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ABSTRACT

Active magnetic control is studied as a means to improve the capabilities and
performance of gravity gradient stabilized spacecraft.

Active magnetic control eliminates the need for a passive damper and can reduce
significantly the costs and complexity of other functional parts of the spacecraft.
The system under study includes three magnetic torquers, one three-axis
magnetometer, and a control processor. It does not require any moving parts,
and provides for rapid libration damping, tighter stabilization and active control
of the yaw angle.

Control algorithms are defined. Results of the analys;s of the control laws and
computer simulations, including high-order models of the geomagnetic field and
atmospheric disturbance torques, are presented. The algorithms perform well
within a wide range of orbital inclinations and attitude angles and allow
maneuverability and stabilization around the yaw axis.

A Kalman Filter is used to provide estimates of the attitude angles, the angular
rates, and a global disturbance torque, based on measurements from the
magnetometer. Results of simulations, including the attitude estimator in the
control loop, are presented. The possibility of a fully autonomous acquisition,
deployment, and stabilization sequence using the magnetic control system is
discussed.




INTRODUCTION

Bad] 1 on Gravity Gradient Stabilizati

The use of gravity gradient provides a simple way to stabilize a spacecraft in a Nadir pointing mode. An
extendable boom is generally used to provide adequate momeats of inertia and a damping mechanism is
required to reduce the libration motions,

A gravity gradient system is bi-stable, and the acquisition procedure must be carefully performed to avoid a
stabilization upside-down. Since that does happen, the extendable boom is often designed 1o be retractable,
to allow for the possibility of reversing the spacecraft.

A momentum wheel is sometimes added to the system for three-axis stabilization and better pointing
performance, with the additional benefit of providing a mechanism for stabilization in two possible
opposite "yaw" angular positions around the Nadir direction. Proper ratios of the moments of inertia
provide another way for stabilization in two possible fixed yaw positions.

Generally a gravity gradient system is slow to stabilize, and has limited pointing capabilities; the boom
structure is affected by thermal gradients which alters the overall attitude of the spacecraft; the maneuvers for
capture of the gravity gradient require extensive ground support; there is very limited or no control of the
yaw attitude angle around the Nadir direction.

Arbitrary control of the yaw angle would be desirable for thermal management of the spacecraft (control of
the orientation of spacecraft surfaces with respect to the sun direction; uniformization of exposure of the
boom structure to solar radiation to avoid unwanted thermal gradients resulting in bending); or for
improvement of the power or communication systems trade-offs through better capability for orientation of
fixed solar panels or antennas; or for orientation of sensitive payload sensors away from the sun line, etc.

lication jvi

The addition of active magnetic control to a gravity gradient stabilized system appears as a means to
increase the system capabilities and performance while improving the overall cost trade-offs. An active
magnetic control system can provide very effective, rapid and tighter damping, and replace the passive
dampers. It does not require any moving parts; it can provide for automatic initial acquisition and
stabilization of the spacecraft in a spin control mode after launch; it can be used for attitude and angular rate
measurements and automatic gravity gradient capture; the magnetic torqueing capabilities can be used for
reversal for the spacecraft when necessary, and provide the capability for arbitrary control of the spacecraft
yaw angle.

In addition such an active control system allows a relaxation of the requirements on the gravity gradient
boom; the boom does not need to be retractable and its thermal characteristics are less critical,

The understanding of the advantages of such system led to detailed studies of adequate attitude determination
and control algorithms for its implementation. These algorithms were specified to provide for attitude
determination, automatic libration damping, and arbitrary yaw control with instrumentation limited to0 a
three-axis magnetometer, three magnetic torquers, and a control microprocessor.




This document discusses the results of the study of the application of an active magnetic control to gravity
gradient stabilized satellites conceived for a multiple satellite system. In the first part, the system and the
control method are described and analyzed. The results of realistic simulations are then presented and
discussed. Finally, the general description of a possible method for autonomous deployment sequence of
the spacecraft is presented.

SYSTEM DESCRIPTION

The proposed system consists of three main parts: a magnetometer to measure the local magnetic field at
the spacecraft, a set of three magnetic torquers, and a control electronics assembly based on a
microcomputer.

