack via signal spoofing. GPS signal spoofing is a type of

attack whereby a GPS receiver is fooled into tracking

counterfeit signals, generally with the intention of

misleading the receiver with regards to position, time, or

both. In 2001 the U.S. Department of Transportation

warned of the vulnerability of civilian GPS receivers to

attacks such as spoofing
1
, and such attacks have since been

demonstrated by a variety of parties
2,3

.

Given the potential damage a successful spoofing attack

could inflict, detecting this kind of attack is of paramount

importance. The spoofing detection method implemented

here was proposed by Lo et al.
4
, and is based on the

presumed security of the encrypted P(Y) code. This method

has previously been successfully implemented using two

narrow-bandwidth civil receiver operating in a post-

processing mode (i.e., not done in real-time, and using a

software receiver written in MATLAB)
5,6

. This paper seeks

to examine the efficacy of this method in the context of a

narrow-bandwidth real-time software receiver using only

those components that would normally be used in a civilian

receiver (that is, using only a patch antenna rather than a

high-gain antenna and no additional timing hardware).

The Lo method assumes that a spoofer can only spoof the

C/A code, and in doing so thereby changes the relationship

between the C/A code and P(Y) for a particular spoofed

signal. Let us assume that there exists a “reference”

receiver that is trusted (that is, the signals are believed

genuine), and a “user equipment” receiver which may or

may not be under a spoofing attack. If one can isolate that

portion of the signal that should contain the P(Y) code from

the reference receiver, a cross-correlation of this data and

similar data from the user equipment receiver can be carried

2

out. Only if the user equipment receiver is not being

spoofed should there be a large correlation value due to the

cross-correlation of the P(Y) code from both sets of data.

Properly executing this cross-correlation requires isolating

the portion of the signal that should contain the P(Y) code

and temporal alignment of the two data streams.

A good discussion on the probable efficacy of several other

spoofing detection methods can be found in the paper by

Humphreys.

Section II of this paper contains a description of the

hardware used in this work. Section III is an overview of

the software used in implementing this spoofing detection

method including the algorithm in general terms, derivation

and analysis of the spoofing detection statistic threshold,

and peculiarities that are necessary due to the particular

software receiver used. Section VI contains initial results

from testing the algorithm under a variety of conditions

including when the UE receiver is being subjected to a

spoofing attack. Section V contains a discussion of the

results, including the possibility of spoofing of the reference

receiver, and Section VI contains conclusions.

II. HARDWARE OVERVIEW

Front-end
Software

receiver

Base-band mixed data

(quadrature channel) for

every tracked signal

Trusted

Receiver

Front-end

Tracks C/A code,

produces estimates of

phase and Doppler

UE Receiver

Needing

Spoofing

Detection

SSH tunnel
Base-band mixed data

(quadrature channel) for

every tracked signal

Spoofing

test statistic
∑

Fig. 1. Spoofing Detection System Architecture

Data for this experiment was collected using custom

designed radio-frequency front-ends (RFEs) paired with

data acquisition units. The RFEs used have intermediate

frequency filters with a bandwidth of 2.5 MHz, and produce

2-bit quantized data at a sampling frequency of

approximately 5.7 MHz. The quantized data is recorded to

a personal computer using a data acquisition peripheral and

then transmitted over the internet from the user equipment

receiver to the reference receiver, where all processing is

done. This system is symmetric in the sense that it does not

matter if the spoofing detection is done at the reference or

UE receiver; it was done this way for convenience, though it

is likely more scalable if processing is done at the UE

receiver. It is important to note that this data should be

transmitted in some secure manner to ensure the avoidance

of man-in-the-middle type attacks where the data is

intercepted by a third party and tampered with. In this

implementation, a secure shell tunnel was used, which adds

somewhat to the computational burden. As the sampling

rate is only 5.7 MHz and the data are sampled with 2-bit

quantization, this means the data link between the reference

and user equipment receivers need only support rates of

11.4 megabits per second, which is well within the

capabilities of standard internet connectivity. A block

diagram of the system architecture is shown in Fig. 1.

