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Abstract—A new Gaussian mixture filter has been developed, 
one that uses a re-sampling step in order to limit the covariances 
of its individual Gaussian components.  The new filter has been 
designed to produce accurate solutions of difficult nonlinear/non-
Bayesian estimation problems.  It uses static multiple-model filter 
calculations and Extended Kalman Filter (EKF) approximations 
for each Gaussian mixand in order to perform dynamic 
propagation and measurement update.  The re-sampling step 
uses a newly designed algorithm that employs linear matrix 
inequalities in order to bound each mixand's covariance.  Re-
sampling occurs between the dynamic propagation and the 
measurement update in order to ensure bounded covariance in 
both of these operations.  The resulting filter has been tested on a 
difficult 7-state nonlinear filtering problem.  It achieves 
significantly better accuracy than a simple EKF, an Unscented 
Kalman Filter, a Moving-Horizon Estimator/Backwards-
Smoothing EKF, and a regularized Particle Filter. 

Keywords—Kalman Filter; Bayesian Filter; Gaussian Mixture 
Filter. 

I. INTRODUCTION 
Kalman filters have been applied to Bayesian estimation 

problems with stochastic dynamic models and noisy 
measurements for over 5 decades [1,2].  The original 
formulation solved the discrete-time problem with linear 
dynamics, linear measurements, and Gaussian noise and priors 
[1].  The general discrete-time nonlinear problem, however, 
has no known closed-form solution.  A number of 
approximate solutions for non-linear/non-Gaussian problems 
have been developed, and they have met with varying degrees 
of success.  These include the Extended Kalman Filter (EKF) 
[3,4,5] – perhaps better characterized as the family of EKFs 
[6], the Unscented or Sigma-Points Kalman Filter (UKF) 
[7,8], the family of filters known as Particle Filters (PFs) 
[5,9], the Moving Horizon Estimator [10] -- aka the 
Backward-Smoothing Extended Kalman Filter (BSEKF) [11], 
and a family known as Gaussian mixture filters 
[12,13,14,15,16]. 

There are two general ways in which these approximate 
filters can perform poorly.  They can diverge, or they may 
yield sub-optimal or in-consistent estimation accuracy.  These 
two failure modes are illustrated in [17] via simulation tests 
that use a benchmark 7-state nonlinear estimation problem, the 
Blind Tricyclist.  The UKF can diverge, and its accuracy is 
very poor.  The EKF and PF sometimes nearly diverge, and 

their accuracies are far from the Cramer-Rao lower bound.  
The BSEKF converges and has the best estimation accuracy, 
but its accuracy is not very close to the Cramer-Rao lower 
bound.  Furthermore, the BSEKF is expensive in terms of 
needed computational resources, and the PF is even more 
expensive. 

Reference [17] did not attempt to include a Gaussian 
mixture filter in its performance comparison due a known 
problem of such filters:  If their component mixands have 
covariances that are too large, then the EKF or UKF 
component calculations will not have sufficient accuracy to 
achieve good performance [14,15,18,19]. 

This paper’s main contribution is to develop a new type of 
Gaussian mixture filter that avoids the problem of having 
covariances which are too large.  Its algorithm uses multiple-
model filter calculations that are based on first-order EKF 
approximations carried out on a mixand-by-mixand basis.  
The measurement update involves re-weighting of the 
mixands using the usual innovations-based technique of static 
multiple-model filters [4].  In addition to these standard 
Gaussian mixture filter operations, a mixture re-sampling/re-
approximation step is added between the dynamic propagation 
and the measurement update.  This re-sampling step uses the 
Gaussian mixture re-approximation algorithm of [20].  This 
latter algorithm starts with an input Gaussian mixture and a 
Linear Matrix Inequality (LMI) upper bound that will apply to 
the covariance matrices of the output mixands.  If all of the 
original mixands respect this bound, then the output mixture 
essentially equals the input mixture, except that importance-
type re-sampling properties will act to eliminate mixands with 
very low weights.  If any of the original mixands do not 
respect the LMI covariance upper bound, then the re-sampling 
algorithm constructs a new Gaussian mixture that 
approximates the original mixture accurately while enforcing 
the LMI bound.  The user selects an upper bound which is 
small enough to ensure that first-order EKF measurement 
update and dynamic propagation operations can be applied to 
each mixand with very little truncation error.  This constraint 
ensures the overall accuracy with which the Gaussian mixture 
filter approximates the exact Bayesian posterior distribution. 

