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A method has been developed for performing autonomous Lunar orbit determination 
based on measurements of the times at which stars set behind or rise above the Lunar limb.  
This system is being developed as a possible technology for use in the Lunar exploration 
initiative because it enables increased autonomy of operations near the Moon.  The system 
consists of a specially modified star camera and an extended Kalman filter.  The star camera 
keeps track of known stars in its field of view and reports the times when stars suddenly 
appear or disappear without crossing the edge of the field of view.  These are times that the 
known line-of-sight vectors to the stars cross the Lunar limb, and this knowledge translates 
into position information.  The Kalman filter uses a series of star occultation/rising times 
and an orbital dynamics model to estimate the spacecraft’s position and velocity.  An 
observability analysis shows that this system is strongly observable, and a truth-model 
simulation has demonstrated an absolute position accuracy of 70 m per axis and an absolute 
velocity accuracy of 0.045 m/s per axis when using a Lunar topographic map with an RMS 
altitude accuracy of 100 m and a Lunar gravity model with an RMS accuracy of 1x10-5 m/s2.   

I. Introduction 
HE current NASA initiative to explore the Moon has given rise to a renewed impetus for developing techniques 
for spacecraft operations in the Moon's vicinity.  One useful technology would be an ability to do autonomous 

orbit determination for Lunar-orbiting satellites.  Such an ability could reduce the cost of operations and enhance 
their reliability through elimination of the need for attention from Earth-based tracking stations.  The usefulness of 
autonomy has been recognized in 1, which proposes a means to achieve autonomous orbit determination for a pair of 
spacecraft, one a Lunar orbiter and the other located in a halo orbit about the L2 Lunar libration point. 

The present paper defines and analyzes another type of autonomous orbit determination method that is 
appropriate for use in Lunar orbits.  It estimates a spacecraft's orbit based on measurements of the times when stars 
are occulted behind the Lunar limb or rise above it.  This measurement concept is illustrated in Fig. 1.  Each such 
measurement places the spacecraft on a surface that is roughly conical; its vertex is at the star, and its sides are 
tangent to the Moon's surface.  The large distance of any star from the Moon causes this surface to be more like a 
cylinder whose axis is parallel to the known direction to the star and whose location and diameter make the cylinder 
tangent to the Moon.  Six such measurements, if geometrically independent, should suffice to determine the six 
elements of a spacecraft's orbit about the Moon. 

There already exist autonomous orbit determination concepts that employ a star sensor.  A survey of early work 
on autonomous orbit determination is contained in 2.  This survey discusses the idea known as the space sextant, in 
which autonomous orbit determination is accomplished by using an estimator that operates on measurements of the 
nadir direction and of the directions to stars.  Similar ideas that use bearing measurements to celestial bodies are 
contained in 3,4.  The star occultation measurement proposed here has already been suggested 5,6, but most past work 
focused on Earth-orbiting satellites. Such a system is not likely to perform well for Earth orbits because of the large 
uncertainties in occultation/rising height due to the variable effects of the Earth's atmosphere. Several previous 
analyses concentrated on addressing and overcoming these uncertainties 7,8,9,10.  An experiment performed on the 
Gemini X mission found Earth orbit errors of about 1.8 km RMS 11.  One study, involving simulation of a 
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circumlunar mission with occultations by both the Earth and Moon, reported final position errors of one or more 
miles 12.  

Two of the principal error sources that degrade the performance of a star occultation system are uncertainty in 
Lunar topographic maps and uncertainty in Lunar gravity field models.  Topography uncertainties lead directly to 
uncertainty in the position information that is contained in the measurement.  Gravity model uncertainty degrades 

the accuracy of the dynamic 
propagation phases, which 
are needed in order to string 
together the multiple 
measurements required to 
fully determine an orbit. 

The proposed system has 
the potential to achieve much 
better accuracy than any of 
the predecessor star-based 
autonomous orbit 
determination systems.  
Occultation/rising measure-
ments provide much better 
locational precision than do 
the measurements used in 
other concepts.  Most 
previous work using 
occultation measurements for 
orbit determination did not 
employ Kalman filtering 
techniques because the 
method was not very widely 
known or applied when the 
studies were conducted. By 
using only Lunar (as opposed 

to Earth) occultations, the new system avoids atmospheric uncertainty as a source of error, and other uncertainties 
(such has Lunar topography and gravity) are known to much greater accuracies presently than when the previous 
occultation studies were performed.  

The current emphasis on Lunar exploration has given rise to several missions that are likely to improve 
knowledge of the Moon's topography and gravity field.  The Japanese mission SELenological and ENgineering 
Explorer (SELENE), which was scheduled for an August 16, 2007 launch but was postponed, will map the Moon's 
gravity field 13.  The Lunar Reconnaissance Orbiter mission will carry a laser altimeter that will be used to map the 
Moon's topography with 1 m RMS errors on a 100 m grid resolution, and this instrument may also be used for orbit 
determination and gravity model refinement 14.  The expected improvements in knowledge of the Moon's 
geographic shape and gravity field will serve to improve the potential accuracy of this paper's autonomous orbit 
determination method. 

