Gaussian Sum Re-Approximation for use in a Nonlinear Filter

Mark L. Psiaki*
Cornell University, Ithaca, NY 14853-7501

Jonathan R. Schoenberg#
Arzentech, Inc., Fishers, IN 46037

and Isaac T. Miller†
Coherent Navigation, Inc., San Mateo, CA 94404

Abstract

A new method has been developed to approximate one Gaussian sum by another. This algorithm is being developed as part of an effort to generalize the concept of a particle filter. In a traditional particle filter, the underlying probability density function is described by particles: Dirac delta functions with infinitesimal covariances. This paper develops an important component of a more general filter, which uses a Gaussian sum with “fattened” finite-covariance "blobs", i.e., Gaussian components, that replace infinitesimal particles. The goal of such a filter is to save computational effort by using many fewer Gaussian components than particles. Most of the techniques necessary for this type of filter exist. The one missing technique is a re-sampling algorithm that bounds the covariance of each Gaussian component while accurately reproducing the original probability distribution. The covariance bounds keep the "blobs" from

* Professor, Sibley School of Mechanical and Aerospace Engineering; Associate Fellow, AIAA.

Senior Consulting Engineer.

† Chief Technology Officer.
becoming too “fat” to ensure low truncation error in Extended Kalman Filter or Unscented Kalman Filter calculations. A new re-sampling algorithm is described, and its performance is studied using two test cases. The new algorithm enables Gaussian sum filter performance that is better than standard nonlinear filters when applied in simulation to a difficult 7-state estimation problem: the new filter's RMS error is only 60% higher than the Cramer-Rao lower bound while the next best filter's RMS error is 370% higher.

I. Introduction

Difficulties can arise when solving certain nonlinear dynamic estimation problems. For example, a common solution algorithm known as the Extended Kalman Filter (EKF) has the potential to diverge or to yield sub-optimal accuracy \(^{1,2,3,4}\). Various algorithms have been developed with the goal of improved convergence robustness or accuracy in the presence of strong nonlinearities, among them the Unscented or Sigma-Points Kalman Filter (UKF) \(^{1,5}\), the Particle Filter (PF) \(^2\), and the Moving Horizon Estimator \(^6\), also known as the Backward-Smoothing Extended Kalman Filter \(^3\).

The PF is attractive for its simplicity and its theoretical guarantee of convergence to the optimal result in the limit of very many particles. The required number of particles to achieve a reasonable result, however, can become overwhelming for a state space dimension as small as seven \(^4\) or even as small as three or four \(^7\).

A sensible generalization of the PF is to use Gaussian sums, also known as Gaussian mixtures, to represent probability density functions. In contrast, a PF effectively works with representations that are sums of Dirac delta functions. A Gaussian mixture generalizes this concept by using elements that have finite covariances instead of infinitesimal covariances. A sum of elements with non-negligible width may be able to approximate a probability density
A function with many fewer terms than would be needed by a PF for the same degree of accuracy, as measured based on differences of multiple moments or based on the functional norm "distance" from the true probability density. Thus, a Gaussian mixture filter has the potential to solve the curse of dimensionality that causes a PF to become impractical for state space dimensions above 2 or 3.

Gaussian mixture filters have been studied extensively, and Refs. 8 and 9 are two early papers on this subject. The proposed filter, described in Ref. 10, is a modified version of typical Gaussian mixture filters that are contained in many references, e.g., Refs. 11, 12, 13, and 14. It implements a separate standard EKF dynamic propagation and measurement update for each element of its Gaussian mixture. Reference 10 demonstrates that a good approximation of the full nonlinear Bayesian filter calculations can be implemented by using mixand-by-mixand EKF calculations along with static Gaussian multiple-model recalculation of the mixand weights after the measurement update, as in Ref. 15. The present paper's re-sampling algorithm is used by the filter in Ref. 10 between its dynamic propagation and measurement update steps in order to restrict mixand covariances and limit the total number of mixands. A strength of the Gaussian mixture filter of Ref. 10 is the potential accuracy of its mixand-by-mixand EKF dynamic propagation and measurement update. If each element of the Gaussian mixture has a sufficiently small covariance, then the EKF calculations will be very accurate. This is true because a narrow distribution implies accuracy of the Taylor series approximations inherent in the EKF calculations. Reference 9 was one of the first to highlight this important property of a Gaussian mixture filter that has mixands with small covariances.

A number of previously published Gaussian mixture filtering schemes employ a re-
sampling/re-approximation step. Some specifically seek to limit the covariances of the mixands. Others use re-approximation for other reasons, such as limiting the number of mixands, e.g. Ref. 11. Similar to the present paper, other efforts have concentrated solely on the problem of re-sampling in a way that bounds mixand covariance, but have not implemented full filters, e.g., Refs. 16, 17, 18, and 19. All of the known previous efforts to re-approximate Gaussian mixtures subject to covariance restrictions employ 1-dimensional approaches to reduce the covariance in a given mixand. They use an eigenvalue decomposition of a given mixand's covariance matrix and split the corresponding 1-dimensional Gaussians in the resulting product into multiple 1-dimensional Gaussians with smaller 1-dimensional standard deviations. A number of the methods develop on-line tests for whether a mixand's covariance is too large for accurate local filter approximation and, therefore, in need of re-approximation of multiple mixands with smaller covariance. This 1-dimensional splitting approach has drawbacks. Consider the required number of new mixands to approximate the original mixture closely while respecting a given covariance upper limit. This number might be very large due to the curse of dimensionality: The needed number of new mixands for a single original mixand could scale as M^n, where M is the number of 1-dimensional mixands with reduced variance along each axis and n is the state space dimension. There is no obvious way for most of these methods to exploit the possibility that severe nonlinearities occur only in a subspace of the state space. References 18 and 19 employ strategies that could result in splitting only in a subspace, thereby reducing the needed number of new mixands. The method of Ref. 18 enforces maximum covariances along each axis independently of the other axes. The method of Ref. 19 uses a sigma-points fit

* The terms "re-approximation" and "re-sampling" are used interchangeably throughout this paper.
criterion to choose a single axis of splitting, and it iterates these operations recursively in case multiple axes need splitting. Most of the developed Gaussian mixture re-approximation schemes include methods to reduce or bound the number of mixands, e.g. Refs. 12, 13, 14, 18, and 19. These methods perform merging as a separate step from the re-approximation that bounds mixand covariance, and the merging may not bound the merged covariances. Two of the methods employ the merging algorithm of Ref. 20. None of these methods develop limiting conditions under which their re-approximated Gaussian mixtures converge to the original mixture.

References 21 and 22 develop weight adaptation schemes that seek to improve Gaussian mixture dynamic propagation through continuous-time nonlinear differential equations. If the underlying mixands have covariances that are too large, then this approach can lead to unacceptably high model truncation errors when applying EKF or UKF calculations to each mixand, regardless of how the weights might be adapted during dynamic propagation. Reference 16 found that the weight adaptation approach of Refs. 21 and 22 does not yield significant improvements for certain orbit determination problems.

Other Gaussian mixture re-approximation schemes appear in Refs. 20, 23, and 24. These algorithms' primary goal is to approximate an original mixture by a new one that has fewer elements. The ability to reduce the number of elements can arrest the growth of element numbers caused by forming products of state and noise mixtures, or it can lower the numbers as much as possible when computational resources are at a premium. Reference 25 finds the algorithm of Ref. 20 to be effective for this purpose. The present algorithm retains reduction of the mixand count as a secondary goal, but its main goal is to develop a new approximate mixture whose elements all have covariances that satisfy a Linear Matrix Inequality (LMI) upper bound.
This latter goal is of primary importance when using Gaussian mixtures to generalize nonlinear particle filtering.

The present paper's contribution is a new Gaussian mixture re-approximation algorithm. It has three important properties: First, it chooses elements of the new mixture so that their covariances lie below an LMI upper bound, a bound that could vary with mixand mean or some other relevant quantity. This constraint is included as a means of ensuring that element-by-element EKF or UKF dynamic propagation and measurement update calculations will yield a sufficiently accurate approximation of the \textit{a posteriori} probability density function when using this re-sampling algorithm within an approximate Bayesian nonlinear estimation algorithm. This LMI bounding approach obviates the need to implement multiple 1-dimensional splittings of a given mixand along its covariance eigenvectors. Second, the new algorithm chooses new mixture elements and their weights in a way that seeks to approximate the original Gaussian mixture distribution accurately in the limit of a large number of new mixands. This paper demonstrates the accuracy of its re-approximation in the limiting case. Third, the new re-approximation algorithm tries to hold down the needed number of new mixands through a combination of strategies. These strategies include a) maximization of new element covariances subject to the LMI constraint, b) selection of new element means and weights in a way that tends to limit the number of new elements when some of the original elements already have sufficiently small covariances, and c) fusion of elements if their Gaussian sum can be approximated well by a single Gaussian element while respecting the LMI covariance bound.

A significant property of the new re-approximation scheme is its asymptotic approach to the importance re-sampling procedure of a standard particle filter in the limit of a very small upper bound on the covariances of the new elements. This asymptotic similarity causes the
corresponding Gaussian mixture filter to be a natural generalization of the particle filter.

This paper develops and analyzes its new Gaussian mixture re-approximation algorithm in 5 main sections. Section II defines Gaussian mixtures using square-root information matrix notation and gives an overview of the Gaussian mixture re-approximation algorithm. Section III defines an LMI that bounds the covariances of the elements of the new Gaussian mixture. It develops an algorithm for choosing the covariance of a new element in a way that respects this limit while deviating as little as possible from the covariance of a corresponding element of the original mixture. Section IV develops an algorithm for merging elements of the original mixture subject to a bound on the relative error between elements of the original mixture and their merged counterparts. The relative error is defined using the Integral Square Difference (ISD) error metric between two Gaussian mixtures. Section V presents the algorithm that selects the means, covariances, and weights of the elements which constitute the mixture re-approximation. This section summarizes the entire re-approximation algorithm, and it demonstrates that the re-approximated distribution approaches the original one in the limit of a large number of new mixands. Section VI presents simulated example test results that illustrate the performance and usefulness of the new algorithm. Section VII contains conclusions.