A general diagram of the system is shown in Figure 1. The three components of the magnetic field Bx, By,
Bz are read and processed by the microcomputer, which then communicates control commands to the
magnetic torquer driver. The magnetic torquer driver provides the selected current levels to the magnetic
torquer coils, generating the desired magnetic dipole moments, Mx, My, Mz in the three axis. These
dipoles interact with the earth magnetic field to generate a controlled torque to the spacecraft.
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Figure 1: Magnetic Control System - Hardware Configuration

The system communicates to the spacecraft telemetry to receive commands or data and send status and data,
The control system is conceived to be as autonomous as possible and commands may be limited to mode
selection, while the data consists of a periodic reset of the spacecraft orbital parameters for the propagation
procedures.

ATTITUDE DETERMINATION AND CONTROL ALGORITHMS

Several approaches were explored to meet the goal of achieving three-axis attitude stabilization and control
of the spacecraft yaw angle using the minimal amount of instrumentation of the system (a three-axis
magnetometer and three magnetic torquers).

Control Method

Simple control algorithms were initially considered. The classical damping control laws simply based on
the measurement of the magnetic field rates of change in the spacecraft reference frame are generally
successful in damping relatively rapid motions. Such laws, with proper gains, are applicable in the initial
attitude acquisition period, to despin or detumble the spacecraft.

The same simple laws are not effective for final three-axis stabilization of the spacecraft, because of the
effect of the arbital rates, and the non-uniformity of the geomagnetic field.




If a perfect knowledge of the earth magnetic field is assumed, the spacecraft libration motion can be damped
very effectively with a control law such as

M= X1 - Bo) - K2(B - Bo)

where M is the dipole moment, B is the measured magnetic field vector, By is the magnetic field model
vector in orbital frame, and K} and K are restoring and damping factors.

With such law the simulated attitude angles can be brought to null in three axes when no disturbances are
considered. However, in these ideal conditions, the yaw axis although stabilized, is still not maneuverable.
Moreover, the system does not handle large angular excursions well.

One important requirement for the system is the capability for a good level of angular control about the yaw
axis, in order to be able to rotate the satellite. Performing yaw control to various angles requires
information on the spacecraft yaw angle in order to apply the proper torques to the platform.

The actual attitude angles are not readily available from the field measurements. They can be extracted
though, by proper filtering of the measurement data on extended time periods, especially if the spacecraft
dynamic properties are known well. In particular, a Kalman estimator, using a good geomagnetic field
model, can perform the task of estimating the three Euler angles and their rates from the magnetic field
measurement only.

Such an attitude estimator based on a Kalman filter was developed to provide estimates of the Euler angles,
the angular rates and a slow varying disturbance torque, to the system controller.

To perform attitude estimates from the magnetic field measurements, a mode! of the local geomagnetic field
is used for comparison with the measured values. Such a model can be accurately computed by the system
microcomputer, if the spacecraft position is known. The spacecraft position is calculated by propagation
from initial orbital parameters. Because of asrodynamic drag the orbit decays in time. The on-board
propagation algorithms need to be updated periodically to compensate for the unpredicted orbital
disturbances. Updates can be provided from a ground station or derived from a GPS receiver on-board the
spacecraft

The Kalman filter is described in Reference 1. It was tested in simulations including atmospheric, solar
radiation and residual magnetic disturbance torques, as well as realistic parameter and measurement errors.




To define and test control algorithms suitable for the control goals, it can then be assumed that estimates of
the Euler angles and their rates and of a global disturbance torque are available to the control system.
Effective control rules can be developed on this basis as described in the following section. Figure 2 shows
a conceptual diagram of such system.