This approach is akin to a PF, but with two important 
distinctions.  First, its re-sampling algorithm approximates one 
Gaussian mixture by constructing another rather than 
approximating one ensemble of particles by constructing 
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another.  Second, the re-sampling operation occurs in a 
different place than for a typical PF, before the measurement 
update rather than after it [5,9].  This alternate position 
enables a single re-sampling step to enforce the filter's LMI 
covariance bound for both the measurement update of the 
current sample and the dynamic propagation of the next 
sample. 

This new Gaussian mixture filter differs from existing 
Gaussian mixture filters in several respects.  The filters 
described in [12] and [16] include neither a re-sampling step 
nor any other means to limit mixand covariances.  The filter in 
[13] includes re-sampling, but not for the purpose of enforcing 
a covariance upper limit on each mixand.  Instead, re-
sampling is applied primarily to limit the number of mixands, 
which is somewhat analogous to the action of importance re-
sampling in a PF to prune away particles with low weight.  
References [14], [15], [18], and [19] develop filters or parts of 
filters that incorporate Gaussian mixture re-approximation 
with the goal of limiting the mixand covariances.  All of these 
methods, however, rely on re-approximations of wide 1-
dimensional Gaussian elements by a pre-computed set of 
narrower weighted 1-dimensional mixands.  Re-
approximation of a multi-dimensional Gaussian mixture is 
performed using products of mixture re-approximations of 1-
dimensional Gaussians along principal axes of each original 
mixand's covariance matrix.  This technique has two 
drawbacks.  First, the number of needed new mixands in the 
re-approximation is exponential in the problem dimension.  
Second, there is no obvious way to exploit for the overlap of 
original wide mixands in order to conserve on the number of 
narrowed mixands needed in the re-approximated distribution. 

Another contribution of this paper is a new square-root 
information filter (SRIF) formulation of the static multiple-
model filter calculations.  These calculations form the basis of 
its Gaussian mixture filter.  Versions of the needed 
calculations have been published in multiple places for 
covariance filter implementations, e.g., [4], but this paper 
gives the first known SRIF formulation. 

Another contribution is a simulation-based evaluation of 
the new Gaussian mixture filter on the Blind Tricyclist 
nonlinear estimation problem [17].  Other Gaussian mixture 
papers evaluate their proposed filters on problems of much 
lower dimension, typically 2 or 3, or they evaluate only a 
single prediction step.  The present work tests the new filter 
on the 7-state Blind Tricyclist problem and compares its 
performance and computational cost to those of an EKF, two 
UKFs, two BSEKFs, and two PFs.  The new filter's accuracy 
is also compared to the problem's Cramer-Rao lower bound. 

This paper develops and evaluates its new Gaussian 
mixture Bayesian filter in five main sections.  Section II poses 
the discrete-time nonlinear/non-Gaussian dynamic filtering 
problem that will be solved using a Gaussian mixture filter.  It 
also reviews the problem's theoretical Bayesian solution.  
Section III defines a Gaussian mixture using square-root 
information matrix notation.  Section IV defines an LMI that 
bounds the element covariances of a re-sampled Gaussian 
mixture, and it reviews the associated new algorithm for 

Gaussian mixture re-sampling that is presented in [20].  
Section V develops the full Gaussian mixture filter algorithm 
that uses this new re-sampling algorithm.  Section VI 
performs Monte-Carlo simulation tests of the new algorithm's 
performance on the Blind Tricyclist problem, and it compares 
this performance with that of other filters.  Section VII gives a 
summary of this paper's new developments along with its 
conclusions. 