The five contributions of this paper are as follows:  First, it develops a dynamics model and a measurement 
model for use in an autonomous orbit determination extended Kalman filter (EKF) that is based on star 
occultation/rising measurements.  Second, it explores the error sources in these measurements.  Third, it implements 
an EKF based on the developed models.  Fourth, it develops and performs a linearized observability/constructability 
analysis of the proposed system.  Fifth, it applies its EKF to data from a truth-model simulation in order to 
determine the system's expected performance. 

This paper describes its models, its Kalman filter, and its observability and truth-model simulation studies in 
four main sections plus conclusions.  Section II develops the system’s dynamics model and measurement model, 
and it analyzes the error sources in the measurement model.  Section III applies the extended form of the Square-
Root Information Filter (SRIF) in order to create an algorithm for estimating the spacecraft orbit from the 
occultation/rising measurements.  The SRIF is specially tailored to deal with the possibility that a batch of star 
occultation/rising measurements will be distributed over a single filter sample interval.  This section also explains 
how to perform a linearized observability calculation for the system.  Section IV documents the truth-model 

 
Points where Lines of 
Sight Graze the Lunar 

Surface at the Time of Star 
Occultations/ Risings 

Figure 1.  Illustration of two star occultation/rising measurements along a 
spacecraft's Lunar orbit. 
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simulation whose data have been used to test the filter’s performance.  Section V discusses the results of the 
observability analysis and the results of the filter performance tests.  A summary and conclusions are presented in 
Section VI. 

II. Models of Orbital Dynamics and Star Occultation/Rising Measurements 
This section defines the state vector, the orbital dynamics model, and the star occultation measurement model 

that are used in the Lunar orbit determination filter.  It also analyzes the proposed measurement model and suggests 
possible enhancements.  The state vector and the dynamics model borrow heavily from the model in 15 and are 
presented here only in a brief summary form. 

A. State Vector and Dynamics Model 
The Lunar orbit determination Kalman filter uses the following 10-dimensional state vector: 

 T],,,[ TTT βδavrx =  (1) 

where r is the spacecraft Cartesian position vector in Moon-Centered, Inertially-Fixed (MCIF) coordinates, v is the 
spacecraft Cartesian velocity vector in MCIF coordinates, δa is a disturbance acceleration vector in MCIF 
coordinates, and β is a solar radiation pressure coefficient.  The dimensional units of β are area divided by mass. 

The position and velocity of the spacecraft evolve according to the usual laws of dynamics under the assumption 
that the only forces are gravity, solar radiation pressure, and the forces that cause the disturbance acceleration δa.  
The first-order nonlinear equations that describe this motion are: 
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where g(r,t) is the gravitational acceleration vector, rs is the position of the Sun, and ps() is the solar radiation 
pressure, which varies with the distance to the Sun.  The function g(r,t) includes the main 1/r2 central force terms 
and higher-order spherical harmonic corrections that result from the Moon's non-spherical mass distribution.  It also 
includes the effects of differences between the Earth's and the Sun's gravitational accelerations at the Moon's center 
of mass and at the spacecraft.  g(r,t) depends on the time t because of the attitude motion of the Moon with respect 
to MCIF coordinates and because of the motion of the Earth and the Sun relative to MCIF coordinates. 

A first-order discrete-time Gauss-Markov process is used to model the dynamic variations of the acceleration 
disturbance: 

 ak
t-

akk
t-

k akkakk ee νττ σδδ /2/
1 1 ΔΔ

+ −+= aa  (3) 

This equation propagates between the sample times tk and tk+1, and Δtk = tk+1 - tk is the sample interval.  This Gauss-
Markov process is driven by the three-dimensional discrete-time Gaussian white-noise sequence νak, which has 
statistics E{νak} = 0 and E{νakνak

T} = I.  The first-order time constant of this process is τak = τanom[||r(tk)||/ranom]1.5, 
and the target "steady-state" standard deviation of the process is σak = σanom[ranom/||r(tk)||]3.  τanom and σanom are 
nominal values for these quantities that apply when the spacecraft distance to the Moon's center takes on the 
nominal value ||r(tk)|| = ranom.  The altitude dependencies of τak and σak have been chosen roughly to reflect the types 
of variations that one might expect from modeling errors in the higher harmonics of the Lunar gravity model g(r,t). 