II. Gaussian Mixture Probability Density Functions and Re-Approximation Overview

A. Gaussian Mixture Definition

A Gaussian mixture is a weighted sum of Gaussian distributions. The i^{th} element of the mixture, also called the i^{th} mixand or the i^{th} component, can be characterized by its square-root information matrix R_i and its mean μ_i. The element probability distribution is:

$$
\mathcal{N}_{sr}(x; \mu_i, R_i) = \frac{1}{(2\pi)^{n/2}} e^{-0.5[R_i(x-\mu_i)]^T[R_i(x-\mu_i)]} = \mathcal{N}(x; \mu_i, R_i^{-1}R_i^{-T})
$$

(1)
where \mathbf{x} and $\boldsymbol{\mu}$ are n-dimensional vectors and R_i is an n-by-n matrix. The covariance matrix of this distribution is $P_i = R_i^{-1}R_i^{-\top}$, where the notation $()^{-\top}$ indicates the inverse of the transpose of the matrix in question. The notation $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, P)$ indicates the usual normal distribution in the vector \mathbf{x} that has mean $\boldsymbol{\mu}$ and covariance matrix P. The notation $\mathcal{N}_{sr}(\mathbf{x}; \boldsymbol{\mu}, R)$ indicates the same distribution in \mathbf{x}, except that its covariance is characterized by the square-root information matrix R in place of the covariance matrix P. This latter parameterization of the normal distribution will be used throughout the remainder of this paper. It allows a simple LMI solution in Section III, and it is consistent with the target application within a Gaussian mixture filter that uses numerically stable square-root information filter (SRIF) calculations.

Each element of a Gaussian mixture also has a weight, w_i. Each weight must be non-negative. The sum of all of the weights equals 1. If there are N elements in the mixture, then

$$1 = \sum_{i=1}^{N} w_i \quad \text{and} \quad w_i \geq 0 \quad \text{for} \quad i = 1, \ldots, N \quad (2)$$

Given the Gaussian component definition in Eq. (1) and weights that obey the constraints in Eq. (2), the corresponding Gaussian mixture is

$$p_{gm}(\mathbf{x}; w_1, \boldsymbol{\mu}_1, R_1, \ldots, w_N, \boldsymbol{\mu}_N, R_N) = \sum_{i=1}^{N} w_i \mathcal{N}_{sr}(\mathbf{x}; \boldsymbol{\mu}_i, R_i) \quad (3)$$

It is straightforward to show that this probability density function preserves the unit normalization constraint and that its mean and covariance are, respectively,

$$\boldsymbol{\mu}_{gm} = \sum_{i=1}^{N} w_i \boldsymbol{\mu}_i \quad \text{and} \quad P_{gm} = \sum_{i=1}^{N} w_i [R_i^{-1}R_i^{-\top} + (\boldsymbol{\mu}_i - \boldsymbol{\mu}_{gm})(\boldsymbol{\mu}_i - \boldsymbol{\mu}_{gm})^T] \quad (4)$$

It is necessary to distinguish between two Gaussian mixture distributions in this paper. Suppose that one distribution, distribution "a", is characterized by the weights, mean values, and
square-root information matrices w_{ai}, μ_{ai}, R_{ai} for $i = 1, ..., N_a$. Similarly, suppose that another related distribution, distribution "b", is characterized by w_{bj}, μ_{bj}, R_{bj} for $j = 1, ..., N_b$. The following short-hand notation is used to indicate these two distributions

$$p_a(x) = p_{gm}(x; w_{a1} \mu_{a1} R_{a1}, ..., w_{aN_a} \mu_{aN_a} R_{aN_a}) = \sum_{i=1}^{N_a} w_{ai} N_{sr}(x; \mu_{ai}, R_{ai}) \quad (5a)$$

$$p_b(x) = p_{gm}(x; w_{b1} \mu_{b1} R_{b1}, ..., w_{bN_b} \mu_{bN_b} R_{bN_b}) = \sum_{j=1}^{N_b} w_{bj} N_{sr}(x; \mu_{bj}, R_{bj}) \quad (5b)$$

The goal of this paper is to develop a method that picks the parameters of distribution "b", N_b and w_{bj}, μ_{bj}, and R_{bj} for $j = 1, ..., N_b$. It seeks to pick these parameters in a way that will cause $p_b(x)$ to be a good approximation of $p_a(x)$ while respecting an LMI lower bound on every $R_{bj}^T R_{bj}$ for $j = 1, ..., N_b$. The algorithm's LMI lower bound on $R_{bj}^T R_{bj}$ is an alternate means of enforcing an LMI upper bound on the covariance $P_{bj} = R_{bj}^{-1} R_{bj}^{-T}$.

Consider the example 1-dimensional original Gaussian mixture $p_a(x)$ and its re-approximation $p_b(x)$ that are plotted along the horizontal axis of Fig. 1. The distribution $p_a(x)$ is the solid blue curve, and its three weighted constituents are the three dashed green curves. The re-sampled $p_b(x)$ is the dash-dotted red curve. The standard deviations of the 3 $p_a(x)$ components are 0.42, 0.75, and 2.06, but each $p_b(x)$ component has a smaller standard deviation, 0.20. The goal of this paper is to develop an algorithm that generates $p_b(x)$ from $p_a(x)$ automatically in a way that makes its dash-dotted red curve match the blue curve of $p_a(x)$ accurately while guaranteeing that each component of $p_b(x)$ has a sufficiently small covariance.

B. Overview of Gaussian Mixture Re-Approximation Algorithm

This paper's re-approximation algorithm can be divided into three major phases. The first phase of the algorithm performs pre-processing calculations that produce candidate new square-
root information matrices that respect LMI covariance bounds. It also calculates corresponding covariance matrix decrement square-roots, which are used by the final re-sampling algorithm to compute the mean values of new mixands. The second phase applies a merging calculation to original Gaussian mixture $p_a(x)$ in order to create a modified mixture $p_a'(x)$. This phase attempts to re-set some of the original weights to 0 while others are adjusted in a way that produces minimal distortion of the original distribution. The goal of this phase is to structure $p_a(x)$ in a way that may reduce the number of mixands in the final re-sampled distribution. The last phase of the algorithm executes a procedure that determines the means, square-root information matrices, and weights of the mixands of the new Gaussian mixture $p_b(x)$.

The next three sections define the details of this re-sampling algorithm. Section III develops the LMI techniques needed to accomplish the first phase. Section IV develops the merging operations used by the second phase. Section V integrates these components into the complete re-approximation algorithm.

III. LMI Bounds on the Covariances of the New Mixture's Components

A. Covariance and Square-Root Information Matrix Bounds

This section defines and solves a Linear Matrix Inequality. This solution is needed in order to compute the constrained covariances of the new mixture elements. The LMI is used to enforce the following lower bound on the information matrices of the elements of the new Gaussian mixture $p_b(x)$:

$$ R_{by} \geq R_{min} \quad \text{for all } j = 1, \ldots, N_b $$

(6)

where the matrix inequality is defined in the sense that the symmetric matrix on the left minus the symmetric matrix on the right equals a positive semi-definite matrix.
This lower bound on the information matrix of each mixture element translates into an upper bound on each element's covariance: \(P_{bj} = R_{bj}^{-1}R_{bj}^{-T} \leq R_{min}^{-1}R_{min}^{-T} = P_{\max} \). One can prove equivalence between this covariance inequality and Eq. (6) as follows: The latter matrix inequality is equivalent to \(R_{min}R_{bj}^{-1}R_{bj}^{-T}R_{min}^{-T} \leq I \). Equation (6) is equivalent to \(R_{min}^{-T}R_{bj}^{-T}R_{min}^{-1} \geq I \). The left-hand sides of these last two matrix inequalities are the inverses of each other. These last two inequalities are interchangeable because the first is true if and only if the symmetric matrix on its left-hand side has no eigenvalue greater than 1, and the second is true if and only if its left-hand-side matrix has no eigenvalue less than 1.

If the re-sampling algorithm must be constrained to choose the elements of \(p_{b}(x) \) to have covariances less than \(P_{\max} \), then it suffices to enforce the LMI in Eq. (6). This LMI provides a means of trying to ensure that element-by-element UKF or EKF operations on the mixture, as per Ref. 10, will yield a good approximation of optimal Bayesian nonlinear filtering because the corresponding local approximations of the filter's dynamics and measurement functions will be accurate over the likely range of state variability allowed by \(P_{\max} \).

Choice of the bound \(P_{\max} \) is problem-dependent, and no general method has been developed for choosing this matrix based on the nonlinearities of the filtering problem's model functions. The choice of \(P_{\max} \) should consider all of the nonlinearities in the filtering problem's dynamics and measurement models. It should be chosen so that a linear Taylor series approximation of each nonlinearity is reasonably accurate over the range of state perturbations \(\Delta x \) that respect the bound \(\Delta x^TP_{\max}^{-1}\Delta x \leq \rho \) with the limit \(\rho \) chosen somewhere in the range 1 to 3.

Each \(R_{bj} \) square-root information matrix will be subject to one additional bound beyond
that of Eq. (6). The Gaussian mixture re-sampling algorithm chooses the \(j \)th component of \(p_b(x) \) with the goal of improving the accuracy with which \(p_b(x) \) approximates a particular element of \(p_a(x) \), call it the \(i \)th element. In order for the re-sampling algorithm to work well, it is necessary that the covariance of the \(j \)th component of \(p_b(x) \) not exceed the covariance of the corresponding \(i \)th component of \(p_a(x) \). Otherwise, the re-sampling algorithm might not be able to produce a good approximation of the \(i \)th component of \(p_a(x) \) because the new approximation’s covariance will be no smaller than the smallest covariance of any of its components. Therefore, an appropriate additional bound on the new element’s square-root information matrix is

\[
R_{bj}^T R_{bj} \geq R_{ai}^T R_{ai}
\]

This additional bound might appear to artificially restrict the width of \(p_b(x) \)'s approximation of the \(i \)th element of \(p_a(x) \). This is not the case, however, because the full algorithm includes a compensatory widening of the re-sampled distribution through dispersion of the means of the new mixands that it uses to approximate the \(i \)th mixand of \(p_a(x) \).

One might be tempted to impose an additional LMI upper bound on \(R_{bj}^T R_{bj} \) in order to avoid unnecessary narrowness of the new mixands. Instead, an optimization of \(R_{bj} \) is used as a means of limiting the size of \(R_{bj}^T R_{bj} \). It provides an effective "soft" upper limit and is easy to implement, as shown in the next subsection.