PROPACATION OF PORITION UPDATE

POSITION (EPHEMERIS laysediofidapareliod
PREDICTION O GROUND

TORQRODS COMPUTATION OF EQUILIBRIUM YAW COMMAND
OFFSET. CALCULATION OF (FROM S/C

MAGNETIC DIPOLE MOMENTS. TORQROD CURRENT SYSTEM, OR GROUND
MOMENTS COMMANDS. STATION)

Figure 2: Conceptual Diagram of the Magnetic Attitude Determination and Control System
Description of the P ed Control Laws

Using the assumption that reasonable values for the three Euler angles, roll (@), pitch (6), and yaw (y) and
their rates are available, a straightforward control method can be devised. The convention used here assumes
the roll angular motion around the X body axis (nommally along the velocity vector), the pxtch angular
motion around the Y axis (nominally along the negative orbit normal) and the yaw angular motion around
the Z axis (nominally in the Nadir direction). The selected Euler rotation sequence is 3-1-2 (i.e., Z-X-Y)

with the respective angles ¥, q, 6.
An "error correction” vector is defined as:
m=Kp.(a-bian+Kq.2

where Kp and K are the diagonal matrices of the pmpomonal and derivative gains associated with the
restoring and dampmg torques. The vectors 3 and 3 have for components the Euler angles and their rates

respectively. ie.,

o] |®
a=l0|.2=|§
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and the vector bias includes typically a pitch ethbnum offset based on the estimated offset disturbance
torque (Tp) and a yaw command:

0
Bias = | Pitch Offset (ITD)
Yaw Command




The desired correction torques expressed in q can only be actuated inasmuch as the local magnetic field
direction is favorable. The local field vector Bg is measured by the on-board magnetometer. To take the
magnetic field direction into account the commanded dipole moment vector is defined as:

The local field vector where Bp is measured by the on-board magnetometer.
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As shown in a next subsection, these control laws apply torques with proper polarity about all the three-
axes. The relation between the desired torques and the actual torques depend on the field orientation. Since

the field orientation vary along the orbit, favorable configurations can be found for period of times,
allowing the system to stabilize, in a wide range of orbital inclinations.

Linear Analysis of the Magnetic Control Law

An analysis of the control law was done with linearized equations of motion, assuming small angular
excursions.

The linearized equations of motion are given by:

L+4ay 20 -L)o-0G-L+D)ay = T+ Ty
L0+3w 2@, -1)0 = Tey+Tpy | )
B+ @ G -Lv+ G-L+Dad = Tg+Ty

where

Ix, 1y, I are the Moment of Inertia about X, Y, Z axes respectively,

) is the orbital rate, v

Tex, Tey, Tez (as derived below) are the magnetic control torques, and

Tpx, TDY. TDZ are the disturbance torques about the X, Y and Z axes respectively.

The desired control torques for the three-axes are defined from the Euler angles and their rates using the
Proportional/Derivative (PD) law:

m, = Kex®+Kp
my = Kpyb+Kpf @
m, = Kppy+Kily

where (Kpx. KpY, Kpz) and (KDX, KDY, KDZ) are the proportional and derivative gains respectively, for
the three axes.




To apply the magnetic torques about the corresponding axes, magnetic dipole moments (Mx, My, Mp) are
distributed along the other body axes according to the following rule

M, mybz‘mzby
M= My =Mh=lmsz_mxbz 3)
M m,by—myb
m,
where M is the desired dipole vector, m = m, | and is the normalized earth’s magnetic field vector in body
m,

frame definedasb@ e,w=§-‘$B?J

Thus, the actual control torques about the body axes (Tcx, Tcy. Tcz) are given by:
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Equation (4) shows that with the dipole moments defined by (3) the control torques have the right polarity
associated with the diagonal term of the L(B) matrix. The off diagonal terms show some undesirable
coupling effects due to torquing about the other axes.

With a small angle assumption the body-fixed field vector B vector can be written as:
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where A is the direction cosine matrix and B0 is the earth's magnetic field vector in the orbital frame.

The lengths of (B! and IBOI are equal and the elements in the L(B) matrix of equation (4) can be approximated
as follows (because of the small angle assumption):

BB = @ +@Y BB, = KB
Bl+B] = ®)'+@Y BB, = BE
BE+B§ = (82)2+Bg)2 BB, = 3332




Thus, the matrix L(B) can be approximated by L(B®) and the control torque T in (4) using (2), can be
approximated by the vector: '

Ic=L®%) m/mBI )
Using (7), the equations of (1) can be written as:
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The vector BO is quasi periodic, at the orbital period Tp. The elements of B® may be replaced by their
orbital averages to perform an approximate stability analysis, using standard linear time invariant
techniques. (A Floquet analysis of the exact closed loop stability of this periodic system has been
performed; it shows that parametric resonance instability can occur for certain gain values, for which the
average analysis indicates stability with a low damping ratio. However, average coefficient analysis is
adequate when the close loop time constants are not too fast.)
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The quantities =5 and =5 can then be replaced by the orbital average values
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Taking the Laplace transformation of the equations in (8) gives:
Als) . a(s) = ITD(s) ©)
where
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The a, b, ¢, d, ¢, f, g constants in A(s) are functions of the spacecraft mass properties, aij, Bij. P and the
controller gains Kp and Kg.