II. DISCRETE-TIME NONLINEAR FILTERING PROBLEM 
DEFINITION AND THEORETICAL SOLUTION 

A. Filtering Problem Definition 
The discrete-time nonlinear/non-Gaussian Bayesian 

filtering problem includes a dynamics model and a 
measurement model.  They take the respective forms: 

 xk+1  =  fk(xk,wk)               for k = 0, 1, 2, ... (1a) 

 yk+1  =  hk+1(xk+1) + νk+1   for k = 0, 1, 2, ... (1b) 

where k is the discrete-time sample index, xk is the nx-
dimensional state vector at sample k, wk is the nw-dimensional 
process noise vector that applies for the state transition from 
sample k to sample k+1, yk+1 is the ny-dimensional 
measurement vector at sample k+1, and νk+1 is the ny-
dimensional measurement noise vector at sample k+1.  The 
vector function fk(xk,wk) is the nonlinear discrete-time 
dynamics state transition function, and the vector function 
hk+1(xk+1) is the nonlinear measurement function.  These two 
functions are assumed to be continuous with continuous first 
derivatives. 

The definition of 3 a priori probability density functions 
completes the filtering problem definition.  The first is the a 
priori probability density for x0.  Let it be defined as px0(x0).  
The second is the a priori probability density function for 
each wk.  Its definition is pwk(wk).  The third is the a priori 
probability density function for each νk+1, which is defined as 
pνk+1(νk+1).  Let the probability density functions pwk(wk) and 
pνk+1(νk+1) be defined for all k = 0, 1, 2, ... 

B. Theoretical Bayesian Solution 
The theoretical solution to the filtering problem is the 

conditional probability density function pxk(xk|y1,...,yk).  This is 
the probability density of xk conditioned on all the data 
starting from the initial measurement y1 and extending up to 
the measurement yk, which is the last one available at the 
applicable sample time of xk.  This is commonly known as the 
a posteriori probability density function.  Let this function be 
written in short-hand form as pxk(xk|k), and let the definition of 
this latter function be extended to include px0(x0|0) = px0(x0). 

An additional useful probability density function is the a 
priori state probability density, pxk+1(xk+1|y1,...,yk).  Let this 
latter function be designated by the short-hand form 
pxk+1(xk+1|k). 
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The Bayesian filtering operations start at sample k = 0 and 
successively compute px1(x1|0), px1(x1|1), px2(x2|1), px2(x2|2), 
px3(x3|2), px3(x3|3), ...  These computations can be completely 
characterized by a recursion that starts with pxk(xk|k),  pwk(wk), 
and  pνk+1(νk+1) and that uses the dynamics and measurement 
models in (1a) and (1b) to compute pxk+1(xk+1|k) followed by 
pxk+1(xk+1|k+1).  These computations start by forming the 
following probability density functions: 

 pxk+1(xk+1|xk,wk)  =  δ[xk+1 -  fk(xk,wk)] (2a) 

 pxk+1xkwk(xk+1,xk,wk|k) 
  =  pxk+1(xk+1|xk,wk)pxkwk(xk,wk|k) 
  =  δ[xk+1 -  fk(xk,wk)]pxk(xk|k)pwk(wk) (2b) 

where δ[] is a Dirac delta function that takes a vector 
argument which is a perturbation of the xk+1 vector away from 
the output of the dynamics model function fk(xk,wk). 

The xk and wk dependence of the probability density 
function in (2b) is integrated out to yield the desired a priori 
probability density function at sample k+1: 

 pxk+1(xk+1|k) 

  = ∫ ∫
∞
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   (3) 

where the function ),( 1
1

kkk wxf +
−  in the last line of (3) is the 

inverse of the dynamics function in (1a).  It is defined so that 
xk+1 = fk(xk,wk) and xk = ),( 1

1
kkk wxf +

−  are equivalent, which 
is the same as saying that the latter equation is valid for all 
combinations of xk+1, xk, and wk that obey the former equation.  
The scalar function det() returns the determinant of its matrix 
input argument.  The nx-by-nx matrix Φk in (3) is the Jacobian 
first partial derivative of the dynamics function: 
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The final operations of the Bayesian recursion require the 
measurement probability density conditioned on the state at 
sample k+1: 

 pyk+1(yk+1|xk+1)  =  pνk+1[yk+1 - hk+1(xk+1)] (5) 

The measurement update is then 

 pxk+1(xk+1|k+1) 
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Unfortunately, many of the theoretical calculations given 
in the dynamic propagation in (3) given in the measurement 
update in (6) cannot be evaluated in closed form.  The inverse 
dynamics function ),( 1