B. Optimal Solution to a Pair of LMIs

The algorithm for choosing \(R_{bj} \) seeks the matrix that satisfies the LMIs in Eqs. (6) and (7) while simultaneously minimizing two squared weighted-norm metrics:

\[
\text{Trace}(R_{min}^{-1} R_{bj}^T R_{bj} R_{bj} R_{bj}^{-1})
\]

and

\[
\text{Trace}(R_{ai}^{-1} R_{bj}^T R_{bj} R_{bj} R_{ai}^{-1})
\]

This constrained minimization prevents \(R_{bj} \) from being any larger than needed, which yields the largest possible corresponding covariance matrix. This is a good
way to choose R_{bj} because the largest possible covariance matrix tends to enable $p_b(x)$ to approximate $p_a(x)$ accurately using the fewest possible mixands.

The optimal solution procedure for this LMI starts by computing the singular value
decomposition of the matrix $R_{ai}R_{min}^{-1}$:

$$U_{bj}S_{bj}V_{bj}^T = R_{ai}R_{min}^{-1}$$

where U_{bj} and V_{bj} are orthonormal matrices and $S_{bj} = \text{diag}(\sigma_{bj1},...,\sigma_{bjn})$ is a diagonal matrix with the n positive singular values $\sigma_{bj1}, ..., \sigma_{bjn}$ on its diagonal.

If $\sigma_{bjk} \geq 1$, for all $k = 1, ..., n$, then the choice $R_{bj} = R_{ai}$ respects the LMIs in Eqs. (6) and (7) in an optimal manner. Otherwise, one forms the n-by-n diagonal matrix

$$\mathbf{\delta S}_{bjfull} = \begin{bmatrix} \sqrt{\max(1-\sigma_{bj1}^2,0)} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{\max(1-\sigma_{bjn}^2,0)} \end{bmatrix}$$

Next, one deletes all of the zero-valued rows of $\mathbf{\delta S}_{bjfull}$ in order to form the matrix $\mathbf{\delta S}_{bj}$. That is, row k of $\mathbf{\delta S}_{bjfull}$ is deleted for every k such that $\sigma_{bjk} \geq 1$. This latter matrix is then used to form the matrix:

$$\mathbf{\delta R}_{bj} = \mathbf{\delta S}_{bj}V_{bj}^T R_{min}$$

Finally, one uses orthonormal/upper-triangular (QR) factorization in order to compute R_{bj} as follows:

$$Q_{bj} \begin{bmatrix} R_{bj} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{\delta R}_{bj} \\ R_{ai} \end{bmatrix}$$

where Q_{bj} is an orthonormal matrix and R_{bj} is a square, upper-triangular matrix.

One can prove that this R_{bj} matrix satisfies the LMIs of Eqs. (6) and (7) if one recognizes
the following implication of Eq. (11): that

$$R_{bj}^T R_{bj} = R_{ai}^T R_{ai} + \delta R_{bj}^T \delta R_{bj}$$

(12)

The LMI in Eq. (7) follows directly from this relationship. One can derive Eq. (6) by multiplying this relationship on the left by R_{min}^{-T} and on the right by R_{min}^{-1}. One can then substitute in Eqs. (8) and (10) to show that

$$V_{bj} = V_{bj} (S_{bj}^T S_{bj} + \delta S_{bj}^T \delta S_{bj}) V_{bj}^T = V_{bj} (S_{bj}^T S_{bj} + \delta S_{bjfull}^T \delta S_{bjfull}) V_{bj}^T. \quad \text{The last matrix expression within the parentheses is a diagonal matrix, all of whose diagonal elements are no less than 1. Therefore,}$$

$$R_{min}^{-T} R_{bj} R_{min}^{-1} \geq I,$$

which is equivalent to Eq. (6).

It is straightforward to show that the R_{bj} matrix of Eq. (11) minimizes both of the squared weighted-norm metrics $\text{Trace}(R_{min}^{-T} R_{bj} R_{min}^{-1})$ and $\text{Trace}(R_{ai}^{-T} R_{bj} R_{ai}^{-1})$ subject to the LMI bounds in Eqs. (6) and (7). Additionally, consider the eigenvalues of the two matrix differences $(R_{bj}^T R_{bj} - R_{min}^T R_{min})$ and $(R_{bj}^T R_{bj} - R_{ai}^T R_{ai})$. Both sets of eigenvalues are non-negative, in accordance with the LMIs in Eqs. (6) and (7). Consider the union of the eigenvalues of these two positive semi-definite matrices, a set of $2n$ eigenvalues. It is straightforward to prove that n or more of these eigenvalues equal zero. These properties indicate that $R_{bj}^T R_{bj}$ is as close as possible, in some matrix sense, to $R_{min}^T R_{min}$ and to $R_{ai}^T R_{ai}$. Closeness to $R_{ai}^T R_{ai}$ tends to reduce the number of required new mixands for a given level of probability density approximation accuracy.

Note that the LMI solution R_{bj} is not unique. It can be left-multiplied by any orthonormal matrix without changing any of the properties described in this subsection, except for upper-triangularity. This non-uniqueness presents no problems. Any R_{bj} square-root information
matrix with the given properties will serve for the development of the new Gaussian mixture $p_b(x)$.

C. Covariance Matrix Decrement Square Roots

A covariance matrix decrement must be computed for each original mixand of distribution $p_a(x)$. It is needed in order to define a modified distribution from which the mixand mean values of the new $p_b(x)$ distribution will be sampled in the overall re-approximation algorithm of Section V. This subsection defines the covariance matrix decrement and develops an algorithm to compute it.

The matrix δR_{bj} from Eq. (10) represents the square-root of an increment to an information matrix. The corresponding covariance decrement is

$$\delta P_{ai} = P_{ai} - P_{bj} = R_{ai}^{-1} R_{ai}^{-T} - R_{bj}^{-1} R_{bj}^{-T} = \delta Y_{aibj} \delta Y_{aibj}^T$$

This covariance decrement is positive semi-definite, and δY_{aibj} is its matrix square-root. This square root is needed in Section V. It can be computed using following formula

$$\delta Y_{aibj} = R_{aj}^{-1} R_{ai}^{-T} \delta R_{bj}^T R_{dj}^{-1}$$

where the matrix R_{dj} is determined from the QR factorization

$$Q_d \begin{bmatrix} R_{dj} \\ 0 \end{bmatrix} = \begin{bmatrix} R_{ai}^{-T} \delta R_{bj}^T \\ I \end{bmatrix}$$

with Q_d being an orthonormal matrix and R_{dj} being a square, upper-triangular matrix.

One can prove that δY_{aibj} from Eq. (14) satisfies Eq. (13) by squaring the δY_{aibj} expression in Eq. (14), as on the right-hand side of Eq. (13), and by algebraically manipulating the result to show that it equals $R_{ai}^{-1} R_{ai}^{-T} - R_{bj}^{-1} R_{bj}^{-T}$. This manipulation requires the formula $R_{dj}^{-1} R_{dj}^{-T} = I -$
\[\delta R_{bj} R_{bj}^{-1} R_{bj}^{-T} \delta R_{bj}^T \] This latter formula can be proved by squaring both sides of Eq. (15) to show that

\[R_{dji}^T R_{dji} = I + \delta R_{bj} R_{ai}^{-1} R_{ai}^{-T} \delta R_{bj}^T \]

and by using the matrix inversion lemma 27 along with a substitution based on Eq. (12). The next step of the proof of Eq. (13) replaces \(R_{dji}^{-1} R_{dji}^{-T} \) in the formula for \(\delta Y_{aibj} \delta Y_{aibj}^T \) with the equivalent expression given above. Finally, one performs several associative re-groupings of matrix multiplications and two substitutions for \(\delta R_{bj} \delta R_{bj} \) that are based on Eq. (12).

The covariance decrement square-root matrix \(\delta Y_{aibj} \) has some interesting properties. It has only as many columns as \(\delta R_{bj} \) has rows. This number equals the number of singular values of \(S_{bj} \) that satisfy \(\sigma_{bjk} < 1 \). The matrix \(\delta Y_{aibj} \) is not unique. It can be right-multiplied by any orthonormal matrix without changing its satisfaction of Eq. (13). Any \(\delta Y_{aibj} \) matrix that satisfies this equation will serve for Section V's re-sampling algorithm.

IV. Algorithm for Merging Elements of the Original Mixture

In the dynamic filtering application, it is possible that two or more elements of a Gaussian mixture will tend to converge to have nearly the same mean and covariance, as was discovered during the research that produced Ref. 28. In such a situation, it is inefficient to maintain two or more separate mixands when a single mixand with an increased weight could accurately approximate the several original mixands. Therefore, a method has been developed to search for redundancies in the original Gaussian mixture \(p_o(x) \) and to remove them in order to form a modified mixture called \(p_o'(x) \).

This merging scheme constitutes an ad hoc method to try to restrict the number of mixands in the re-sampled distribution. It is unlikely to produce the optimal re-sampled distribution for a
given bound on the number of mixands. It is implemented because it may substantially reduce
the number of mixands in the final re-sampled distribution without significantly affecting the
distribution's fidelity. This is especially likely when the algorithm is being used within a
Bayesian Gaussian mixture filter which has converged to a narrow final distribution that yields
very accurate state estimates.28

A. Selection of Original Mixands for Possible Merging

Merging of Gaussian mixture $p_a(x)$ mixands is attempted only for those mixands with
sufficiently small covariances, i.e., ones that already satisfy the information matrix lower-bound
LMI in Eq. (6). This restriction on candidates for merging represents an ad hoc attempt to merge
only those mixands that are likely to have converged on top of each other. It exploits the
authors' experience that filter convergence tends to produce simultaneous overlapping of
mixands and smallness of mixand covariances. As will be discussed in Section V, each original
mixand with a sufficiently narrow covariance produces at most one re-sampled mixand.
Therefore, the merging of such mixands in the original distribution can further reduce the
number of mixands in the re-sampled distribution.