In order to perform a realistic spoofing attack without

broadcasting any signals over the air, the receiver-spoofer

was connected via an RF combiner to the UE receiver as

shown in Fig. 2. Although in a real attack the spoofing

signals would be transmitted wirelessly to the UE receiver,

the setup-up used presents a very similar signal from the

point of view of the UE receiver.

Receiver-

spoofer

∑
UE receiver

front-end

Spoofing

detection

system
Receiver-

spoofer

∑
UE receiver

front-end

Spoofing

detection

system

Fig. 2. Receiver/Spoofer Connection.

All processing was done on a personal computer with a

quad-core Intel i7 930 CPU, and only standard

hemispherical patch antennas were used at both the

reference and user equipment receivers. The current

implementation can process data with 10 signals common to

both receivers at approximately 3 times faster than real-

time, implying up to 30 common channels can be processed

in real-time.

III. SOFTWARE OVERVIEW

In this section we will examine the general theory behind

the spoofing detection method implemented here, how the

spoofing detection statistic threshold was calculated, and

general algorithms required due to the particular software

receiver that was used.

A. Spoofing detection algorithm

In this implementation of the Lo spoofing detection method,

temporal alignment of the two data streams is the first step

taken. Rather than time-stamping the data streams using

additional equipment, the embedded navigation message

data is used. To do this, both data streams are tracked until

the time of week (TOW) has been decoded in both. Using

this information, the latency between the two streams can be

determined. Whichever stream lags is then tracked while

the other stream is buffered, until the receiver is processing

the exact same C/A code period on both data streams. The

estimated start time of the n
th

 C/A code period for the

reference receiver is defined as tref(n). Similarly, the

estimated start time of the n
th

 C/A code period for the user

equipment receiver is defined as tue(n). Given that we know

tref(n) and tue(n) from the normal, continuous tracking of the

C/A signal, and given that any group delay between the C/A

3

and P(Y) codes is determined by the transmitter and

common to both the reference and UE receivers, the P(Y)

code phase in the reference receiver data stream at tref(n)

should be the same as the P(Y) code phase in the UE

receiver data stream at time tue(n). The effects of different

multipath errors on the C/A and P(Y) codes are assumed

negligible due to the low-multipath environment of the

antennas used here, although in general this may not be true.

Due to the low sampling rate (5.7 MHz) of the receivers

used in this work as compared to the chipping rate of the

P(Y) code (10.23 MHz) there is the question of sub-sample

alignment as well as the coarse alignment described above.

That is, to achieve a large cross-correlation value, we must

temporally align the P(Y) codes to within a fraction of a

chip. The P(Y) chip period of about 97 ns and the data

sampling period of 175 ns means that if alignment is done

only to the nearest sample it could be off by as much as ½

sample, or 0.9 chips, leading to significant correlation loss.

However, as the sampling period is not a multiple of the

P(Y) code chipping period, this error will vary over the

course of each accumulation, sometimes being close to zero,

and having a mean value 0.45 chips. The computational

resources that would be required to interpolate the data on a

sample-by-sample basis to the estimated start times of the

P(Y) code chips was deemed prohibitively expensive, so

instead we have elected to simply choose the sample nearest

the estimated P(Y) code chip start time, updating it every

millisecond based on the estimated C/A code start time.

The GPS C/A and P(Y) codes are both transmitted on the

L1 frequency, with the C/A code being transmitted ninety

degrees out of phase with respect to the P(Y) code. As the

P(Y) code is encrypted and generally unavailable to

civilians, it is necessary to track the C/A code in such a way

that the phase is known.

A phase-locked loop (PLL) is used to accurately measure

the phase of the desired C/A code signal. The PLL

discriminator requires mixing of the signal with both an in-

phase and a quadrature carrier replica. The PLL is

formulated to steer the carrier such that the C/A code power

lies entirely in the in-phase channel after carrier wipe-off.

As the P(Y) code is in quadrature with the C/A code, all that

is required to isolate the portion of the signal that should

contain the P(Y) code is to save a replica of the data after

mixing with the quadrature carrier replica.