1
kkk wxf +

−  often cannot be derived 
analytically.  The last line of (3) is unlikely to allow closed-
form evaluation of its integral with respect to wk.  The integral 
in the denominator of the second line of (6) would likely not 
allow close-form computation.  Even if one were able to 
produce closed-form results for these steps, the resulting 
pxk+1(xk+1|k+1) likely would be too complicated to allow 
closed-form computation of the a posteriori expected value of 
xk+1 or its covariance.  Furthermore, the resulting 
pxk+1(xk+1|k+1) would constitute an input to the (3) wk integral 
for the next sample interval.  In all but some special cases, one 
eventually loses the ability to derive closed-form expressions 
for the probability density functions of interest. 

These difficulties necessitate the development of 
approximate solutions to this nonlinear/non-Gaussian 
Bayesian estimation problem.  The present approach uses 
Gaussian mixtures to approximate all of these probability 
density functions.  Given mixtures with individual elements 
that have sufficiently small covariances, local linearized 
approximations of the functions ),( 1

1
kkk wxf +

−  and hk+1(xk+1) 
can be used.  All of the needed integrals are computable in 
closed form when working with Gaussian mixture probability 
density functions and local linearizations of the problem 
model functions. 

III. DEFINITION OF GAUSSIAN MIXTURE PROBABILITY 
DENSITY FUNCTIONS 

A. Gaussian Mixture in Square-Root Information Form 
A Gaussian mixture probability density function is a 

weighted sum of individual Gaussian terms.  A Gaussian 
mixture can be written in the following square-root 
information form 

 ∑=
=

N

i
iisri Rp

1
),;()( μxx Nw  (7) 

where the scalars wi for i = 1, ..., N are the mixand weights 
and the functions  
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are individual Gaussian distributions for the nx-dimensional 
vector x.  The ith Gaussian mixand is defined by its nx-
dimensional mean value vector μi along with its nx-by-nx 
square-root information matrix Ri.  The corresponding nx-by-
nx covariance matrix of the ith mixand is Pi = T1 −−

ii RR , with 
()-T indicating the transpose of the inverse of the given matrix. 

The scalar weights of the distribution must be non-
negative, and they must sum to 1.  Thus, they obey the 
conditions: 

 0≥iw   for i = 1, ..., N    and  ∑=
=

N

i
i

1
1 w  (9) 

Gaussian mixtures inherit an important property from their 
Gaussian components:  It is straight-forward to calculate 
various useful integrals that involve Gaussian mixture 
probability density functions.  For example, it is easy to prove 
unit-normalization of the integral of a Gaussian mixture by 
using the unit normalization of each individual Gaussian 
mixand function Nsr(x;μ i,Ri) along with the unit normalization 
summation constraint on the weights wi, which is given in (9).  
Explicit calculations of the mean and covariance of a Gaussian 
mixture are carried out using similar techniques.  The results 
are: 
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B. Specific Gaussian Mixtures Used to Develop the "Blob" 
Filter 
Five different Gaussian mixture probability density 

functions are needed in order to develop this paper's Gaussian 
mixture "blob" filter.  One approximates the a posteriori state 
probability density function pxk(xk|k).  Two are needed to 
approximate the a priori state probability density function 
pxk+1(xk+1|k), one immediately after the dynamic propagation 
calculations and a second one after the Gaussian mixture re-
sampling operation that bounds mixand covariances.  A fourth 
Gaussian mixture is needed to approximate the a priori 
process noise probability density function pwk(wk), and the 
fifth approximates the a priori measurement noise probability 
density pνk+1(νk+1). 

Let these approximations be defined as: 
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where each of these five Gaussian mixtures is characterized by 
its number of mixands and by its sets of mixand weights, 
mean values, and square-root information matrices.  The five 
Gaussian mixtures' respective mixand counts are xkN̂ , 1+xkN , 

1
~

+xkN , wkN , and 1+νkN .  Their respective ith elements have the 
weights xkiŵ , ikx )1( +w , ikx )1(

~
+w , wkiw , and ik )1( +νw , the 

mean values xkiμ̂ , ikx )1( +μ , ikx )1(
~

+μ , wkiμ , and ik )1( +νμ , and 
the square-root information matrices xxkiR̂ , ikxxR )1( + , 

ikxxR )1(
~

+ , wwkiR , and ikR )1( +νν . 