Suppose that the subset of mixands with the required properties for merging is used to
define a new Gaussian mixture

$$p_c(x) = p_{gm}(x; w_{c1}, \mu_{c1}, R_{c1}, \ldots, w_{cN_c}, \mu_{cN_c}, R_{cN_c}) = \sum_{k=1}^{N_c} w_{ck} N_s(x; \mu_{ck}, R_{ck})$$ \hspace{1cm} (16)

where the set of means and square-root information matrices used to define $p_c(x)$, \{(\mu_{c1}; R_{c1}), \ldots, (\mu_{ck}; R_{ck}), \ldots (\mu_{cN_c}; R_{cN_c})\} is chosen to be the subset of \{(\mu_{a1}; R_{a1}), \ldots, (\mu_{ai}; R_{ai}), \ldots (\mu_{aN_a}; R_{aN_a})\} whose elements obey:

$$w_{ai} > 0 \text{ and } R_{ai}^T R_{ai} \geq R_{\text{min}}^T R_{\text{min}}$$ \hspace{1cm} (17)
Suppose that \(i(k) \) defines the mapping from the \(p_a(x) \) mixand index to the corresponding \(p_c(x) \) mixand index so that \((\mu_{ck}; R_{ck}) = (\mu_{a(i(k))}; R_{a(i(k))})\) for \(k = 1, \ldots, N_c \). Then the new weights used to define \(p_c(x) \) are re-normalized versions of the corresponding subset of the \(p_a(x) \) weights:

\[
w_{ck} = \frac{w_{ai(k)}}{\sum_{l=1}^{N_c} w_{ai(l)}} \quad \text{for} \quad k = 1, \ldots, N_c \tag{18}
\]

Thus, \(p_c(x) \) is a Gaussian mixture that represents a component of the original \(p_a(x) \) distribution in the sense that \(p_a(x) \) can be expressed as a weighted sum of \(p_c(x) \) and another Gaussian mixture.

B. Merging through Mixand Re-Weighting

The ad hoc merging algorithm attempts to find a new set of weights for \(p_c(x) \) that includes some zero-valued weights and that results in the modified distribution

\[
p_{c'}(x) = p_{gn}(x; w_{c'1}, \mu_{c1}, R_{c1}, \ldots, w_{c'N_c}, \mu_{cN_c}, R_{cN_c}) = \sum_{k=1}^{N_c} w_{c'k} N_{sr} (x; \mu_{ck}, R_{ck}) \tag{19}
\]

The new weights are \(w_{c'k} \) for \(k = 1, \ldots, N_c \). The zero-valued weights correspond to mixands that will be dropped during the re-sampling process. In effect, the dropped mixands are merged into the remaining mixands.

The new weights must be chosen in a way that keeps the functional 2-norm of the difference between \(p_c(x) \) and the new \(p_{c'}(x) \) below a small relative error bound:

\[
\| p_{c'}(x) - p_c(x) \|_2 = \left\{ \int_{-\infty}^{\infty} [p_{c'}(x) - p_c(x)]^2 \, dx \right\}^{0.5} \leq \varepsilon \left\{ \int_{-\infty}^{\infty} [p_c(x)]^2 \, dx \right\}^{0.5} = \varepsilon \| p_c(x) \|_2 \tag{20}
\]

where \(\varepsilon \) is a small positive relative error limit, normally something on the order of \(10^{-2} \) to \(10^{-4} \) or smaller. The integrals here and throughout the remainder of the paper are multi-dimensional integrals over the vector space associated with the corresponding differential hyper volume element, in this case the \(n \)-dimensional space associated with \(dx \). This bound ensures that the
dropping of mixands does not substantially alter the initial Gaussian mixture.

C. Definition and Use of Integral Square Difference

The probability density function relative error constraint in Eq. (20) can be re-formulated by using the ISD between probability density functions. Given an original probability density function \(p_a(x) \) and a candidate approximation \(p_b(x) \), the ISD provides a measure of the accuracy with which \(p_b(x) \) approximates \(p_a(x) \). It is defined to be the integral of the square of the difference between these two probability density functions:

\[
J_{\text{ISD}} = \int_{-\infty}^{\infty} [p_a(x) - p_b(x)]^2 \, dx
\]

(21)

This quantity is non-negative, and its square root is the functional 2-norm of the difference between the probability distributions:

\[
\| p_a(x) - p_b(x) \|_2 = \sqrt{\int_{-\infty}^{\infty} [p_a(x) - p_b(x)]^2 \, dx}
\]

(22)

A very small value of \(J_{\text{ISD}} \) indicates that \(p_b(x) \) is a very good approximation of \(p_a(x) \). Distribution \(p_b(x) \) perfectly matches \(p_a(x) \) if and only if \(J_{\text{ISD}} = 0 \).

Reference 23 presents analytic formulas for evaluating the integral in Eq. (21). The formulas used here are modified versions of those found in Ref. 23. They account for the use of square-root information matrices in place of mixand covariance matrices. Suppose that one defines weight vectors for the two probability density functions: \(w_a = [w_a^1; w_a^2; w_a^3; \ldots; w_a^{N_a}] \) and \(w_b = [w_b^1; w_b^2; w_b^3; \ldots; w_b^{N_b}] \). Then the integral in Eq. (21) can be written as a quadratic form in these two vectors:

\[
J_{\text{ISD}} = w_a^T H_{aa} w_a - 2 w_a^T H_{ab} w_b + w_b^T H_{bb} w_b
\]

(23)

where \(H_{aa} \), \(H_{ab} \), and \(H_{bb} \) are matrices with the respective dimensions \(N_a \)-by-\(N_a \), \(N_a \)-by-\(N_b \), and \(N_b \)-
The matrices H_{aa} and H_{bb} are symmetric and at least positive semi-definite. The elements of these matrices can be evaluated using the formulas:

\[
[H_{aa}]_{ik} = \int_{-\infty}^{\infty} \mathcal{N}_{sr}(x; \mu_{ai}, R_{ai}) \mathcal{N}_{sr}(x; \mu_{ak}, R_{ak}) \, dx \quad \text{for } i = 1, \ldots, N_a \text{ and } k = 1, \ldots, N_a \quad (24a)
\]

\[
[H_{ab}]_{ij} = \int_{-\infty}^{\infty} \mathcal{N}_{sr}(x; \mu_{ai}, R_{ai}) \mathcal{N}_{sr}(x; \mu_{bj}, R_{bj}) \, dx \quad \text{for } i = 1, \ldots, N_a \text{ and } j = 1, \ldots, N_b \quad (24b)
\]

\[
[H_{bb}]_{jl} = \int_{-\infty}^{\infty} \mathcal{N}_{sr}(x; \mu_{bj}, R_{bj}) \mathcal{N}_{sr}(x; \mu_{bl}, R_{bl}) \, dx \quad \text{for } j = 1, \ldots, N_b \text{ and } l = 1, \ldots, N_b \quad (24c)
\]

where the notation $[]_{ik}$ indicates the row-i/column-k element of the matrix in question.

The integrals in Eqs. (24a)-(24c) can be evaluated analytically by using the normalization property of a Gaussian distribution and the fact that the product of two Gaussian distributions is itself a Gaussian distribution, although not properly normalized. These integrals take the general form:

\[
\int_{-\infty}^{\infty} \mathcal{N}_{sr}(x; \mu_c, R_c) \mathcal{N}_{sr}(x; \mu_d, R_d) \, dx = \frac{| \det(R_c) | | \det(R_d) |}{(2\pi)^{n/2} | \det(R_{cd}) |} e^{-0.5 \left[\mathbf{r}_{cd} (\mu_c - \mu_d) \right]^\top \mathbf{r}_{cd} (\mu_c - \mu_d)} \quad (25)
\]

where the n-by-n matrices \mathbf{R}_{cd} and $\tilde{\mathbf{R}}_{cd}$ are computed based upon the following QR factorization:

\[
Q \begin{bmatrix} R_{cd} \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 \mid Q_2 \end{bmatrix} \begin{bmatrix} R_{cd} \\ 0 \end{bmatrix} = \begin{bmatrix} R_c \\ R_d \end{bmatrix} \quad (26)
\]

with Q being a $2n$-by-$2n$ orthonormal matrix and \mathbf{R}_{cd} an n-by-n upper-triangular matrix. Q_1 equals the first n columns of Q, and Q_2 equals the last n columns. These matrices are used to compute
\[\bar{R}_{cd} = Q_2^T \begin{bmatrix} R_c \\ 0 \end{bmatrix} = -Q_2^T \begin{bmatrix} 0 \\ R_d \end{bmatrix} \] (27)

Equations (25)-(27) have been derived using a lengthy, non-intuitive sequence of matrix/vector manipulations that have been omitted for the sake of brevity. In the special case where \(R_c = R_d \), it suffices to use \(\bar{R}_{cd} = \sqrt{2}R_c \) and \(\bar{R}_{cd} = (1/\sqrt{2})R_c \), and in this case the Eq. (25) integral becomes

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |N_{sr}(x; \mu_c, R_c)N_{sr}(x; \mu_d, R_c)| dx = \left| \frac{\det(R_c)}{2^n \pi^{n/2}} \right| e^{-0.25(R_c(\mu_c - \mu_d))^T R_c(\mu_c - \mu_d)} (28)
\]

Using the concept of the ISD, the probability density function relative error constraint in Eq. (20) becomes, after squaring both sides of the inequality and using the formulas in Eqs. (23)-(24c):

\[
(w_c - w_c')^T H_{cc}(w_c - w_c') \leq \epsilon^2 w_c^T H_{cc} w_c (29)
\]

where \(w_c = [w_{c1}; w_{c2}; w_{c3}; \ldots; w_{cN_c}] \), \(w_c' = [w_{c1}; w_{c2}; w_{c3}; \ldots; w_{cN_c}] \), and

\[
[H_{cc}]_{ik} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |N_{sr}(x; \mu_{ci}, R_{ci})N_{sr}(x; \mu_{ck}, R_{ck})| dx \quad \text{for } i = 1, \ldots, N_c \text{ and } k = 1, \ldots, N_c (30)
\]

D. Determination of Merged Weights

Given these definitions, the merged weight vector \(w_c' \) is chosen by solving the following mixed real/integer optimization problem:

find: \(w_c' = [w_{c1}; w_{c2}; w_{c3}; \ldots; w_{cN_c}] \) \hspace{1cm} (31a)

to maximize: Number of zero-valued elements in \(w_c' \) \hspace{1cm} (31b)

subject to: \(1 = w_{c1} + w_{c2} + w_{c3} + \ldots + w_{cN_c} \) \hspace{1cm} (31c)
\[0 \leq w_{c'k} \quad \text{for } k = 1, \ldots, N_c \] \hspace{1cm} (31d)
(w_{c'} - w_c)^T H_{aa} (w_{c'} - w_c) \leq \varepsilon^2 w_c^T H_{cc} w_c \tag{31e}

The integer part of this constrained optimization problem comes from the fact that its performance index is the integer count of zero-valued elements of $w_{c'}$.