Once the portion of the signal containing P(Y) code has

been isolated in both the reference receiver and the user

equipment receiver, it only remains to multiply the two data

streams on a sample-by-sample basis and accumulate the

result. If the receiver is not being spoofed, one is essentially

computing the autocorrelation of the P(Y) code as modified

by the receiver front-end and with the inclusion of noise.

B. Detection Threshold Calculation and Analysis

It is necessary to analyze the cross-correlation spoofing

detection statistic in order to determine how much

integration time would be required in order to achieve a

reasonably small probability of false alarm and, at the same

time, a reasonably large probability of detecting an actual

spoofing attack. This analysis is particularly important

given the unusual approach used here, one which relies on a

heavily filtered version of the P(Y) code that retains only

the central 2.5 MHz of its 20 MHz bandwidth.

A full treatment of the spoofing detection statistic derivation

is not provided here; the reader is referred to Refs. 5 and 6

for thorough coverage of this topic. An abbreviated

discussion is provided in the interest of highlighting some of

the challenges addressed in making this system operate in

real-time.

The un-normalized spoofing detection statistic is defined as:

∑
=

=
M

i

qbiqaiu yy
0

γ (1)

where yqai is the quadrature base-band-mixed signal from

Receiver A that is sampled at time ti, and yqbi is the

quadrature base-band-mixed signal from Receiver B

sampled at the same time. The number of samples summed

together to produce the spoofing detection statistic is M, and

i indicates the index within the summation period. The

quadrature base-band mixed signal from Receiver A can be

modeled as:

qaiiYfpaqai ntPAy +=)(5.0 (2)

where Apa is the P(Y) code amplitude at receiver A, PYf is

the P(Y) code after filtering by the RF front-end at time ti,

and nqai is the quadrature base-band noise term, which is an

element from a discrete-time Gaussian white noise

sequence. Replacing the subscript a in equation 2 with b

gives the model for the signal from Receiver B. The

statistics of nqai are given by:

0}{ =qainE ,
22

2

1
}{ RFaqainE σ= , 0}{ =qajqainnE for

all ji ≠ (3)

Here, 2

RFaσ indicates the effective variance of the noise in

the raw RF samples from Receiver A. The subscript a here

can similarly be replaced with b to describe the quadrature

base-band noise term for Receiver B. The expected value of

the spoofing test statistic under the hypothesis H0 that there

is no spoofing at Receiver B is:

pybpya
RFbRFa

uu

N
C

N
CtM

HE

∆=

=

00

0}|{

σσ

γγ

 (4)

The C/N0 terms here are the carrier-to-noise ratios of the

P(Y) code at Receivers A and B. This quantity is computed

from the carrier-to-noise ratios of the C/A code at each

receiver, and takes into account various loss factors. Loss

factors include the decrement in transmitted P(Y) code

4

power as compared to C/A code power, the effect of the

front-end filtering on both the C/A and the P(Y) codes, and

other minor factors. Again, see Refs. 5 and 6 for the

complete derivations. Using the methods described in Refs.

5 and 6, the loss factor computed for the UE receiver was

7.92 dB, and the loss factor computed for the reference

receiver was 8.06 dB. The variance of the spoofing test

statistic can be computed under two hypotheses: hypothesis

H0 that there is no spoofing at Receiver B, and hypothesis

H1 that Receiver B is being spoofed.

}{}|{
2

0

22

| 0 uuH EHE
u

γγσ γ −= (5)

}|{ 1

22

| 1
HE uHu

γσ γ = (6)

The derivation of the variance of the spoofing test statistic

under hypothesis H1 makes the assumption that the P(Y)

code power at Receiver B is zero due to code and carrier

phase misalignment of the spoofed C/A code with the true

P(Y) code. Obviously the P(Y) code is still present in the

data, but due to this misalignment the P(Y) code cross-

correlation power will be negligible. It will later prove

useful to normalize the spoofing test statistic; a reasonable

normalization to use is to divide by the standard deviation

under the hypothesis H1.