The Gaussian mixture )|(~
11 kp kxk ++ x  in (11c) ostensibly 

represents the same distribution as the a priori Gaussian 
distribution pxk+1(xk+1|k) in (11b), which is the output of the 
dynamic propagation calculation prior to re-sampling.  The 
alternate a priori probability density function )|(~

11 kp kxk ++ x  is 
an approximation of pxk+1(xk+1|k) that is generated by applying 
the re-sampling algorithm of [20].  The primary goal of this 
re-sampling algorithm is to enforce LMI upper bounds on the 
covariance of each new mixand ikxxP )1(

~
+  = T

)1(
1

)1(
~~ −

+
−

+ ikxxikxx RR .  
A secondary goal is to reduce the number of mixands so that 

1
~

+xkN  is as small as possible while )|(~
11 kp kxk ++ x  is still a 

good approximation of pxk+1(xk+1|k). 

IV. LMI COVARIANCE BOUNDS AND GAUSSIAN MIXTURE 
RE-SAMPLING 

The main new feature of this paper's Gaussian mixture 
filter is the algorithm that generates the re-sampled Gaussian 
mixture )|(~

11 kp kxk ++ x  from pxk+1(xk+1|k).  The re-sampling 
algorithm is developed in [20].  It enforces LMI upper bounds 
on the covariances of the individual mixands of the new 

)|(~
11 kp kxk ++ x  distribution.  Enforcement of these bounds is 

the key to successful Bayesian estimation through the 
application of EKF approximations to each mixand within 
static multiple-model filter calculations.  The present section 
gives an overview this re-sampling algorithm. 
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A. LMI Square-Root Information Matrix Bounds and 
Candidate Square-Root Information Matrices for Re-
Sampled Mixands 
Given the covariance matrix upper bound Pmax, a 

corresponding square-root information matrix Rmin can be 
computed using Cholesky factorization followed by matrix 
inversion so that -T1

min
-
min RR  = Pmax.  Given Rmin, the new 

mixands' covariances will be upper-bounded by Pmax, in the 
LMI sense, if and only if their square-root information 
matrices respect the following LMI lower bounds [20]: 

 ikxxikxx RR )1(
T

)1(
~~

++ minmin RRT≥   for all i = 1, ..., 1
~

+xkN  (12) 

The choice of the covariance upper bound Pmax is problem-
dependent.  It must be chosen small enough so that linear 
approximations of the dynamics and measurement model 
functions in (1a) and (1b) are reasonably accurate over about a 
2-σ range of Pmax.  It may be allowable for the chosen Pmax to 
permit large variations in certain subspaces where the problem 
model functions only have weak nonlinearities.  In the limit of 
subspaces with perfect linearity of the model functions, very 
large corresponding projections of Pmax are acceptable, and the 
resulting filter calculations will behave somewhat like a Rao-
Blackwellized particle filter.  It may also be allowable to make 
the choice of Pmax dependent of the region of xk space where 
the mixands are being generated.  The most convenient way to 
implement such a dependence is to choose Pmax as function of 
the mean values of the pxk+1(xk+1|k) mixands that are used to 
generate particular new )|(~

11 kp kxk ++ x  mixands. 

The re-sampling algorithm generates each new daughter 
mixand of )|(~

11 kp kxk ++ x  from an original parent mixand of 
pxk+1(xk+1|k).  The daughter mixand inherits its new square-root 
information matrix from a perturbed version of the square-root 
information matrix of the parent mixand.  Let the perturbed 
square-root information matrix associated with the ith mixand 
of pxk+1(xk+1|k) be called ikxxR )1( +

(
.  It is chosen to obey the 

following two LMIs 

 ikxxikxx RR )1(
T

)1( ++
((

minminRRT≥  (13a) 

 ikxxikxx RR )1(
T

)1( ++
((

ikxxikxx RR )1(
T

)1( ++≥  (13b) 

while minimizing the following weighted-matrix-norm-
squared cost function: 