The optimization problem in Eqs. (31a)-(31e) can be solved using brute-force techniques. The number of zero-valued elements in $w_{c'}$ can never exceed $N_c - 1$ due to the weights' normalization constraint in Eq. (31c). A brute-force optimization works through all possible combinations of zero-valued elements of $w_{c'}$, starting with the N_c combinations that have $N_c - 1$ zero-valued elements, next working with the $N_c(N_c-1)/2$ combinations that have $N_c - 2$ zero-valued elements, etc. Thus, the N_c combinations that have the highest possible Eq. (31b) performance are tried first, followed by the $N_c(N_c-1)/2$ combinations that have the next highest possible Eq. (31b) performance, etc. For each such combination, the values of the non-zero-valued $w_{c'}$ elements are found that minimize the left-hand side of Eq. (31e). This minimization can be carried out using a few matrix-vector calculations because the minimized function is quadratic in the free elements of $w_{c'}$, while the equality constraint in Eq. (31c) is linear in these elements. If all such elements are positive and if the resulting minimum respects the inequality in Eq. (31e), then the optimum has been achieved, and there is no need to try any combinations with fewer zero-valued $w_{c'}$ elements. All combinations with the same number of zero-valued $w_{c'}$ elements are tried. If there are multiple possible feasible $w_{c'}$ solutions that yield the same number of zero-valued elements, then the one with the lowest left-hand side of Eq. (31e) is selected because that one achieves the best fit to the original $p_c(x)$ distribution. If there are no feasible points with zero-valued elements of $w_{c'}$, then the new weights are set equal to the old weights: $w_{c'} = w_c$.

It may be possible to solve the mixed integer/real optimization problem in Eqs. (31a)-(31e)
without resorting to brute-force techniques, similar to the algorithm in Section 4 of Ref. 29. The computational cost of the brute-force method grows with increasing \(N_c \) in a combinatorial manner. Therefore, \(N_c \) should be restricted to a relatively small number if nothing better than the brute-force algorithm has been implemented.

E. Re-Weighting of Original Gaussian Mixture

The solution to the re-weighting optimization problem in Eqs. (31a)-(31e) is used to define new weights for the original Gaussian mixture \(p_a(x) \). These new weights are

\[
 w_{a'l} = \begin{cases}
 w_{ai} & \text{if } l \notin \{i(1), i(2), i(3), \ldots, i(N_c)\} \\
 \frac{1}{N_c} \sum_{j=1}^{N_c} w_{ai(j)} w_{c'k} & \text{if there exists } k \in \{1, \ldots, N_c\} \text{ such that } l = i(k)
\end{cases}
\text{ for } l = 1, \ldots, N_a \tag{32}
\]

The lower line in this formula ensures that

\[
 \sum_{k=1}^{N_c} w_{a'i(k)} = \sum_{k=1}^{N_c} w_{ai(k)} \tag{33}
\]

because of the normalization constraint on the elements of \(w_{c'} \) in Eq. (31c). The effect of Eq. (33) is to retain the composite weight of the merged set of mixands relative to the other mixands. Given that the other mixand weights of \(p_a(x) \) remain unchanged, Eq. (33) also ensures that the new weights in Eq. (32) are normalized.

The new weights in Eq. (32) are used to define a modified version of the original Gaussian mixture:

\[
p_a'(x) = p_{gm}(x; w_{a'1}, \boldsymbol{\mu}_{a1}, R_{a1}, \ldots, w_{a'N_a}, \boldsymbol{\mu}_{aN_a}, R_{aN_a}) = \sum_{i=1}^{N_a} w_{a'i} \int_{s^r} p_{gm}(x; \boldsymbol{\mu}_{ai}, R_{ai}) \tag{34}
\]

The constraint in Eq. (31e) ensures that this mixture will be very close to the original \(p_a(x) \) mixture in the ISD sense. If the optimization problem in Eqs. (31a)-(31e) fails to find any mixand weights that can be set to zero safely, then \(p_a(x) \) will be identical to \(p_a(x) \).
V. Sampling Algorithm that Generates the New Gaussian Mixture

The heart of the Gaussian mixture re-sampling algorithm involves choosing the elements of the new \(p_b(x) \) and their weights so that this mixture will closely approximate the modified original mixture \(p_a(x) \). Recall that the elements and weights of \(p_b(x) \) are, respectively, \(N_{sr}(x; \mu_{bj}, R_{bj}) \) and \(w_{bj} \) for \(j = 1, ..., N_b \), as per Eq. (5b). The design of \(p_b(x) \) involves choosing the means, square-root information matrices, and weights, \(\mu_{bj}, R_{bj}, \) and \(w_{bj} \) for \(j = 1, ..., N_b \). This section describes how these choices are made. It also summarizes the entire algorithm and demonstrates the convergence of \(p_b(x) \) to \(p_a(x) \) in the limit of large \(N_b \).

A. Pre-Processing of Square-Root Information Matrices

The LMI solution calculations from Section III are carried out prior to the selection of new mixand components for distribution \(p_b(x) \). Each new component of \(p_b(x) \) is based on a component of \(p_a(x) \) through a type of sampling. Its mean and covariance will be based on the original mean and covariance of the corresponding \(p_a(x) \) element, but with modifications which flow from any square-root information matrix perturbation that is required to satisfy the LMIs in Eqs. (6) and (7). Therefore, it is necessary to pre-compute quantities associated with the perturbation of the square-root information matrix of each \(p_a(x) \) mixand.

For each \(i = 1, ..., N_a \), the following LMI pre-processing calculations are performed: Use Eqs. (8)-(11) to compute \(R_{bi} \), and rename this candidate distribution-\(b \) square-root information matrix \(\tilde{R}_{ai} \). Next, use Eqs. (14) and (15) to compute \(\delta Y_{abi} \), and rename this covariance decrement square-root matrix \(\tilde{\delta Y}_{ai} \). Let \(n_{dY_{ai}} \) denote the number of columns of \(\tilde{\delta Y}_{ai} \). It is no larger than \(n \). If the original mixand square-root information matrix \(R_{ai} \) already satisfies the LMI in Eq. (6), then \(\tilde{R}_{ai} \) will equal \(R_{ai} \), \(\tilde{\delta Y}_{ai} \) will be an empty matrix, and \(n_{dY_{ai}} \) will equal 0.
B. High-Level Steps of Gaussian Mixture Re-Approximation Algorithm

The overall re-approximation algorithm has been outlined in Subsection II.B. It consists of three major phases that are defined by the following six steps:

a) Compute narrowed distribution square-root information matrices \tilde{R}_ai, covariance matrix decrement square roots $\delta\tilde{Y}_ai$, and the latter matrices' column dimensions n_{dYai} for $i = 1, ..., N_a$, as described in Subsection V.A. These calculations are carried out using Eqs. (8)-(11), (14), and (15), except that \tilde{R}_ai takes the place of Rbj and $\delta\tilde{Y}_ai$ takes the place of δY_{abi} in those equations. n_{dYai} equals the number of columns in $\delta\tilde{Y}_ai$, which will be zero if $\tilde{R}_ai = R_{ai}$.

b) Choose the set \{($\mu_{c1}; R_{c1}$), ..., ($\mu_{ck}; R_{ck}$), ... ($\mu_{cNc}; R_{cNc}$)\} to be the subset of \{($\mu_{a1}; R_{a1}$), ..., ($\mu_{ai}; R_{ai}$), ... ($\mu_{aNa}; R_{aNa}$)\} whose elements obey the conditions in Eq. (17). These define the truncated Gaussian mixture $p_c(x)$ in Eq. (16). If the initial count of elements in this set, N_c, is larger than some pre-specified target, $N_{ctarget}$, then discard from this set the $(N_c-N_{ctarget})$ elements that have the lowest corresponding weights in $p_a(x)$.

c) Solve the optimization problem in Eqs. (31a)-(31e) in order to compute the modified weights that define the modified truncated Gaussian mixture $p_c'(x)$.

d) Use Eq. (32) to compute the modified weights that define the merged modification of the original Gaussian mixture, $p_a(x)$.

e) Select $N_{btarget}$, the target number of mixands in Gaussian mixture $p_b(x)$, initialize $l_0(i) = 0$ for $i = 1, ..., N_a$, and initialize empty arrays for μ_{bj}, R_{bj}, and w_{unbj} that will store, respectively, the means, square-root information matrices, and un-normalized
weights that will be generated by the 9-step algorithm that will be presented in
Subsection V.C.

f) Execute the 9-step algorithm that is defined in Subsection V.C.

The first major algorithm phase is Step a), the LMI pre-computation phase. Steps b)-d)
implement phase two, the mixand merging phase. Steps e) and f) correspond to phase three, the
final determination of new mixands. At the end of Step f), the new mixture \(p_b(x) \) is completely
defined via \(\mu_{bj}, R_{bj}, \) and \(w_{bj} \) for \(j = 1, ..., N_b \).

C. A Sampling-Based Approach for Choosing Means, Square-Root Information Matrices,
and Weights of the Re-Sampled Gaussian Mixture

The algorithm for choosing the components and weights of \(p_b(x) \), as defined in Eq. (5b),
amounts to a sampling algorithm from a Gaussian mixture that is a modified version of \(p_a(x) \).
This modified version has the same means and weights, \(\mu_{ai} \) and \(w_{ai} \) for \(i = 1, ..., N_a \), but it has
modified covariances. In place of the covariance \(P_{ai} = R_{ai}^{-1} R_{ai}^{-T} \), each mixand's covariance is the
narrowed value \(\delta P_{ai} = \delta Y_{ai} \delta Y_{ai}^{-T} \). If \(\delta Y_{ai} \) is an empty matrix and \(n_{dY_{ai}} = 0 \), then the
 corresponding covariance is \(\delta P_{ai} = 0 \); i.e., the modified mixand is a Dirac delta function.