A discrete-time random walk is used to model the dynamic propagation of the solar radiation pressure parameter 
from time tk to time tk+1: 
 kkkk νt ββσββ Δ+=+1  (4) 

The scalar discrete-time Gaussian white-noise sequence νβk drives this random walk.  It has statistics E{νβk} = 0 and 
E{νβk

2} = 1.   The intensity of the driving white noise is parameterized by σβ. 
The continuous-time differential equation model for the dynamics of r(t) and v(t) is transformed into a discrete-

time model via numerical integration of the differential equations.  This integration takes the usual form: 
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Equation (5b) models the disturbance acceleration δa and the solar radiation pressure parameter β as being constants 
during the sample interval from tk to tk+1.  These constants equal their average values over this interval. 

Equations (3)-(5b) can be lumped into the generic discrete-time difference equation model form 

 ),(1 kkkk wxfx =+  (6) 

with xk and xk+1 being the state vectors at the respective sample times tk and tk+1 and wk being the discrete-time 
process-noise vector.  It has four elements and is defined as follows: 

 T
kakk ],[ T

βνν=w  (7) 

It is a Gaussian white-noise process with statistics E{wk} = 0 and E{wkwk
T} = I. 

A linearized version of the dynamics model in Eq. (6) is required by the EKF and the observability analysis.  
The linearized model uses the state-transition and disturbance-effectiveness Jacobian matrices 
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Calculation of the r and v components of these matrices is carried out by integrating matrix differential equations.  
The required differential equations are derived in the usual way by differentiating the initial value problem 
associated with Eqs. (2), (5a), and (5b) with respect to its initial conditions in order to compute the r and v 
components of Φk or with respect to its forcing terms in order to compute the r and v components of Γk.  Note that 
the computations implemented in the present study neglect the differentiation of the formulas for τak and σak with 
respect to r because their dependence on r has a negligible effect on Φk and Γk. 

B. Measurement Model 
The basic measurement of this system is the time that a star occults behind the Lunar limb or the time that a star 

rises from behind it.  Let this time be called jt~ , where j is the star catalog index of the star that occults or rises.  A 
standard star camera would need software modifications in order to return measurements of jt~ .  The modified 
algorithm would look for non-occulted stars in the camera field of view (FOV) in order to determine the camera 
orientation, and it would identify all detected stars in its FOV.  If a detected star disappeared without wandering off 
the edge of the FOV, then this disappearance would be deemed a Lunar occultation, and the time of the 
disappearance would be reported as jt~ .  Likewise, if any catalogued star suddenly appeared in the FOV without 
having entered it from the edge, then this appearance would be deemed a rising from behind the Lunar limb, and its 
time of appearance would be reported as jt~ . 

It is difficult to deal with time measurements in a Kalman filter because the filter uses time as the independent 
variable of its dynamic model.  Therefore, it is preferable to model the occultation/rising time measurement in an 
altered form.  A suitable transformation of the time measurement treats it as a measurement of the minimum Lunar 
altitude along the line-of-sight vector from the spacecraft to the star.  This re-interpretation of the jt~  measurement 
is depicted in Fig. 2.  The figure depicts j

minr  as being the position vector of the minimum-altitude point along the 
unit-normalized line-of-sight (LOS) vector j

sr̂  that points from the spacecraft position )~( jtr  toward star j.  The 
scalar αmin is the distance from the spacecraft position to the minimum-altitude point.  

Suppose that the star is far enough from the Moon so that parallax caused by orbital motion around the Moon is 
negligible.  Under this assumption, the star direction j

sr̂  as viewed from the spacecraft does not depend on the 
spacecraft position )~( jtr .  
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A simple altitude measurement model can be developed if one assumes that the Moon is a perfect sphere of 

radius aM.  Referring to the geometry of Fig. 2, this model takes the form: 

 jM
j
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jj

min
j at~ht~y νν +−=+= )()()( xr  (9) 

where )~(min
jj th  = || )(min xr j || - aM is the minimum altitude, νj is the altitude measurement error, and the actual 

"measured" altitude is )~( jty  = 0. 
The position of the minimum-altitude )(min xr j  depends on the system state x through its dependence on the 

satellite position r.  For the spherical-Moon model, this dependence can be derived using the geometry of Fig. 2.  It 
takes the form: 
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Although not sufficiently accurate for actual orbit determination at the Moon, the simple model in Eqs. (9)-(10b) 
has been used in the truth-model simulation of this paper and in its extended Kalman filter.  Use of this model in 
such a study is permissible because its sensitivity properties are very similar to those of a high-fidelity model.  
Therefore, a simulation study using this model will accurately predict the system performance that would result if a 
high-fidelity model were used with actual data. 

Although not used in the present study, the needed form and computations of a high-fidelity  measurement 
model are described here.  A high-fidelity model starts with a topographic map of the Moon that takes the form 
aM(λ,θ), where λ is the Lunar longitude of a point on the surface of the Moon, θ is its Lunar latitude, and aM(λ,θ) is 
its distance from the center of the Moon.  This model also needs the 3×3 attitude rotation direction cosines matrix 
that transforms to Moon-Centered, Moon-Fixed (MCMF) coordinates from MCIF coordinates: AMI(t).  The MCMF 
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Figure 2.  Schematic drawing of the altitude “measurement” 

interpretation of the measured occultation/rising time. 