1|Hu uγ
σγγ = (7)

 Given the spoofing test statistic expected value and

variance, a suitable normalized test statistic threshold is

given as:

10 ||))1,0,((HufaHth uu γγ σγασγ += n
o
r
m
i
n
v

 (8)

where norminv is the inverse normal cumulative distribution

function in MATLAB. In order to avoid inclusion of this

function in the real-time code, the norminv function is pre-

calculated using a fixed probability of false alarm, αfa, and

the result stored as a constant. For all tests done here, a

false alarm probability of 0.2% was used. The resultant

value is then scaled by the standard deviation under

hypothesis H0, and added to the expected value of the un-

spoofed test statistic. The threshold is then normalized by

the standard deviation under hypothesis H1. The probability

of detecting a spoofing attack is given by:

γγ
π

γγ
γγ

ddHPP
thth

d)5.0exp(
2

1
)|(2

1 ∫∫ ∞−∞−
−== (9)

It is important to note here that Pd depends on the value of

the spoofing detection statistic threshold, which is itself a

function of the signal carrier-to-noise ratio, the noise

variance, and the integration time. The first two quantities

vary with time due to changing environmental conditions

(e.g., SV elevation), and the latter quantity is a parameter

that the user may set. In the interest of having a fixed

integration time for all signals and to avoid complications

from taking into account fluctuations in signal level during

an integration period, it was deemed expedient to choose a

fixed integration time for all signals (2.0 seconds was

chosen in the current implementation). As the probability of

false alarm is constant, the probability of detection varies

with carrier-to-noise ratio. For a C/A code carrier-to-noise

ratio of 50 dB-Hz at both the reference and UE receivers, a

false alarm probability of 0.2%, and a 2 second integration

time, Pd is greater than 99.999%.

C. Implementation-specific issues

The code for this work was based on a previously existing

software GPS receiver
7
 written in the C and C++

programming languages. Bit-wise parallel algorithms as

described in Ref. 8 were implemented as an optimization.

In this bit-wise approach, the data are stored as 32-bit

integers. The data are quantized to two bits, with the sign

bits from one set of 32 samples stored in one integer, and

the associated magnitude bits in another. The carrier

replicas are similarly packed into integers with sign and

magnitude being two separate words. In the course of

tracking the C/A code, the receiver stores the quadrature

carrier replica used for each data stream, as well as a copy

of the data itself. Thus to execute a cross-correlation, we

must multiply and accumulate four things: the carrier

replicas from both the reference and UE receivers, and the

associated data from the reference and UE receivers. To

enable a look-up table implementation all of the above

inputs were split into 4-bit chunks. The sign bits are all

logically exclusive-or’ed together, leaving the data

magnitude and carrier replica bits from each receiver. The 4

bits chunks of each of the above elements (dataref, dataue,

carrierref, carrierue, sign) are combined into a 20 bit word and

then used as an index into a pre-computed look-up table,

where the value at that index is the result of multiplying and

accumulating the two base-band mixed data streams. It was

determined that the largest possible accumulation value for

4 samples could be stored in two bytes, so the resultant table

size was 2
20

 *2 bytes = 2MB.

IV. RESULTS

Several different tests were conducted using this algorithm.

Both tests shown here utilize data from a receiver located in

Ithaca, New York (42.44 N, 76.48 W), and a receiver

located in Austin, Texas (30.287N, 97.736W). For both

spoofing tests the receiver in Ithaca, NY was the reference

receiver and the receiver in Austin, TX was the receiver

under attack and needing detection of spoofing. Figs. 3 and

4 illustrate the spoofing test statistic uγ and its expected

value uγ during the first spoofing test. For this test, the

signal was un-spoofed for the first 60 seconds, then the

receiver was spoofed with the spoofer’s best estimate of the

true signal for another 60 seconds, then at 120 seconds into

the test the spoofer started moving the spoofed C/A code

away from its estimate of the truth. During this test only

some of the visible signals were spoofed for the purpose of

illustrating the receiver response to an unspoofed signal

during a spoofing attack. In a real attack, the spoofer would

5

both attempt to spoof all visible signals, and would likely

not change the signal in the exact manner shown here.

Fig. 3. Receiver response in the presence of spoofing.

To understand the results presented in Figs. 3 and 4, one

must first understand the nature of the spoofing attack used.