Alternatively, (9) can be rewritten as:

a(s) = A"1(s) x Ip(s) (10)
It is to be noted from (8) that even though the linearized pitch equation of motion is not coupled with the
roll/yaw motions in the absence of control torque, the magnetic control torques generate cross coupling and

the characteristic polynomial is of the sixth order.

For this analysis the atmospheric drag force is assumed to be a constant force F acting on the spacecraft
center of pressure along the negative velocity vector with an amplitude Fx' With the small angle

assumptions, the force vector along the body axes is given by:

FR| [F
B= F,B|=| ¥y ' amn
F, B| |-6F,
%
If the offset vector between the center of pressure and the center of gravity is defined asy= Y s
T
the disturbance torques about the three axes are defined by the vector
-(7y9 +7;‘1’Fx TD(
ID=‘}'XEB= = 07)F; | = Tpy (12)
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or taking the Laplace Transformation

[={7,8(s) + 7, . Y(s)}F,]
Tox(s) Y,
Ipe)=| Tpy(s) | =| ~ { AR 7"} Fx (13)
) | (% v )n
From (11) we derive:

qs) = -l-A(}-s—i [Al l(S) . TDX(S)+A12(S) . Tby(S)+A13(S) . Tm(S)]
‘Where the coefficients Aijj(s) are the cofactors of A(s).

The steady-state value of @, say gxs is given by

(EO'Yx"BO‘Yy)Fx 0 + (FOYX’BO'Y)F x v, + (FOYy'EO'Yz)F X
Ag e Ap i Ag

where Ag, Bo, Eg, F are functions of the spacecraft mass properties, the field vector and the control gains.
655 and s are the steady state values of 6 and .

% = lim Se6) = (6)

Similarly the expressions corresponding to 6 and  are
8 [Ag+(Goly— Cotu)Fxl + Fy(GoYy — Iota Wy =gy — Cot,)F, as
6 [HoYy —JoY)Fx]+ [Ag+ (oY, ~ Doy Fy Mg, = gy, ~Jo1,F,

Once 6gg and g are found from (15), g can be calculated from (14).

For the present analysis the parameter values are assumed as follows:

Ix = Iy =250 Kg-m2
Iz =10 Kg-m?2
o = 0.00107 rad




The o and B values are considered for three different inclination of 80°, 570 and 28.5°, at an altitude of
364.5 nm. These values are calculated from an eighth-order model geomagnetic field and are listed in Table
1:

a,B i=80° i=570 i=28.5

Oxy 1.37659 x 10°3 1.67488 x 10°3 2.43338 x 109
oxz 3.50276 x 10°5 2.75481 x 105 1.08617 x 105
oyz 2.78432x 10°5 2.84181 x 10°5 2.83197 x 10°3
Bxy -347527 x 10”7 -3.70462 x 10°7 -3.84555 x 10°7
Bxz -8.55599 x 1077 726248 x 10°7 -5.05008 x 10°7
Byz 1.41729 x 10-6 9.64049 x 107 7.12059 x 108

Table 1: a and B Values as a Function of Inclination i

Using the characteristic equation 1A(s) = 0 from (9) with no control Kp =0, Kp = O), the roots of the
_System are:

(£2.105 x 10°3 j)
(¢ 1.802x 10-3 j)
0,0)

associated with the roll, pitch, and yaw axes respectively. These roots indicate that in the absence of
control the roll and pitch angles are undamped and oscillating and the yaw angle is unstable.