American Institute of Aeronautics and Astronautics 
 

6

coordinate system is the one in which λ and θ are defined.  Given these quantities, it is possible to compute the 
Lunar altitude of any point along the LOS vector from the spacecraft to star j. 
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where α is the distance of the point j
s

jt rr ˆ)~( α+  from the spacecraft and where )~;( jj tαλ  and )~;( jj tαθ  are the 
Lunar longitude and latitude of this point.  The longitude and latitude can be computed as follows: 
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The altitude "measurement" for the high-fidelity model is computed by minimizing the altitude in Eq. (11) with 
respect to α: 
 j
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j
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α
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As in Eq. (9), the actual "measured" value of the altitude is )~( jty  = 0.  It is fairly straightforward to show that this 
altitude measurement model is equivalent to the simple spherical-Moon model in Eq. (9) under the assumption that 
the Lunar topography function is aM(λ,θ) = aM0, a constant. 

The altitude "measurement" error νj is the result of three types of uncertainties.  One type is a timing error in the 
star camera's determination of  jt~ .  The second type of uncertainty is error in the star catalog's reported j

sr̂  
direction.  The third type of uncertainty is error in the topographical map aM(λ,θ).  The net effect of these errors is 
assumed to be zero-mean Gaussian discrete-time white-noise so that νj is Gaussian and has the statistics E{νj} = 0 
and E{νj

2} = σj
2.  The altitude "measurement" error standard deviation σj is modeled as being  

 2
min

2
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2 )()( tj
jj

shj hσ σασσ &++=  (14) 

where σh is the RMS error in the Lunar topography map, j
sσ  is the per-axis standard deviation of the star catalog 

error in j
sr̂ , σtj is the RMS error in the measured occultation/rising time, and jhmin

&  is the time derivative of jhmin  
evaluated at t = jt~ . 

The timing error of the star camera in its measurement of jt~  arises from two sources.  The first source is the 
timing resolution of the star camera.  The star camera determines jt~  by comparing a star's measured light intensity 
against a threshold value.  The time jt~  is the time that star j's intensity crosses the threshold value.  The star camera 
needs to integrate received photons over a certain time interval in order to make a reliable determination of whether 
or not a star is present based upon its threshold value.  The length of this time interval determines the camera's 
timing resolution.  The second source of errors in the jt~  measurement comes from edge diffraction of the starlight 
as it passes the Lunar limb.  Edge diffraction smears out the light so that the illumination from the star takes a finite 
amount of time to decay from its nominal value to zero as the star sets behind the Moon 16.  The standard deviation 
of the edge-diffraction component of the timing error is approximately 
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where λlight is the average wavelength of the star's light and the expressions involving j
minr  and )~( jtv  translate the 

Fresnel diffraction length scale term minαλlight  into an equivalent time by considering the speed with which the 
satellite crosses the plane that is tangent to the Moon at or near the point j

minr .  This error source can translate into 
position uncertainties on the order of 1 m for wavelengths of λlight = 5000 Angstroms and for typical values of αmin = 
aM. 

The errors in the topographic map aM(λ,θ) and the errors in the reported star catalog directions j
sr̂  are not really 

white noise.  The same topographic error will recur if the same Lunar surface position (λ,θ) is the nearest point to 
the stellar LOS vectors of multiple star occultations/risings during a given filtering run.  Similarly, the same star 
direction error will recur if the same star rises or sets more than once during a given run.  Therefore, a filter that 
operates using the white-noise assumption for these error sources will be sub-optimal.  There will be a large number 
of stars in a catalog and a large number of nearest surface points associated with occultations/risings.  It is 
conjectured that these large numbers will produce sufficient randomness in the topography errors of unrelated 
surface points and in the star catalog errors of different stars to limit the impact of this departure from optimal filter 
design. 

It is important to note that the star camera's angular resolution plays no role in determining the measurement 
error standard deviation σj.  Attitude measurement uncertainty is the result of uncertainty about the center of a star's 
light as it is detected on the image plane of the star camera.  The measurement of jt~  is independent of which 
particular pixels detect the light from a particular star.  The only important point is that the star camera must be able 
to identify whether or not it is detecting any light from the star in question.  Similarly, the star camera’s alignment 
uncertainty has no affect on σj. 

There are two factors that will cause a practical star camera not to return jt~  values for all possible star 
occultations/risings that occur as viewed from the spacecraft.  First, a star camera has a limited FOV.  It will not be 
able to detect occultations/risings for stars that lie outside its FOV.  The second limiting factor is a star camera's 
inability to operate in glare.  If the Sun or the sunlit portion of the Moon's surface lies in its FOV, then the resulting 
glare would interfere with camera operations and prohibit the camera from returning jt~  values.  Perhaps even glare 
from the Earth would preclude the measurement of occultation/rising times. 