In this attack, the spoofer transmits a C/A code replica that

has its code phase aligned (as much as it is able) with the

true C/A code phase at the target receiver. The spoofer then

increases its transmission power until it is slightly greater

than the true signal power. Once the victim receiver is

tracking the spoofed signal, the spoofer may then alter the

C/A code phase as desired. During the un-spoofed portion

of the first test, the expected value of the spoofing test

statistic roughly matches the spoofing test statistic value.

Once spoofing begins (i.e., at 60 seconds), the increased

spoofer signal power causes the receiver’s automatic gain

control (AGC) to reduce the gain. This results in an

increased expected value of the spoofing test statistic

because the C/A code carrier-to-noise ratio has increased,

which implies the P(Y) code carrier-to-noise ratio should

increase. This is shown in Fig. 3 at 60 seconds. In truth, the

P(Y) code is un-spoofed and the test statistic has a smaller

but non-zero-mean value for several reasons: the gain has

been decreased, the spoofer is spoofing with “truth” for this

period so the spoofed C/A code phase may be still aligned

with the P(Y) code phase, and the spoofed C/A signal

carrier may not be exactly in quadrature with the true P(Y)

signal carrier. Some time after 120 seconds (once the

spoofer has moved the true signal more than one P(Y) code

chip period), the spoofing test statistic becomes zero mean,

as one would expect in the presence of spoofing. Fig. 4.

illustrates the response of an un-spoofed signal while the

receiver is being spoofed. The AGC response to the

spoofing signal results in a lowered (true) C/A code carrier-

to-noise ratio, and the expected value tracks the statistic

closely the entire test. These plots indicate that the loss

factors used in calculating the expected P(Y) code power as

a function of the C/A code power are correct.

Fig. 4. Receiver response for an un-spoofed PRN in the

presence of spoofing.

In the second test, there was no spoofing for the first 80

seconds, after which spoofing was begun. Selected results

from this test are shown in Figs. 5 and 6. Fig. 5 shows the

actual output of the receiver: the normalized test statistic

minus the normalized spoofing detection threshold, thγγ − ,

normalized by the standard deviation under hypothesis H1.

If this quantity is below zero, spoofing has been detected, if

it is above zero no spoofing has been detected.

Fig. 5. Receiver spoofing detection statistic minus threshold

during a spoofing attack.

The probability of detecting a spoofing attack for the same

three signals shown in Fig. 5 is plotted in Fig. 6. For the red

dashed lines in Figs. 5 and 6, the carrier-to-noise ratios of

both the UE (spoofed) and Reference C/A code signals were

high, 50 dB-Hz and 47 dB-Hz, respectively, and the

spoofing detection statistic is below the threshold shortly

after spoofing begins. The high carrier-to-noise ratios of

6

these signals leads to a very high probability of detection, as

shown in Fig. 6, except for a period of approximately 20

seconds right after spoofing begins, due to a drop in the

carrier-to-noise ratio for that period when the UE tracking

loops suffered some trauma from misalignment of the

spoofed and true C/A codes. For the black dash-dotted lines

in Figs. 5 and 6 the UE (spoofed) and Reference C/A code

signals were somewhat lower at 45 dB-Hz and 42 dB-Hz,

respectively. Recall that for the front-ends used in this test,

the received P(Y) code power is approximately 8 dB lower

than that of the C/A code. Given the fixed probability of

false alarm for all signals, this leads to a lower probability

of detection, but any detection can be considered reliable

due to the low probability of false alarm.

Fig. 6. Probability of detecting spoofing.

For the solid blue lines in Figs. 5 and 6, the UE (un-

spoofed) and Reference C/A code signals were relatively

low, at 38 dB-Hz and 42 dB-Hz, respectively. Although the

probability of detecting spoofing for this signal is quite low,

there is no false alarm. This low probability suggests that

this spoofing detection method is not ideal for

differentiating spoofed from un-spoofed signals in the

presence of spoofing, even though it can successfully detect

when spoofing is occurring.

V. DISCUSSION

A. Detection Probability

The low probability of detection for weak signals is of

concern for this method. Due to the large amount of

attenuation of the P(Y) code from the narrow RF filter

bandwidth, it may be desirable to scale to integration time

inversely with signal power. Although that was not done

here, it is straightforward to implement, though it will add to

the real-time computation burden.