With the proposed control laws for an orbital inclination of 57° and using the following gain values:

Kpx =Kpy =25
Kpz =8
Kpx =Kpy = Kpz = 25000

the corresponding roots are:

-1.747x103+£2292x 10°3
-1.721x10:3£ 2022 x 103
and (-3.224 x 104, -3.971 x 10°2)

The negative real parts of all the roots show that the proposed magnetic control law makes the yaw angle
stable with a time constant of 3100 sec. The roll and pitch angle oscillations are damped with time
constants of 572 secs. and 581 secs. respectively. The longer time constant for yaw can be seen in all the
simulation plots.
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With the same gains, similar results can be seen for other inclinations, viz.,
1 ]
for i = 809 , the roots are (-1.389x 103+ 230x10-3 j)
¢-1.73x103+193x103))
(-3.230x 104, -3.411 x 10°2)

and for i = 28.50 , the roots are -1416 x 103 £ 2278 x 103 j)
(-5422x 103 £2.016x 103 j)
(-3217x 104, -6.050 x 10°2)

With a constant disturbance force of 7.11 x 106 Newton and a CP-CG offset of 2.8 m along the z axis and
6 cm along the other axes, ic., Fx = 7.11 x 106 Newton and ¥ = ¥y = 0.06 m, %, = -2.8 m, the steady-
state bias can be calculated from (15) and (17) and are found to be

s = 0.0024 rad
055 =0.0132 rad
Vs = 4.93x 107 rad

The pitch bias error Bg; is, of course, the most significant and can be noticed in the simulation plots.

In conclusion, he control laws defined in this section are shown as effective and stable from an arfilysis
based on the linearized equations of angular motion, and average field parameters integrated along the orbit
path using an eighth order geomagnetic field model. The system is applicable with identical gains at the
three orbital inclinations proposed for the MSS satellites (28.5°, 57° and 80°). Additional time domain

simulations in the next section confirm this analysis and provide a more detailed description of the expected
performance of the system.
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TIME DOMAIN SIMULATIONS

Time domain simulations were performed to assess the system capabilities in different configurations. A
block diagram of the attitude simulation program is presented in Figure 3.
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Figure 3: Block Diagram of the Numerical Simulation Program

The program allows for selection of the moment of inertia, initial attitude and angular rates, restoring and
damping gains, orbital parameters, order of the magnetic field model, maximum magnetic moment,
atmospheric disturbance torque coefficients, and components of the offset vector between the center of

gravity and center of pressure of the spacecraft. Selected attitude offsets and measurement noises can be
entered in the simulations.

The program propagates the spacecraft orbital position, computes the local geomagnetic field in earth-fixed
coordinates from an eighth-order magnetic field model, and calculates the field components in the orbital
coordinate system and the spacecraft body fixed-coordinate frame. The gravity gradient and acrodynamic
torques on the spacecraft are calculated and added to the magnetic torques generated by the magnetic control
system. (Other disturbance torques such as solar radiation torque or residual magnetic dipole torques were
not included in this study since their effect is secondary and system design dependent.) The control system
simulation modules have for inputs the local magnetic field model in orbital frame and the field vector as
"measured” in the spacecraft body frame, and for output the dipole moments of the controlled magnetic
torquers.
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The shaded blocks in Figure 3 correspond to the functions which are to be performed on board the
spacecraft. For the initial testing it was assumed that accurate estimates of the attitude angles and their rates
were provided to the control algorithms. Subsequent testing included the extended Kalman filter estimator,
as source of the attitude estimates within the control loop.

Body rates and Euler rates are computed and integrated using-a variable step Runge Kutta integration
procedure. Fields and torques are computed for every substep of the integration. The control commands
bowever, are computed at regular intervals of typically 20 seconds.

The simulated atmospheric drag torques use a simple disturbance model. The simulated torque is either
constant or made to vary at orbital rate between a minimum and maximum value. The selected values
correspond to atmospheric densities at 364.5 nmiles in 1992, close to the peak of the solar cycle, derived
from the Jacchia atmospheric model. They are very conservative, if not a "worst case”. The geomagnetic
field is computed through an eighth-order spherical harmonic model using coefficients listed in the IGRF
tables.

The selected spacecraft parameters are derived from estimates of the spacecraft mechanical design and mass
Pproperties using indications from the MSS program phase A report presentations.