C. Filter Sampling at Regular Intervals 
A special issue for this system is the randomness of the star occultation/rising sample times.  One way to 

implement a Kalman filter for this system would be to sort the star occultation/rising times into an ascending 
sequence 1~ jt  < 2~ jt  < 3~ jt  < ... and to perform one dynamic propagation between each pair of times in the 
sequence and one measurement update at each successive sample time of the sequence.  This approach can be 
inefficient if there are many star occultations/risings because the average time interval between occultations/risings 
might be too small for meaningful dynamic variations to occur over a given sample interval. 

A more efficient approach is to use evenly spaced sample intervals such that tk+1-tk = Δtk = Δt, a constant.  A 
problem with this approach is that the star occultation times jt~  normally will not coincide with the filter's 
measurement update times tk, tk+1, tk+2, ...  Therefore, additional modeling must be performed in this case in order to 
define a sensible measurement function. 

The disparity between star occultation/rising times jt~  and measurement update times tk is resolved by using a 
spline to interpolate between the end times of a filter sample interval [tk, tk+1]. The spline is used to develop a 
measurement model that allows a simultaneous measurement update involving all star occultations/risings that occur 
during the given interval. 

The following is an implementation of the required measurement model:  Suppose that 1~ jt , ..., kmjt~  are the 
star occultation/rising times that lie within the filter sample interval (tk, tk+1], i.e., tk < ijt~  ≤  tk+1 for all i = 1, ..., mk.  
The following cubic spline formulas can be used to interpolate the satellite's position and velocity between the 
sample times tk and tk+1 in order to determine these quantities at the star occultation/rising times 1~ jt , ..., kmjt~ : 
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The interpolated position )~(~ ijk tr  from Eq. (16a) can be used in Eqs. (10a) and (10b) in place of )~( ijtr  order to 
determine minα  and )(min xr j , and the norm of the latter quantity can be used in Eq. (9) in order to compute the 
modeled altitude measurement.  The interpolated velocity )~(~ ijk tv  from Eq. (16b) can be used in place of )~( ijk tv  
in the time derivatives of Eqs. (10a), (10b), and (9).  These derivatives are needed to compute )~(min

jj th& , which in 
turn is used in Eq. (14) to compute σj. 

The resulting interpolated measurement model takes the non-standard form 

 kkkkk ν+== + ),(0 1xxhy  (17) 

where hk(xk,xk+1) is the mk-dimensional function that gives the modeled minimum altitudes along the LOS vectors to 
the occulting/rising stars and νk is the mk-dimensional zero-mean Gaussian white-noise measurement error vector.  
The mk-by-mk square-root information matrix for νk is Rννk, and 1−

kRνν  = diag( 1jσ ,. .., mkjσ ).  This model is non-
standard because its "measurement" yk is known a priori to equal 0 and because its modeled measurement function 
hk(xk,xk+1) depends on the state at two sample times.  The a priori knowledge of yk is the result of the transformation 
from time measurements to altitude "measurements".  The functional dependence of hk(xk,xk+1) is a direct result of 
the use of the interpolation in Eq. (16a) to compute the spacecraft positions at the occulting/rising times that occur 
during the sample interval from tk to tk+1 -- recall that the r(tk) and v(tk) vectors in Eq. (16a) are elements of xk and 
that the r(tk+1) and v(tk+1) vectors are elements of xk+1. 

The EKF and the observability analysis require a linearized model of the measurements in Eq. (17).  This 
linearized model uses the following two Jacobian matrices: H1k = kk x/h ∂∂  and H2k = 1+∂∂ kk x/h .  Each row of 
these Jacobians can be computed via differentiation of the corresponding spline formula in Eq. (16a), differentiation 
of Eqs. (10a), (10b), and (9), and application of the chain rule. 

III. An EKF in SRIF form and a Linearized Observability Calculation 
The design of the EKF and the observability analysis of its state vector both rely on a non-standard form of the 

extended SRIF calculations.  The basic difference from the standard linear SRIF calculations of 17 is that the 
dynamic propagation and the measurement update are performed simultaneously.  This non-standard approach is 
needed because of the presence of states at two sample times in the Eq. (17) measurement model. 
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A. Nonstandard Extended SRIF 
The SRIF stores a state estimate and a square-root information matrix.  It uses these quantities to form a state 

information equation that models its uncertainty as follows: 

 xkkkxxkR ν̂)ˆ-(ˆ −=xx  (18) 

where xxkR̂  is the filter's square-root information matrix and kx̂  is its state estimate at sample time tk.  The 
discrete-time Gaussian white-noise sequence xkν̂  models the filter's estimation error.  The modeled statistics of 

xkν̂  are E{ xkν̂ } = 0 and E{ Tˆˆ xkxkνν } = I.  The overstrike (^) on the quantities in Eq. (17) indicate that they 
correspond to the filtered estimate, which is also known as the a posteriori estimate.  This usage differs from 
preceding sections, where the overstrike (^) signifies a unit vector in 3-space, as in j

sr̂ .  Equation (18) can be used 
to show that the estimation error's covariance matrix is -T-1 ˆˆˆ

xxkxxkxxk RRP = . 
The combined dynamic propagation and measurement update for the sample interval [tk,tk+1] uses Eq. (6) 

linearized about xk = kx̂  and wk = 0 and Eq. (17) linearized about xk = kx̂  and xk+1 = )0ˆ(1 ,kkk xfx =+ .  Its 
calculations are: 