 J( ikxxR )1( +
(

)  =  Trace( 1
)1(

T
)1(

-T -
minikxxikxxmin RRRR ++

((
) (14) 

Thus, ikxxR )1( +
(

 is the "smallest" square-root information 
matrix that is no smaller, in the squared LMI sense, than Rmin 
or ikxxR )1( + .  The Rmin LMI lower bound in (13a) enforces the 
Pmax maximum covariance bound, and the ikxxR )1( +  LMI in 
(13b) ensures that the daughter mixand covariance is also 
upper-bounded by the covariance of the parent mixand.  This 

second bound is needed in order to ensure that the parent 
mixand can be approximated by a set of daughter mixands.  
Minimization of the matrix-norm-squared cost function in (14) 
causes the daughter mixand covariance to be as large as 
possible while respecting the two covariance upper bounds 
associated with the LMIs in (13a) and (13b).  By using the 
largest possible daughter covariance, the re-sampling 
algorithm is likely to be able to achieve good re-
approximation accuracy with the fewest possible daughter 
mixands per parent mixand. 

Section III of [20] details the calculations that solve for the 
ikxxR )1( +

(
 which satisfies the LMIs in (13a) and (13b) while 

minimizing the cost in (14).  They involve a sequence of 
matrix linear algebra calculations that include matrix 
inversion, singular value decomposition, and 
orthonormal/upper-triangular (QR) factorization [21]. 

The needed calculations yield an additional matrix that is 
of importance to the re-sampling procedure.  It is the matrix 
square-root of the covariance decrement in going from the 
parent mixand to the daughter mixand, ikxxY )1( +

(
δ .  It obeys 

the covariance decrement relationship 

 T
)1()1( ikxxikxx YY ++

((
δδ = -T

)1(
1

)1(
-T

)1(
1

)1( ikxx
-

ikxxikxx
-

ikxx RRRR ++++ −
((

 
  (15) 

This covariance square-root matrix always has nx rows, but it 
may have fewer than nx columns.  In fact, if ikxxR )1( +  satisfies 
the covariance-bounding LMI in (13a), then the optimal 

ikxxR )1( +
(

 equals ikxxR )1( + , and ikxxY )1( +
(

δ  can be an empty 
array or simply an nx-by-1 matrix of all zeros. 

B. Sampling-Based Algorithm to Choose Mixands of New 
Gaussian Mixture Distribution 
The weights, mean values, and square-root information 

matrices of the re-sampled )|(~
11 kp kxk ++ x  distribution are 

chosen by sampling from a modified version of the 
pxk+1(xk+1|k) distribution.  This modified version is: 

 =++ )( 11 ktempkp x  
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=
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Its definition uses the standard covariance form of the vector 
Gaussian distribution 
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Comparison of (11b) with (16) reveals that the only difference 
between pxk+1(xk+1|k) and ptempk+1(xk+1) is that the ith mixand of 
the former has covariance -T

)1(
1

)1( ikxx
-

ikxx RR ++ , while the 
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corresponding mixand of the latter has covariance 
T

)1()1( ikxxikxx YY ++
((

δδ .  The latter covariance is less than or equal 
to the former in the LMI sense. 

The re-sampling algorithm picks the means of its new 
mixands by sampling directly from ptempk+1(xk+1).  This 
sampling procedure is accomplished in two steps that use 
random number generators and standard Monte-Carlo 
techniques.  The first step samples from a 1-dimensional 
uniform distribution on the range [0,1].  The uniform sample 
is compared to the cumulative weights in (16) in order to 
select the particular element of ptempk+1(xk+1) that will be 
sampled to determine the mean of a new )|(~

11 kp kxk ++ x  
mixand.  Let the chosen element of the ptempk+1(xk+1) 
distribution be mixand j.  The second step determines the 
mean of the new lth mixand of )|(~

11 kp kxk ++ x  by using a 
random number generator to sample a zero-mean, identity-
covariance vector Gaussian distribution with dimension equal 
to the number of columns in jkxxY )1( +

(
δ .  Let this random 

vector be ηjl.  The mean value of the new lth mixand of 
)|(~

11 kp kxk ++ x  becomes 

 jljkxxjkxlkx Y ημμ )1()1()1(
~

+++ +=
(

δ  (18) 

The square-root information matrix of the new lth mixand is 
set equal to the pre-computed value that corresponds to the 
LMI-bounded version of the covariance of the jth mixand of 
pxk+1(xk+1|k): 

 lkxxR )1(
~

+   =  jkxxR )1( +
(

 (19) 

All of the weights for the new mixands are nominally equal-
valued, as in standard importance re-sampling in a PF. 