The spacecraft is assumed to be of cylindrical shape with a total weight of 136 Kg. The spacecraft's
moment of inertia used for the simulations are (with no product of inertia):

Roll) Ix = 250Kg-m?
(Pitch) Iyy = 250Kg-m?2
(Yaw) Iz = 10Kg-m?

The cylinder has a height of 4 feet with a radius of 14", The spacecraft is assumed to be in circular orbit at
the altitude of 675 Km and in three possible orbital inclinations of 28.5°, 579, and 80°. The maximum
boom and boom mass area which are subject to aerodynamic pressure are assumed to correspond to 10% of
the spacecraft body area similarly exposed. The torque generating aerodynamic force is assumed to be
typically applied to a point 2.8 m (or 6 m) along the z axis from the center of gravity and generated by an
effective area of 0.93 fiZ (0.0867 m2). From a conservative analysis of atmospheric density at the altitude
of 675 Km, the mean, maximum and minimum atmospheric forces along the orbit are taken to be
7.1x 106, 10.65 x 10°6, and 4.7 x 10-6 Newtons respectively. The force is assumed to be periodic with
periodicity equal to the orbital period of uy). The periodic force F is modelled as:

F=Fg ¥o5(WoD) | y=15 , Fg=711x106N
Simulation Results

To test the performance of the proposed magnetic control law, a number of time-domain simulation runs
were made under a wide variety of conditions. The configurations tested in the simulations include:

- Different Orbital Inclinations
- Different Initial Conditions for Attitude Angles and Rates
- Different Initial Hour Angie
Yaw Angle Maneuver and Control
- Stabilization with Large Aerodynamic Torques
with the CP-CG vector along the yaw axis
with the CP-CG vector tilted away from the yaw axis

The nominal gains for the control laws were selected by iterative simulations. The chosen gains are
applicable in a wide range of inclinations. The nominal gains may be adjusted sometimes, to handle the
disturbance torque more efficiently in given inclinations.
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The simulations confirmed the stability analysis. The magnetic control system is able to damp most of the
libration motion within an orbit. Figure 4 and 5 show typical attitude angles trajectories for initial
excursions in yaw, roll and pitch of 1 radian and 0.1 radian in the absence of disturbance torques.

25000 sec

Figure 4:  Attitude Histories fori = 570 No Disturbance, Initial Condition = 1 rad in Each Axis
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Figure 5: Ammdemsmnesfon=s7° No Disturbance, ImtxalCondmon=OlradanachAms
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The damping is less effective but still adequate for low orbital inclinations as witnessed in Figure 6 because
the magnetic field configuration is less favorable at these inclinations.
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Figure 6: Attitude Histories for i = 28.59, No Disturbance Torque, Initial Condition = 0.1 rad in Each
Axis.
In the presence of strong atmospheric disturbance torques, there are times when the field configuration does

not allow effective nulling of the pitch angle. To minimize limit cycle oscillations, an equilibrium offset
bias can be calculated from the disturbance torque estimates. The controller then tries to achieve
stabilization around the bias angle instead of null. Figure 7 shows the attitude angles histories for a
configuration including large variable atmospheric disturbances. A constant average bias is applied to the
pitch command. The small oscillation around the pitch equilibrium could be further reduced by varying the
bias command according to the estimated disturbance torque.
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Figure 7:  Attitude Histories, i = 570, With Disturbance, CP-CG Offset = -2.8 m Along z axis, 6 cm
Along x, y, Pitch Bias = 0.02 rad.
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An example of 180° yaw maneuver is shown in Figure 8 and Figure 9 in the absence and presence of the
atmospheric disturbances and with different restoring gains.
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Figure 8:  Yaw Maneuver of the Spacecraft to 1800 wnh i= 570 No Disturbance
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Figure 9: Yaw Maneuver History with stturbance Torque, i = 570 CP-CG Offset = -2.8 m Along z
Axis, 6 cm Along x, y, Pitch Bias = 0.024 rad.