 )0ˆ(1 ,kkk xfx =+  (19a) 
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These equations are used to compute the filtered (i.e., a posteriori) state estimate 1ˆ +kx  and the corresponding 
square-root information matrix 1

ˆ
+xxkR .  Orthonormal/upper-triangular (QR) factorization 18 of the large block 

matrix on the right-hand side of Eq. (19b) is used to compute the matrices on the left-hand side of Eq. (19b).  The 
square matrix Qk+1 is orthonormal, and the square matrices wwkR̂  and 1

ˆ
+xxkR  are upper-triangular.  The identity 

matrix in the upper left-hand entry of the block matrix on the right-hand side of Eq. (19b) constitutes the a priori 
Rww matrix.  If the third row in the block matrix on the right-hand side of Eq. (19b) were dropped, then the equation 
would compute the a priori square-root information matrix 1+xxkR  in place of 1

ˆ
+xxkR .  The third row of the matrix 

and the corresponding non-zero third row of the vector on the right-hand side of Eq. (19c) constitute the 
measurement update terms in this formulation.  At the end of these calculations, the filter has completed its 
computations for the sample interval from tk to tk+1, and it is ready to begin its calculations for the sample interval 
from tk+1 to tk+2. 

B. Linearized Observability/Constructability Calculations in SRIF Form 
Calculations similar to those of the preceding sub-section have been used in order to compute the 

constructability Gramian of the linearized system.  Recall that the constructability Gramian is like the observability 
Gramian.  If it is full rank, then the system is constructible, which means that its final state can be estimated purely 
from the measurement outputs of the given interval over which the constructability Gramian has been computed.  If 
the system’s state transition matrix is non-singular, which is the case for the current system, then constructability is 
equivalent to observability.  Thus, the constructability Gramian can be used in order to evaluate the system’s 
observability. 

SRIF-like calculations can be used to compute a square-root of a re-normalized constructability Gramian.  The 
resulting matrix is the square-root information matrix for the error in the filtered estimate of xk under the 
assumptions of zero a priori information about x0 and zero process noise.  In effect, this is the square-root 
information matrix of a batch-type filter.  Let this matrix be called xxkR~ .  It is computed as follows: 
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 0~
0 =xxR  (20a) 
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   for k = 0,…, K-1 (20b) 

where the computation of the square, upper-triangular matrix 1
~

+xxkR  and the square orthonormal matrix 1
~

+kQ on 
the left-hand side of Eq. (20b) is accomplished via QR factorization of the block matrix on the right-hand side.  
Equation (20a) initializes the calculation, and Eq. (20b) is a recursion that propagates the square-root information 
matrix forward in time, much like Eq. (19b) for the SRIF filter calculations.  These calculations can use the same 
Φk, H1k and H2k matrices as are used by the filter in its linearizations of Eqs. (6) and (17). 

The system’s constructability Gramian is the symmetric matrix xxKxxK RR ~~T .  The system is constructible (and 
observable) if and only if this Gramian is full-rank.  An equivalent constructability (and observability) condition is 
that the corresponding batch-like covariance matrix xxKP~  = -T-1 ~~

xxKxxK RR  has all finite entries.  The matrix xxKP~  
gives a good indication of the degree of constructability (and observability).  The square roots of its diagonal 
elements give an indication of the batch filter accuracy for the corresponding state vector element.  If any of them 
are very large, then the constructability (and the observability) are poor.  If any of them are infinite, then the system 
is not constructible (nor is it observable). 

IV. Truth-Model Simulation 
A truth-model simulation has been developed in order to produce simulated star occultation/rising times and 

simulated “truth” orbital states.  Its simulated measurements have been filtered using the EKF of Section III, and the 
EKF state estimates have been compared with the “truth” states in order to evaluate this system’s likely 
performance. 

Several issues have been explored using the truth-model simulation.  The two most significant questions concern 
uncertainties in the gravity model and in the Lunar topography, and the impact of these uncertainties on orbit 
determination accuracy.  Gravitational uncertainty has been introduced by using slightly different spherical 
harmonic models in the truth-model simulation and the filter.  Various levels of uncertainty in the Lunar 
topographic map have been simulated by adding random occultation time errors to the measured occultation times.  
The sizes of these errors are consistent with various levels of RMS altitude error in the Lunar map.  Borrowing from 
Eq. (14), the standard deviation of the simulated timing uncertainty is 

 22
min

2 )(/)( tj
j

hsimtj h σσσ += &  (21) 

This standard deviation is larger than the timing standard deviation σtj, which is due to camera time resolution and 
starlight edge diffraction, because this timing uncertainty also includes the topography error effects through σh. 