The re-sampling algorithm starts with a target number of \(p_b(x) \) mixands, \(N_{b\text{target}} \), and it
initializes and updates various quantities during its sampling procedure. These quantities include
the current total number of actual new mixands, \(j \), along with the mean, square-root information
matrix, and un-normalized weight of each of these new mixands. These latter quantities are,
respectively, \(\mu_{bl}, R_{bl}, \) and \(w_{unbl} \) for \(l = 1, ..., j \). Another set of stored quantities are the indices of
the first new mixands of distribution \(p_b(x) \) that have been sampled from given mixands of
distribution \(p_a(x) \). Let these indices be designated as \(l_0(i) \) for \(i = 1, ..., N_a \). These indices are
initialized to the values \(l_0(i) = 0 \) for \(i = 1, \ldots, N_a \) in order to indicate that no mixands of distribution \(p_b(x) \) have yet been sampled from the corresponding mixands of distribution \(p_a(x) \).

Given these definitions, the re-sampling algorithm executes the following steps.

1. Set \(j = 1 \) and seed random number generators.

2. Use a random number generator to draw a scalar sample \(\beta \) from the uniform distribution \(\mathcal{U}[0,1] \) and find the unique value of \(i \) in the range 1 to \(N_a \) such that

\[
\begin{cases}
 0 & \text{if } i = 1 \\
 \sum_{k=1}^{i-1} w_{a'k} & \text{if } i > 1 \\
 \sum_{k=1}^{i} w_{a'k} & \text{if } i < N_a \\
 1 + \varepsilon & \text{if } i = N_a
\end{cases}
\leq \beta < \begin{cases}
 \sum_{k=1}^{i-1} w_{a'k} & \text{if } i < N_a \\
 1 + \varepsilon & \text{if } i = N_a
\end{cases}
\]

where \(\varepsilon \) is any small positive number, not necessarily the same number as is used in Eq. (31e).

3. If \(n_{dYai} > 0 \), then use a random number generator to sample \(\eta \) from the \(n_{dYai} \)-dimensional, zero-mean, identity-covariance Gaussian distribution \(\mathcal{N}(\eta;0,I) \), set \(\mu_b = \mu_{ai} + \tilde{Y}_{ai} \eta \), and skip to Step 6. Otherwise, continue to Step 4.

4. If \(l_0(i) = 0 \), then set \(\mu_b = \mu_{ai} \) and skip to Step 6. Otherwise, continue to Step 5.

5. Set \(m = l_0(i) \), increment \(w_{unbm} \) by 1, decrement \(j \) by 1, and skip to Step 8.

6. Set \(R_{bj} = \tilde{R}_{ai} \) and \(w_{unbj} = 1 \).

7. If \(l_0(i) = 0 \), then re-assign \(l_0(i) = j \).

8. If \(\sum_{l=1}^{j} w_{unbl} < N_{b\text{target}} \), then increment \(j \) by 1 and return to Step 2. Otherwise, continue to Step 9.
9. Set $N_b = j$, set $w_{bk} = w_{unk}/N_{b_{\text{target}}}$ for $k = 1, ..., N_b$, and terminate.

The steps of this algorithm can be interpreted as follows: Step 2 samples the discrete probability "mass" function over the Gaussian mixture weights in order to select mixand i from distribution $p_a(x)$. Mixand i normally will be used to define the new j^{th} mixand of distribution $p_b(x)$. If $n_{dYai} = 0$ and $l_0(i) > 0$, however, then the selection of mixand i will result only in an increase of the weight for already existing mixand $l_0(i)$.

Steps 3 or 4 are executed if there is a new mixand element, followed by Steps 6 and 7. Step 3 defines the mean of the new j^{th} mixand by sampling from a narrowed Gaussian distribution centered at the mean of the corresponding $p_a(x)$ mixand. Step 4 is like Step 3, except that the narrowed Gaussian has zero covariance so that the mean of the new $p_b(x)$ mixand exactly equals the mean of the original $p_a(x)$ mixand. This situation occurs when the original mixand already has a small enough covariance, one whose square-root information matrix already satisfies the LMI in Eq. (6).

Step 5 executes when the importance sampling algorithm calls for more than one sample from a $p_a(x)$ mixand whose original square-root information matrix satisfies the LMI in Eq. (6). The algorithm could be re-designed to ignore this situation, in which case distribution $p_b(x)$ would contain multiple identical mixands because the exact same mean and square-root information matrix would be assigned in multiple iterations of, respectively, Steps 4 and 6. Step 5 circumvents this inefficiency by increasing the weight of an existing $p_b(x)$ mixand instead of creating an identical new mixand. This strategy reduces computational cost for any Gaussian mixture filter that uses this re-sampling method.

Step 8 tests for termination by determining whether the number of attempts to add new mixands is equal to $N_{b_{\text{target}}}$. The algorithm terminates when the total number of iterations of
Steps 2-8 equals \(N_{\text{target}} \) because the sum of the un-normalized weights \(w_{\text{unbl}} \) in the Step-8 test increases by 1 for each iteration of these steps. This happens because one and only one of the un-normalized weights gets incremented by 1 during each iteration. The value of \(j \) undergoes a net increment of 1 for each iteration of Steps 2-8 if and only if one or both of the following conditions holds true: \(n_{d|y_i} > 0 \) or \(l_0(i) = 0 \). Otherwise, Step 5 is executed as part of the iteration, and the net increment to \(j \) is 0.

The index \(j \) keeps track of the distribution \(p_b(x) \) mixand that is in the process of being created. Step 5 decrements this index in recognition of the fact that no new mixand is created if the new mixand would have been identical to an existing one. At the end of the algorithm in Step 9, \(N_b \) is set equal to \(j \) and is guaranteed to be less than or equal to \(N_{\text{target}} \). Step 9 normalizes the un-normalized weights in order to compute the \(p_b(x) \) distribution's final weights.

D. Discussion of Algorithm

The value \(N_{\text{target}} \) is an upper bound for the number of mixands to consider in the merging calculations of Steps b)-d) of the executive algorithm of Subsection V.B. This value must not be too large. Otherwise, the brute-force solution procedure for the optimization problem in Eqs. (31a)-(31e) could become too expensive computationally. Recall that this procedure is outlined immediately after Eqs. (31a)-(31e) in Subsection IV.D.

Two parts of the algorithm have the potential to reduce the eventual number of mixands in distribution \(p_b(x) \). The first is the mixand merging procedure in Steps b)-d) of the main algorithm of Subsection V.B. The second is the mixand re-weighting operation in Step 5 of Subsection V.C, which happens in lieu of adding a redundant new mixand. Suppose that a nonlinear Bayesian filter converges after initial transients to a distribution that is nearly Gaussian and suppose that the converged distribution's covariance respects the upper bound that
corresponds to the square-root information matrix LMI in Eq. (6). In this case, Steps b)-d) of the
summary algorithm are expected to merge mixands that have any appreciable remaining weight.
Furthermore, Step 5 of the Subsection V.C algorithm is expected to be reached many times for
the few mixands with appreciable non-zero weight that will remain after the merging procedure.
The net result will be eventual convergence to a re-sampled Gaussian mixture \(p_b(x) \) that has
relatively few mixands. These techniques have succeeded in reducing the number of re-sampled
mixands in several example applications to nonlinear Gaussian mixture filtering.

E. Demonstration that the Re-Sampled Gaussian Mixture Converges to the Original in the
Limit of a Large Number of Mixands

It is possible to demonstrate that \(p_b(x) \) becomes an arbitrarily good approximation of \(p_a(x) \)
in the limit as \(N_b \) becomes arbitrarily large. If \(\epsilon \) in Eq. (31e) of Subsection IV.D is set low
enough to ensure that \(p_a(x) \) is a very good approximation of \(p_a(x) \), then \(p_b(x) \) will also converge
to \(p_a(x) \) in the limit of large \(N_b \). The choice of \(\epsilon \) is up to the algorithm designer, and the only
drawback of choosing a very small \(\epsilon \) will be a failure to merge some mixands in distribution
\(p_a(x) \) and, therefore, the failure to reduce the number of mixands in distribution \(p_b(x) \) as much as
one might like. Therefore, given the possibility of using a sufficient number of mixands in \(p_b(x) \),
the following demonstration that \(p_b(x) \) converges to \(p_a(x) \) is easily extensible to a demonstration
that \(p_b(x) \) can be made to converge to \(p_a(x) \).

In the limit of very large \(N_b \), it is obvious that the probability mass function sampling in
Step 2 of the Section V.C algorithm guarantees the following property of the weights of
distribution \(p_b(x) \):

\[
w_{d'i} = \sum_{j \in J_{bi}} w_{bj} \quad \text{for } i = 1, ..., N_a
\]
(36)
where \(J_{bi} \) is the set of indices of all distribution-\(p_b(x) \) mixands that have been generated from mixand \(i \) of distribution \(p_a(x) \) in Steps 2-7 of the algorithm of Subsection V.C.

Next, consider the Monte-Carlo method of selecting the mixand means of distribution \(p_b(x) \). It is given in Steps 3 and 4 of the Subsection V.C algorithm. When coupled with Eq. (36), this Monte-Carlo procedure for generating mixand means implies the following: A good approximation of \(p_b(x) \) in the limit of large \(N_b \) can be derived via partial replacement of the re-sampled distribution's mixand summation with integral equivalents. That is:

\[
\sum_{j \in J_{bi}} a_i R_{bj} \sim \sum_{j \in J_{bi}} w_{bj} \mathcal{N}_{sr}(x; \mu_{bj}, \bar{R}_{ai}) \\
= \sum_{i=1}^{N_a} w_{ai} \int_{-\infty}^{\infty} \mathcal{N}_{sr}(x; [\mu_{ai} + \delta Y_{ai} \eta_i], \bar{R}_{ai}) \mathcal{N}_{sr}(\eta_i; 0, I) d\eta_i
\] (37)

Note that the use of \(\bar{R}_{ai} \) in place of \(R_{bj} \) in the first line of Eq. (37) is consistent with Step 6 of the algorithm of Subsection V.C.