The basic re-sampling algorithm given above is augmented 
in three ways in [20].  First, it starts with a target value for the 
number of re-sampled mixands, Ntarget.  The actual final value 

1
~

+xkN  will be no larger than this target value, and it could be 
smaller.  Second, it may happen that some of the mixands of 
ptempk+1(xk+1) in (16) will have zero covariance, i.e., jkxxY )1( +

(
δ  

= 0.  If such a mixand is re-sampled multiple times by this 
algorithm, then a simple-minded application of the algorithm 
will produce multiple identical mixands of the re-sampled 

)|(~
11 kp kxk ++ x  with identical weights.  Instead, the algorithm 

combines these mixands into a single re-sampled mixand with 
an appropriately increased weight.  Third, several of the 
original mixands of pxk+1(xk+1|k) may be nearly identical and 
have jkxxY )1( +

(
δ  values equal to zero.  In this case, the re-

sampling algorithm of [20] attempts to merge such mixands 
before executing its re-sampling steps.  Merging is carried out 
if it results in an initial re-approximation of pxk+1(xk+1|k) that is 
not very different from the original pxk+1(xk+1|k) as measured in 
a functional 2-norm sense.  These last two features of the 
algorithm tend to limit the number of mixands in the re-
sampled )|(~

11 kp kxk ++ x , 1
~

+xkN .  Experience has shown that 

these features are likely to reduce 1
~

+xkN  in situations where 
the underlying nonlinear/non-Gaussian Bayesian filter has 
converged to a sufficiently accurate solution, one whose total 
covariance respects the Pmax bound. 

V. GAUSSIAN MIXTURE FILTERING ALGORITHM 
This paper's new Gaussian mixture filter uses the 5 

mixtures in (11a)-(11e) and the dynamics and measurement 
models in (1a) and (1b) to approximate the operations of an 
exact nonlinear/non-Gaussian Bayesian filter.  The dynamic 
propagation operation uses pxk(xk|k) from (11a), pwk(wk) from 
(11d), and local linearized approximations of the dynamics 
model in (1a) in order to compute pxk+1(xk+1|k) by evaluating 
the integral on the third line of (3).  These calculations are 
followed by the Gaussian mixture re-sampling algorithm of 
[20], which has been reviewed in Section IV.  It forms 

)|(~
11 kp kxk ++ x  to approximate pxk+1(xk+1|k) in a way that 

respects the LMI mixand covariance upper bound expressed 
by (12).  It also attempts to reduce the needed number of 
mixands.  The final filtering step is the measurement update.  
It uses )|(~

11 kp kxk ++ x  from (11c), pνk+1(νk+1) from (11e), and 
local linearized approximations of the measurement model 
(1b) in order to compute pxk+1(xk+1|k+1) by evaluating the 
second line of (6).  The dynamic propagation calculations and 
the measurement update calculations are standard static 
multiple-model filter operations [4], except they are carried 
out using EKF techniques cast in the form of SRIF 
calculations. 

The next two subsections define, respectively, the 
multiple-model/EKF/SRIF dynamic propagation and the 
multiple-model/EKF/SRIF measurement update.  The final 
subsection combines these operations with the re-sampling 
algorithm of [20] and Section IV in order to define this paper's 
full Gaussian mixture filter.  It also discusses the reason for 
placement of the re-sampling step between the dynamic 
propagation and the measurement update. 

A. Gaussian Mixture Dynamic Propagation using Mixand-by-
Mixand EKF Calculations 
Multiple-model filter dynamic propagation operations are 

used to approximate the integral in the last line of (3).  The 
approximation uses EKF calculations for each mixand.  The 
input mixands for this calculation are those of the product 
distribution: 

=)()|( kwkkxk pkp wx  ×∑
=

})ˆ,ˆ;(ˆ{
ˆ

1

xkN

i
xxkixkiksrxki RμxNw  

 }),;({
1

∑
=

wkN

j
wwkjwkjksrwkj RμwNw  (20) 

This product causes there to be 1+xkN  = xkN̂ Nwk mixands in 
the calculation's pxk+1(xk+1|k) output distribution. 