The filter uses a slightly different star catalog than the truth-model simulation.  The differences between the 
direction vectors j

sr̂  of the two catalogs implement the uncertainty that is modeled by the star catalog error standard 
deviation j

sσ .  This modeling approach eliminates the need for a j
sσ  component in the random part of the truth-

model measurement error, which is why Eq. (21) differs from Eq. (14) through its lack of a j
sσ  term. 

The simulation has used both randomly generated and real star catalogs.  These two options have been used in 
order to study whether the actual distribution of useable stars has an impact on this system’s performance. 

The truth-model has been used to assess the impact of practical limitations of star camera technology by 
simulating a spacecraft that carries a number of star cameras, each of which has a limited FOV.  The cameras are 
distributed angularly around the spacecraft yaw axis and are canted at a fixed tilt angle toward the Lunar limb in a 
way that should produce a significant number of occultation/rising measurements along the mission's nominal orbit.  
Only Lunar star occultations and risings that occur within the FOV of a star camera can be detected.  No 
measurement is recorded if the camera sees too much of the Moon, and consequently too few reference stars to 
correctly identify the occulted star.  Additionally, no occultation is detected if the camera in question is blinded by a 
source of glare, such as the Sun, the sunlit side of the Moon, or the Earth.  By discarding measurements from the 
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entire camera if a source of glare is detected, this simulation is conservative because real star cameras are equipped 
with baffles to block light from one region of the camera FOV while still using other regions. 

If a camera FOV is too wide, then the camera is more likely to be blinded by glare, but if it is too small, then it 
will not see much of the Lunar limb.  Ideally, the spacecraft would have many small-FOV cameras, but the use of 
two or three medium-FOV cameras is more realistic. 

For a given number of cameras, the simulation can be used to determine an optimal FOV size and tilt angle to 
see the greatest number of occultations over the greatest fraction of the orbit.  Highly elliptical orbits would be a 
challenge for this system because, during much of the orbit, the spacecraft would be too close and see only the 
Lunar surface, or it would be too far away and see only the sky.  If a given mission will have a highly elliptical 
orbit, then the designer can compensate by using additional star cameras and by tilting them at different angles, so 
that at least one camera will always be oriented toward the Lunar limb.  For a circular orbit, a common fixed tilt 
angle for all cameras is optimal. 

V. Observability and Filtering Results 

A. Observability 
The constructability Gramian of Eqs. (20a) and (20b) has been computed for a number of scenarios.  It has been 

demonstrated to have full rank and to be well conditioned after differences in variable scalings are compensated.  
These properties prove that the system is constructible and, because its state transition matrix is invertible, that the 
system is also observable. 

Care must be taken not to use too long of an interval for the constructability calculation.  Suppose that the 
interval is very long compared to the acceleration disturbance Markov process time constant from Eq. (3), τak.  Then 
the constructability calculations will overflow the computer’s ability to store large numbers.  This overflow happens 
because 1−Φk  in the recursion of Eq. (20b) has eigenvalues whose magnitudes are too much larger than 1, and the 
many iterations of Eq. (20b) result in too much growth and eventually lead to numerical overflow. 

B. Filter Performance Results 
The performance of this system is illustrated by a representative example.  The satellite’s orbit in this example is 

nearly circular with an altitude of 315 km ± 0.5 km, an inclination of 89.9°, and an orbital period of 8344 s.  The 
star catalog contains the 2000 brightest stars.  The spacecraft is assumed to carry three star cameras separated by 
120° in yaw and tilted downward from local level by 33.3°.  The RMS error between the filter’s gravity model and 
that of the truth-model simulation is 1x10-5 m/s2 along the orbit. This error is optimistic for current gravity models, 
which have an accuracy level of 1x10-4 m/s2 to 3x10-4 m/s2 (10-30 mGal) on the near side of the Moon, and which 
are less accurate on the far side 19.  However, several missions in the near future, including the Japanese SELENE 
mission and NASA’s Lunar Reconnaissance Orbiter, will improve gravity model accuracy 13,19,20,21, and other 
proposed missions hope to achieve gravity accuracy of 1x10-5 m/s2 or greater 15. The truth-model simulation’s error 
standard deviation for the Lunar topographic model is σh = 100 m RMS, and its error standard deviation for the star 
tracker timing is σt = 1 ms.  This level of σh map error is very optimistic at the present, particularly on the far side of 
the Moon, but it will be much more reasonable after the planned Lunar Reconnaissance Orbiter mission has 
completed its laser altimetry survey 14.  The filter tuning parameters that have been used in this run are: 