The weight and integral in the second line of Eq. (37) approximate the summation over all \(j \in J_{bi} \) in the first line by virtue of the way that \(\mu_{bj} \) is chosen in Step 3 or 4 of the Subsection V.C algorithm. The zero-mean, identity-covariance dummy integration variable \(\eta \) takes the place of the random-number-generated vector \(\eta \) in Step 3 of the algorithm of Subsection V.C. Recall that its dimension is \(n_{d\eta_{ai}} \). If a particular mixand of distribution \(p_a(x) \) yields the dimension \(n_{d\eta_{ai}} = 0 \) because \(\bar{R}_{ai} = R_{ai} \) satisfies the LMI in Eq. (6), then Step 4 of the algorithm of Subsection V.C applies rather than Step 3. There is no random-number-generated \(\eta \) vector in this case, and \(\delta Y_{ai} \) is an empty matrix. Nevertheless, the formula in Eq. (37) can be retained through a re-definition of the \(\delta Y_{ai} \) matrix to be an \(n \)-by-1 matrix of zeros, which redefines \(n_{d\eta_{ai}} \) to equal 1. This
redefinition maintains the needed relationship between R_{ai}, \tilde{R}_{ai}, and $\delta\tilde{Y}_{ai}$ that is given by Eq. (13) if one makes the substitutions $R_{bj} = \tilde{R}_{ai}$ and $\delta Y_{abj} = \delta\tilde{Y}_{ai}$.

The η_i integral in Eq. (37) can be evaluated analytically. One way to evaluate it is to employ the unit normalization formula for a standard vector Gaussian distribution. The resulting integral derivation involves several transformations and a significant amount of matrix algebra. Its details have been omitted for the sake of brevity. After integration, Eq. (37) becomes

$$p_b(x) \equiv \sum_{i=1}^{N_a} w_{ai} \mathcal{N}(x; \mu_{ai}, [\tilde{R}_{ai}\tilde{R}_{ai}^T + \delta\tilde{Y}_{ai}\delta\tilde{Y}_{ai}^T]) = \sum_{i=1}^{N_a} w_{ai} \mathcal{N}_{sr}(x; \mu_{ai}, R_{ai})$$

(38)

The far right-hand side of this equation is exactly the definition of Gaussian mixture $p_a(x)$, thereby demonstrating the convergence of $p_b(x)$ to $p_a(x)$ in the limit of large N_b.

VI. Examples of Algorithm Performance

A. Fidelity of the Re-Sampled Gaussian Mixture Approximation

The algorithm described in Sections II-V has been implemented in MATLAB and tested on several problems. Consider the 1-dimensional example whose original Gaussian mixture $p_a(x)$ and re-sampled mixture $p_b(x)$ are plotted in Fig. 1. The original $p_a(x)$ has 3 components and is plotted in solid blue along the horizontal axis. The approximate $p_b(x)$ has 5000 components and is plotted as the dash-dotted red curve along the same axes. The 3 components of $p_a(x)$ are plotted as dashed green curves. Their respective weights are 0.4410, 0.0687, and 0.4903, their mean values are -1.0106, 0.5077, and 0.6145, and their standard deviations are 0.7462, 0.4165, and 2.0603. The components of $p_b(x)$ all have the same standard deviation: 0.20. This is the upper limit imposed by the LMI in Eq. (6). As can be seen from Fig. 1, $p_b(x)$ approximates $p_a(x)$ very well. The cost of achieving this excellent fit is the need to use 5000 components to
construct $p_b(x)$. A fit with an N_b count of only 1000 mixands (not shown) has noticeably less accuracy.

B. Propagation of Probability Density through a Nonlinear Function using a Re-Sampled Distribution with Narrowed Mixand Covariances

Figure 1 illustrates an important point about why this Gaussian mixture re-sampling method has been developed. It plots an example nonlinear function $f(x)$ as the dash-dotted black curve. This function is a cubic spline that is defined by its node x values, f values, and df/dx values, as per Table 1. The figure also shows the exact propagation of the probability density function $p_a(x)$ through $f(x)$ to produce the corresponding probability density function for f: $p_f(f) = p_a[x(f)]/|\partial f/\partial x|$, where $x(f)$ represents the function inverse of $f(x)$. This probability density is plotted as the solid blue distribution that is shown along the left-hand vertical axis (after being moved to have its zero value line up at the horizontal position $x = -12$ and after being scaled down by a factor of 3 in order to fit well within the figure's horizontal range). $p_f(f)$ is plotted along the vertical f axis because f is its independent variable. Also plotted on that axis are two approximations of $p_f(f)$. The dashed green curve is the $p_f(f)$ that results from performing simple EKF-type propagations through $f(x)$ for the 3 components of $p_a(x)$. The dash-dotted red curve is similar, except that it applies the EKF-type propagations to the 5000 components of $p_b(x)$. It is obvious from this plot that the latter approximation is much closer to the truth. It even reproduces the bi-modal peaks of the true distribution. Thus, there can be significant benefit in terms of nonlinear filtering accuracy if one re-approximates $p_a(x)$ by a Gaussian mixture $p_b(x)$ with covariance bounds on each of its components. This benefit occurs even for the case of $N_b = 1000$ mixands that is mentioned at the end of the previous subsection.

Note that no particular mathematical criterion has been defined in order to determine the
minimum required number of new mixands N_b that achieves good approximation accuracy of $p_a(x)$ and $p(f)$. The numbers $N_b = 1000$ and $N_b = 5000$ are representative values that help to illustrate the potential accuracy of this new re-approximation method.

C. Bayesian Conditional Probability Density Calculations with a Nonlinear Measurement Function

A different calculation is required in order to illustrate the benefits of using a re-sampled Gaussian mixture with bounded component covariances when performing the measurement update of a nonlinear filter. Suppose that $p_a(x)$ of Fig. 1 is the a priori probability distribution for x, and suppose that $f(x)$ of Fig. 1 is a nonlinear measurement function rather than a nonlinear dynamic propagation function. Suppose that the measurement model takes the form:

$$y = f(x) + \nu$$

where y is the measurement and ν is Gaussian measurement noise with a mean of zero and a covariance of $P_{\nu \nu}$. Then Bayes’ rule dictates that the a posteriori probability distribution of x is

$$p_{posterior}(x) = \frac{p(y | x)p_a(x)}{\int_{-\infty}^{\infty} p(y | x)p_a(x)dx} = Ce^{-0.5[y-f(x)]^T P_{\nu \nu}^{-1}[y-f(x)]}p_a(x)$$

where C is a normalization constant. This posterior distribution can be approximated as a Gaussian sum by using EKF or UKF calculations to do individual updates for each of the Gaussian components followed by re-weighting of the components. The re-weighting is based on chi-squared statistics of the components’ normalized innovations, as in Ref. 10.

Figure 2 presents three a posteriori probability density functions for this example. The measurement error covariance is $P_{\nu \nu} = (0.1)^2$. A truth-model simulation generated $x_{true} = -2.0965$ and $y = 0.2996$. The solid blue curve is the true a posteriori probability density. The dash-dotted red curve is the result of applying multiple-model Gaussian/EKF calculations to the 5000
mixands of Fig. 1's approximate a priori distribution $p_b(x)$. The dashed green curve is similar, except it applies the approximate multiple-model Gaussian/EKF calculations directly to the 3 elements of the true a priori distribution $p_a(x)$. The dash-dotted red curve is a much better approximation of the solid blue curve than is the dashed green curve. The improvement of the red dash-dotted curve vs. the green dashed curve further illustrates the advantage for nonlinear Gaussian mixture filtering when using the mixand covariance limit in this paper's re-sampling technique.

Although not shown in Fig. 2, significant accuracy improvement occurs even for the case of $N_b = 1000$ mixands that has been mentioned at the ends of the previous 2 subsections. The decision to plot a case with $N_b = 5000$ mixands has been made in order to emphasize the possible accuracy of this technique.

It is possible to improve upon the Gaussian mixture re-approximation accuracy and the nonlinear filtering accuracy shown in Figs. 1 and 2 when re-sampling with N_b as small as 100. Such performance improvements have been achieved by using the more complicated re-sampling algorithm of Ref. 30. Future research might fruitfully combine ideas from Ref. 30 with the present re-sampling technique in order to produce a more efficient method.

D. Performance of the Gaussian Mixture Re-Approximation Algorithm within a Bayesian Nonlinear Filter

This paper's new re-approximation algorithm has been used to develop a full nonlinear Gaussian mixture filter. Reference 10 defines this new filtering algorithm and reports the results of applying it to a simulation of the Blind Tricyclist nonlinear estimation problem of Ref. 4.

The Blind Tricyclist constitutes a challenging 7-state nonlinear estimation problem. It includes unknown planar position and heading states of the tricycle. Its nonlinear relative
bearing measurements are made to two moving reference points that are mounted on two separate merry-go-rounds, each with 2 unknown parameters that must be estimated by the filter. These extra filter states are the angle and the constant angular rate of each merry-go-round.

Two different regularized particle filters have been tried on this problem, one with 3000 particles and another with 10000 particles. Neither performs very well. Reference 4 obtained the best performance using the Backwards Smoothing EKF (BSEKF) of Ref. 3, which is also known as the Moving-Horizon Estimator\(^6\). None of these existing filters exhibited performance that was close to the Cramer-Rao lower bound\(^4\).

The new re-sampling algorithm of this paper, when embedded in the modified Gaussian mixture filter of Ref. 10, achieved better performance than all the filters described in Ref. 4. It used the target number of mixands after re-sampling \(N_{\text{target}} = 7000\), and it used the following square-root information matrix lower bound in Eq. (6):

\[
R_{\text{min}} = \text{diag}[1/(2.6 \text{ m}); 1/(2.6 \text{ m}); 1/(1.04 \text{ rad}); 1/(0.3467 \text{ rad}); 1/(0.4 \text{ rad}); 1/(2000 \text{ rad/sec}); 1/(2000 \text{ rad/sec})].
\]

Thus, the position component standard deviations are limited to 2.6 m per axis after dynamic propagation, the heading standard deviation is limited to 1.04 rad (60 deg), the two merry-go-rounds' angular standard deviations are limited to 0.3467 rad (20 deg) and 0.4 rad (23 deg), respectively, and their rate standard deviations are limited to 2000 rad/sec (115000 deg/sec or 318 Hz). The rate standard deviation limits have been set high because the rates do not directly enter any problem function nonlinearities. The component error standard deviations used to define \(R_{\text{min}}\) have been selected to make the geometric nonlinearities in the Blind Tricyclist problem reasonably well approximated by linearized models over the corresponding state uncertainty ranges. The chosen \(N_{\text{target}}\) value enables a reasonably accurate approximation of the wide initial state probability density function using a Gaussian mixture that respects the covariance bounds associated with
The performance of the Gaussian mixture re-sampling algorithm within the new nonlinear filter is characterized by Figs. 3 and 4. Figure 3 plots the root-mean-square (RMS) position error magnitude time histories for 8 filters along with the Cramer-Rao lower bound for this error. These RMS values are computed for 100 Monte Carlo simulations of the estimation problem for each filter for the case of large initial errors. The 8 filters include an EKF, two UKFs with different tuning parameters, two BSEKFs with different horizons of explicit backwards smoothing (BSEKF A using 30 samples and BSEKF B using 40 samples), two regularized PFs with different particle counts (PF A using 3000 particles and PF B using 10000 particles), and the new Gaussian mixture filter that includes this paper's re-sampling algorithm with re-sampling control parameters defined in the preceding paragraph (designated as the "Blob" filter in Fig. 3). Note that this comparison does not explicitly include comparisons with alternate Gaussian mixture filters, e.g., those of Refs. 11, 12, 13, and 14. Such a comparison should be done, but it is beyond the scope of the present paper and of Ref. 10, which is the source of Fig. 3.