B. Reference Station Spoofing

One might suspect that spoofing of the reference receiver

would not be a problem for the proposed architecture. The

reference receiver knows its location, and therefore, it might

be able to use this knowledge in order to detect a spoofing

attack. In fact, a spoofer could attack the reference receiver

using the method of Ref. 2 in a way that does not try to

spoof its position or its receiver clock time. Rather, this

"auxiliary" spoofer would have another, more subtle goal in

its spoofing attack. It would seek to spoof the reference

receiver about what is the proper P(Y) code signal that is in

phase quadrature with each received C/A code signal.

Given such spoofing, the reference receiver would not

detect any error in its position or even in its receiver clock.

It would, however, transmit an erroneous base-band-mixed

quadrature signal to the UE receivers that it was supposed to

aid in detecting spoofing. If another spoofer, the main

spoofer, then attacked the UE receivers using the same false

P(Y) code in phase quadrature with each spoofed C/A code,

then such an attack would defeat the present method and,

indeed, the method of Ref. 4.

VI. CONCLUSIONS

In summary, a method for detecting spoofing of civil GPS

signals in real-time has been implemented and tested. This

method seeks to verify the absence of spoofing by looking

for strong cross correlations between two receivers, one a

reference receiver and the other the potential spoofing

victim, of the portion of the P(Y) code that passes through

each receiver's narrow-band RF front-end. This heavily

filtered P(Y) code should be present in phase quadrature

with the C/A codes of both receivers if neither is being

spoofed. Lack of a strong cross-correlation should indicate

a spoofing attack.

Several spoofing attacks were conducted, with the method

successfully detecting spoofing (or lack thereof) in real-

time. In the current implementation, the probability of

missed detection is high for very weak signals, although all

signals have a very small probability of false alarm.

REFERENCES

[1] “Vulnerability assessment of the transportation infrastructure

relying on the Global Positioning System,” Tech. rep., John

A. Volpe National Transportation Systems Center, 2001.

[2] Humphreys, T.E., Ledvina, B.M., Psiaki, M.L., O'Hanlon, B.,

and Kintner, P.M. Jr., "Assessing the Spoofing Threat:

Development of a Portable GPS Civilian Spoofer,"

Proceedings of the ION GNSS 2008, Sept. 16-19, 2008,

Savannah, GA, pp. 2314-2325.

[3] Warner, J.S. and Johnston, R.G., “A Simple Demonstration

That the Global Positioning System (GPS) is Vulnerable to

Spoofing," Journal of Security Administration, 2003.

[4] Lo, S., De Lorenzo, D., Enge, P., Akos, D., and Bradley, P.,

"Signal Authentication, A Secure Civil GNSS for Today,"

Inside GNSS, Vol. 4, No. 5, Sept./Oct. 2009, pp. 30-39.

[5] Psiaki, M.L., O’Hanlon, B.W., Bhatti, J.A., and Humphreys,

T.E., “Civilian GPS Spoofing Detection Based on Dual-

Receiver Correlation of Military Signals,” Proceedings of the

ION GNSS 2011, Portland OR, pp 2619-2645.
[6] Psiaki, M., O’Hanlon, B., Bhatti, J., Shepard, D., Humphreys,

T., “GPS Spoofing Detection via Dual-Receiver Correlation

of Military Signals,” IEEE Transactions on Aerospace and

Electronic Systems, in press.

7

[7] Humphreys, T.E., Psiaki, M.L., Kintner, P.M. Jr., Ledvina,

B.M., “GNSS Receiver Implementation on a DSP: Status,

Challenges, and Prospects,” Proc. 2006 ION GNSS Conf.,

Institute of Navigation, Fort Worth TX, pp. 237002382.

[8] Ledvina, B.M., Psiaki, M.L., Powell, S.P., and Kintner, P.M.

Jr., “Bit-Wise Parallel Algorithms for Efficient Software

Correlation Applied to a GPS Software Receiver," IEEE

Transactions on Wireless Communications, Vol.3, No.5,

September 2004.