The previous examples were assuming the availability of precise attitude estimates for the controller.
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A last example of interest is shown in Figure 10. In that case the Kalman filter is integrated as full part of
the control loop. The estimator is given 5000 seconds to acquire while the spacecraft is librating. The
control is then turned on. The real and estimated angle values can be compared (thick and thin traces). This
example illustrates the feasibility of the complete magnetic attitude determination and control system.

radisns
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ob

ob

0.7 B0000 sec

Figure 10: True Attitudes and Their Kalman Filter Estimates With Disturbance Torques, ati = 570,
CP-CG -2.8 m Along the z Axis, Controller Was Tumned On at 5,000 Secs.

From the initial evaluation of the results of the attitude estimator and the control algorithms, and for the
test case under study, an attitude stabilization performance of about 2 degrees and an attitade knowledge of
about 1 degree appears achievable at most times,

The effect of magnetic storms has not been studied yet. The field orientation may vary up to 3 degrees.
However, the Kalman estimator is expected to filter and average part of the induced errors.

A knowledge of the orbital position within approximately 10 kms appears sufficient. In the stabilized
mode, for the studied case, the required dipole moments stay within approximately 1 Am2. The
computations required can be performed by a small microcomputer. A typical update cycle of 20 seconds is
adequate. .

AUTOMATIC DEPLOYMENT SEQUENCE FOR GRAVITY GRADIENT STABILIZED SYSTEMS

After launch and injection in the desired orbit, several operations must be performed to bring the spacecraft
to final stabilization. The spacecraft must be despun or detumbled. It must be stabilized in an attitude and
with rates suitable for the extension of the gravity gradient boom. The boom must be extended with
accurate timing to reach its final position. The residual libration motion must finally be damped. If these
maneuvers are not successful, the spacecraft may stabilize "up-side down" and may need to be reversed.

The active magnetic control method provides the capability to perform all these operations through
magnetic torqueing, using simple control laws for a wide range of orbital inclinations. These control
algorithms can be chained into an automatic sequence such that, after launch, the spacecraft deploys and
stabilizes automatically without necessary intervention of a ground station. The capability is especially
attractive for multiple satellite systems in low orbits where the ground stations need to service a large
number of spacecrafts.
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An automatic deployment sequence would include the following phases:

A magnetic torquer along the desired spin axis (y) is controlled to generate dipoles My such that
My=-K ﬁy

where By is the time derivative of the y component of the magnetic field.

This brings the spacecraft momentum vector close to the normal to the orbit plane. That simple technique
is commonly used for attitude acquisition of low altitude satellites,

Spin Rate Control

The spin rate can be controlled using magnetic torqueing. For example, with one magnetic torquer, a dipole
Mx may be generated along the x axis such that

Mx = Ks sign (dr - Mr) sign (Bz)

where Ks is a spin rate control gain, dr is the desired rotation rate and Mr is the measured rate estimated
from the magnetometer measurements.

Such method is commonly used on spinning spacecrafts.
Boom Extension Maneyver

The spacecraft is ready for the boom extension maneuver when the spin axis (y) is sufficiently close to the
orbit normal and the spin rate is approximately

s=(Iyf/Iyi o

where «y is the orbital rate and lyi and Iyf are initial and final moments of inertia along the y axis (before
and after extension of the boom).

The magnetic field measurements can provide the phase information necessary for determination of the
proper timing for the boom extension, right side up.

ibration Damping, Yaw Control ilization

When the boom is extended, the stabilization algorithm described in this paper can be activated to provide
attitude determination and control of the Nadir pointing spacecraft.

All the elements for an automatic deployment sequence are therefore available without stretching the state of
the art.
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Conclusion

Active magnetic attitude determination and control can provide significant enhancement in the capabilities
and performances of gravity gradient stabilized spacecraft Requiring no moving parts and no expendables,
the method eliminates the need for passive damper and may relax the thermal and mechanical requirements
on the gravity gradient boom. It provides the possibility for automatic execution of the attiyde acquisition
and boom deployment maneuvers and therefore can relieve the ground station of resource consuming tasks.
The added abilities for attitude determination, and control of the yaw angle open the system trade-offs for
improved mission capabilities or reduced system costs. These advantages are achieved at the expense of
additional on-board processing, with the need for periodic orbital updates. .

A set of algorithms for magnetic attitude control was defined, analyzed and tested in simulations. The
results indicate that such algorithms can perform well the required tasks, in conjunction with previously
designed attitude estimation algorithms.
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