Figure 3 is similar to Fig. 5 of Ref. 4, except that the two PFs show improved performance here in comparison to the figure from Ref. 4. This improved performance results from the removal of an aliasing problem from the PFs that was caused by the 2π ambiguities of the problem's heading angle and merry-go-round angles. These ambiguities, when coupled with the PF's regularization calculations, caused mischief with the original PF results reported in Ref. 4.

It is clear from Fig. 3 that the new "blob" filter achieves the best performance of all 8 filters. Its solid blue curve is always the lowest of all 8 filters, and it is much nearer to the Cramer-Rao lower bound (CRLB) than any of the other filters. At the end of the filtering run, the "blob" filter RMS error is only 60% higher than the CRLB, but the two next best filters,
BSEKFs A and B, have final RMS errors that are 370% higher than the CRLB.

In fact, the new filter's RMS error lies slightly below the CRLB out to \(t = 37.5 \) seconds. This result seems inconsistent with the theory that the CRLB really is a lower bound. Furthermore, the curves of 4 of the other filters lie below the CRLB during the first 9.5 sec. These seemingly impossible results are conjectured to be artifacts of using only a finite number of Monte-Carlo simulations in order to generate Fig. 3.

Reference 10 also considers the normalized estimation error squared (NEES) of the filter state as a measure of consistency. The new "blob" filter exhibits somewhat reasonable consistency, and it displays the 2nd best consistency during the second half of the filtering interval. PF B achieves the best NEES filter consistency.

Another important performance feature of the Gaussian mixture re-sampling algorithm is depicted in Fig. 4. This figure plots statistics of the actual number of mixands in distribution \(p_b(x) \) after re-sampling, \(N_b \). This number varies from case to case for the 100 Monte Carlo runs, and it varies with time. The figure plots the maximum (solid blue curve), mean (dash-dotted red curve) and minimum (dashed green curve) of \(N_b \) over the 100 cases as functions of time since filter initialization. The initial values of all three statistics equal 7000, consistent with the chosen value of \(N_{\text{target}} \). As time progresses through the filtering run, however, all three statistics start to drop. They all drop to very low values by the end of the run at \(t = 141 \) sec, with the final maximum being 8, the mean 3.77, and the minimum 1. This decay of \(N_b \) is a useful property because the computational burden of running the "blob" filter scales linearly with \(N_b \). Any ability to reduce \(N_b \) while maintaining filter performance will reduce the filter's need for computational resources.

The sharp drop in all three \(N_b \) statistics over time can be attributed to the ad hoc measures
by which the re-sampling algorithm attempts to limit the number of mixands in $p_\beta(\mathbf{x})$. Recall that the first of these measures is the re-sampler's attempt to merge redundant mixands, as described in Section IV and as implemented in Steps b)-d) of the executive algorithm defined in Subsection V.B. The second of these measures is the re-sampler's ability to re-weight a single mixand of $p_\beta(\mathbf{x})$ instead of replicating it. This re-weighting occurs if the original mixand from distribution $p_a(\mathbf{x})$ has a covariance sufficiently small to satisfy the LMI in Eq. (6) along with a weight sufficiently large to be selected multiple times during the probability mass function sampling in Step 2 of the algorithm in Subsection V.C.

One might be concerned that the small N_β values near the final time in Fig. 4 could cause problems like those caused by a lack of particle diversity in a PF. This is not the case because the Gaussian mixture "blob" filter does not rely solely on particle diversity in order to give width to its approximation of the \textit{a posteriori} Bayesian distribution. Distribution width is also inherent in the covariance of each mixand. Therefore, a single mixand can have sufficient diversity if the true Bayesian distribution is narrow and nearly Gaussian. Note, also, that it would be possible for a filter based on the present re-sampling procedure to increase its N_β if an increase were to become necessary. The increase would happen after a dynamic propagation if that propagation added enough state uncertainty to cause the LMI in Eq. (6) to be violated by the mixands that characterized the new \textit{a priori} filter distribution.

The new "blob" filter is computationally much more expensive than a simple EKF or UKF. Reference 4 reports mean computation times for all of the filters averaged over the 100 Monte Carlo cases. The EKF requires only 0.08 sec, on average, to filter the entire data batch when running in MATLAB on a Windows XP Professional Workstation, and the two UKFs require only 1.18 sec. BSEKF A requires 60.84 sec, on average, and BSEKF B requires 110.6 sec. The latter
BSEKF requires more execution time because it performs explicit nonlinear smoothing over a longer interval. PF A requires 149 sec, and PF B requires 695 sec, numbers that differ somewhat from those reported in Ref. 4 due to the fix-up of the angular aliasing problems. PF B is slower than PF A due to its use of 3.3 times as many particles. The mean execution time for the "blob" filter is 187 seconds. Thus, the new "blob" filter is more expensive computationally than 6 of the other 7 filters, but it uses 3.7 times less computing power than PF B. Better PF performance might be achievable by increasing the number of particles beyond 10000, but the computational cost would make it much less attractive than the new Gaussian mixture "blob" filter for this particular problem.

Similar to a PF, the calculations of the "blob" filter are almost completely parallelizable, all except the inexpensive re-weighting at the end of the measurement update 10, and the mixand merging operations of Section IV. Therefore, its execution speed has the potential to be significantly increased by mapping it onto a parallel processor.

Most of the details about the Blind Tricyclist problem and all of its mathematical equations have been omitted from the present discussion for the sake of brevity. The interested reader should consult Ref. 4 to learn the details of this benchmark nonlinear estimation problem. Reference 4 cites a link to MATLAB software for the benchmark problem's various dynamics and measurement functions. The software can be downloaded by researchers in order to test their own nonlinear filters.

VII. Conclusions

A new Gaussian mixture re-approximation/re-sampling algorithm has been developed. It has three goals. First, it seeks to create a new mixture that is a close approximation of the original mixture. Second, it limits the covariances of the elements of the new mixture so that
each one will propagate accurately through typical EKF or UKF nonlinear filter calculations, provided that the covariances have been limited to a sufficient degree for a given problem model. The algorithm’s third goal, which is of secondary priority, is to limit the number of components of the re-sampled mixture.

The new re-sampling algorithm represents a natural generalization of a particle filter's importance re-sampling, but with new complexities. Covariance matrices of the new mixture components are bounded from above. These bounds define systems of linear matrix inequalities that set lower bounds on the corresponding square-root information matrices. Optimal solutions to the linear matrix inequalities determine new mixand square-root information matrices that are as close as possible to those of the original mixture. Mean values of the new mixture components are sampled from modified components of the original mixture that have reduced covariances. These covariance reductions compensate for the fact that the total covariance of the new mixture is determined by two contributions, one from the reduced covariances of the new mixands and the other from the variability of the new mixands' mean values.

The re-sampling algorithm has been tested on two sets of example problems. The results show that a good approximation of the original probability density can be achieved with significantly narrowed covariances of the re-sampled mixands. This achievement enables accurate Bayesian nonlinear estimation calculations via application of simple EKF or UKF operations within the Gaussian mixture framework and using a multiple-model-filter approach. In one Monte Carlo test, the new re-sampling algorithm enabled a new Gaussian mixture filter to achieve significantly better performance on a difficult 7-state nonlinear estimation problem than has been achieved by four other popular types of nonlinear filters.
References

Table 1. Spline Node Values to Define Example $f(x)$

<table>
<thead>
<tr>
<th>x spline nodes</th>
<th>f values at nodes</th>
<th>df/dx values at nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15</td>
<td>0</td>
<td>1/150</td>
</tr>
<tr>
<td>-10</td>
<td>1/30</td>
<td>1/120</td>
</tr>
<tr>
<td>-9</td>
<td>1/20</td>
<td>3/80</td>
</tr>
<tr>
<td>-2</td>
<td>1/3</td>
<td>3/80</td>
</tr>
<tr>
<td>-1</td>
<td>7/20</td>
<td>1/60</td>
</tr>
<tr>
<td>1</td>
<td>23/60</td>
<td>1/30</td>
</tr>
<tr>
<td>1.5</td>
<td>13/30</td>
<td>19/180</td>
</tr>
<tr>
<td>10</td>
<td>4/3</td>
<td>8/81</td>
</tr>
<tr>
<td>15</td>
<td>53/30</td>
<td>13/150</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. A 3-component original Gaussian mixture, a 5000-component re-approximation, and their propagation through a nonlinear function.

Fig. 2. True and approximate a posteriori probability distributions after a nonlinear measurement update.

Fig. 3. Blind Tricyclist RMS position error time histories of eight filters and the Cramer-Rao lower bound, as computed from 100 Monte-Carlo simulations (from Ref. 10).

Fig. 4. Maximum, mean, and minimum N_b time histories for "blob" filter runs on 100 Monte-Carlo simulations of the Blind Tricyclist problem (from Ref. 10).
Fig. 1. A 3-component original Gaussian mixture, a 5000-component re-approximation, and their propagation through a nonlinear function.
Fig. 2. True and approximate a posteriori probability distributions after a nonlinear measurement update.
Fig. 3. Blind Tricyclist RMS position error time histories of eight filters and the Cramer-Rao lower bound, as computed from 100 Monte-Carlo simulations (from Ref. 10).
Fig. 4. Maximum, mean, and minimum N_b time histories for "blob" filter runs on 100 Monte-Carlo simulations of the Blind Tricyclist problem (from Ref. 10).