 τak = (10 s) x [||rk||/(1.83x106 m)]1.5, σak = (1x10-5 m/s2) x [(1.83x106 m)/||rk||]3, (22a) 

 σβ = 4.7x10-5 m2/(kg-s0.5), σh = 100 m, and σt = 0.001 s (22b) 

The position and velocity estimation results for this filter run are depicted in Figs. 3 and 4.  Although the initial 
position error is more than 10 km, the filter converges to steady-state in less than three orbits, its peak position 
component error after three orbits is less than 70 m (Fig. 3), and its peak velocity component error is less than 0.045 
m/s after the third orbit (Fig. 4).  The actual errors are consistent with the filter’s computed standard deviations, as 
evidenced by the rough correspondence between the actual errors (the solid curves on Figs. 3 and 4) and their 
computed standard deviations (the thin dotted curves on Figs. 3 and 4). 
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Figure 3.  Position error time histories for a representative filter run when 

operating on data from a truth-model simulation. 

 
Figure 4.  Velocity error time histories for a representative filter run when operating 

on data from a truth-model simulation. 
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Figure 5 compares the orbit’s altitude time history (top plot) with its distribution of sensed star 
occultations/risings (bottom plot).  The vertical scale of the top plot indicates that the orbit is nearly circular.  The 
bottom plot shows a dot whenever the star whose catalog number is given on the vertical scale sets behind or rises 
above the Lunar limb within a camera FOV that is not blinded by glare.  The gaps between the clouds of dots occur 
when the spacecraft is passing over the sunlit side of the Moon.   

 

No Usable 
Occultations/ 

Risings 
when on 

Sunlit Side 

 
Figure 5.  Altitude time history and distribution of occultations/risings for a 

representative filter run when operating on data from a truth-model simulation. 

A comparison between the lower panel of Fig. 5 and Figs. 3 and 4 illustrates the effect of data availability on the 
system’s accuracy.  Consider the periods when data gaps occur on the sunlit side of the Moon during the intervals 
from t = 0.1 to 0.5 orbits, from t = 1.1 to 1.5 orbits, from t = 2.1 to 2.5 orbits, and so on.  The filter’s computed σ 
values tend to grow when the cameras are blinded by glare from the sunlit side of the Moon, and they tend to 
decrease during the intervening intervals, when data again become available.  Thus, the system tends to drift when 
occultation/rising data are sparse or completely unavailable, but the system very quickly recovers accuracy after a 
period of data unavailability has ended.   As a result of this behavior, the fraction of the orbit over which 
occultations/risings are visible is more critical than their sheer number.  It is noteworthy that the peak position errors 
are significantly less than the assumed RMS Lunar topographic map errors (σh = 100 m).  This fact indicates that the 
filter is able to exploit the accuracy of its dynamic model in order to achieve a certain amount of averaging of the 
topographic errors.  The extent to which this averaging occurs depends on the relative magnitudes of the 
topographic and gravitational error components, or to put it in general estimation terms, on the relative accuracy of 
the measurement model and the dynamic model. 

The following are three significant trends of the simulation results:  First, the system's accuracy and convergence 
robustness tend to degrade in highly elliptical orbits that use a limited number of star cameras with fixed pointing 
directions relative to the spacecraft's nominally nadir-pointing body frame.  This fact is thought to be the result of 
the greatly reduced number of occultation/rising measurements that are available in such a configuration.  Second, 
errors in the star catalog have a relatively small effect on orbit determination accuracy for values of j

sσ  consistent 
with currently available catalogs.  Third, no significant performance difference has been found between a randomly 
simulated star catalog and an actual star catalog if the catalog contains a sufficient number of the brightest stars (i.e., 
500-2000).  Therefore, it is concluded that the actual star catalog covers a sufficient portion of the sky to support the 
operations of this system in a nearly optimal manner. 
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VI. Summary and Conclusions 
A new system for autonomous Lunar orbit determination has been proposed and analyzed.  Its basic 

measurements are the times of occultations and risings of stars as their LOS vectors graze the Lunar limb.  These 
occultation/rising times can be measured using a modified star camera.  They give position information by locating 
the spacecraft on a cylinder that is tangent to the Moon and that extends along the known LOS direction to the star. 

The system’s basic observability has been verified by performing a numerical observability/constructability 
analysis of a linearized model, and an extended Kalman filter has been developed for this system.  This filter has 
been tested using a truth-model simulation.  The Kalman filter exhibits good convergence robustness, and it can 
achieve a steady-state absolute position accuracy with a peak per-axis error of 70 m if it has access to a Lunar 
topographic map with an RMS error of 100 m or less and if it has a Lunar gravity model that has an RMS error of 
1x10-5 m/s2 (1 mGal).  System accuracy tends to increase with increased availability of occultation/rising 
measurements, which can be achieved by using a large star catalog in conjunction with a wide-angle star camera 
equipped to block excess light, or in conjunction with an array of narrow-angle star cameras. 
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