6



 

The multiple-model dynamic propagation implements the 
SRIF form of the EKF dynamic propagation steps for each of 
the 1+xkN  products of a posteriori state mixands i = 1, ..., xkN̂  
and process noise mixands j = 1, ..., Nwk.  The index of each 
resulting a priori state mixand for xk+1 is l = Nwk(i-1) + j, and 
the corresponding dynamic propagation calculations for this 
mixand are: 

 wkjxkilkx www ˆ)1( =+  (21a) 

 ),ˆ()1( wkjxkiklkx μμμ f=+  (21b) 

 ⎥
⎦

⎤
⎢
⎣

⎡

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

+

+
11

)1(

)1(
ˆˆ

0
0

ˆˆ

klxxkiklklxxki

wwkj

lkxx

lkwxwwkl
kl ΦRΓΦR

R
R
RR

Q  

  (21c) 

where the calculations in (21c) start with the matrix on the 
right-hand side and perform a QR factorization of that matrix 
in order to compute the outputs on the left-hand side.  These 
outputs are the orthonormal matrix Qkl, the square, upper-
triangular matrices wwklR̂  and lkxxR )1( + , and the additional 
matrix lkwxR )1(

ˆ
+ . 

The calculations in (21a)-(21c) have been derived by first 
substituting the linearized approximation  

),( 1
1

kkkk wxfx +
−=  

 ]}[),ˆ({ˆ 1
1

wkjkklwkjxkikkklxki ΓΦ μμμμ −−−+≅ +
− wfx  

  (22) 

with 

 Φkl  =  
),ˆ( wkjxkik

k

μμx
f

∂
∂ and  Γkl  =  

),ˆ( wkjxkik

k

μμw
f

∂
∂  (23) 

into the product term ×)ˆ,ˆ;(ˆ xxkixkiksrxki RμxNw  
),;( wwkjwkjksrwkj RμwNw  of the Gaussian mixture in (20).  

The resulting approximate term is a joint Gaussian in xk+1 and 
wk.  Its integral with respect to wk in the last line of (3) can be 
evaluated by using the Gaussian unit normalization condition.  
The values of lkx )1( +w , lkx )1( +μ , and lkxxxR )1( +  in (21a)-(21c) 
have been defined so that the resulting integral equals 

),;( )1()1(1)1( lkxxxlkxksrlkx R ++++ μxNw , consistent with 
standard SRIF calculations [22]. 

In order for the linearized approximation in (22) to be 
sufficiently accurate, it is required that the pwk(wk) mixand 
covariances T1 −−

wwkjwwkj RR  for j = 1, ..., Nwk be sufficiently 
small.  Thus, the square-root information matrices for the 
process noise mixands must obey an LMI of the form  

 wwkjwwkj RRT
wminwminRRT≥  for all j = 1, ..., Nwk (24) 

where Pwmax = T1 −−
minwwminww RR  is the covariance upper bound 

for the a priori process noise mixands.  If the original 
formulation of the filtering problem does not respect this 
process noise mixand LMI, then the Gaussian mixture re-
sampling algorithm of [20], as reviewed in Section IV of the 
present paper, must be applied to the original process noise 
distribution in order to produce the distribution of (11d) that 
will be used by the filter. 

The orthonormal matrix Qkl is discarded after the 
operations in (21a)-(21c), and the matrices wwklR̂  and 

lkwxR )1(
ˆ

+  are also discarded unless one wants to do a 
backwards smoothing pass after the forwards filtering pass. 

The dynamic propagation of the mixand square-root 
information matrix in (21c) relies on the inverse of the mixand 
state transition matrix Φkl.  Alternate calculations can be 
implemented in situations where Φkl is not invertible provided 
that the resulting lkxxR )1( +  will not be infinite, which will be 
the case for a process noise model that keeps the filtering 
problem non-singular.  One suitable alternate version uses 
square-root covariance propagation followed by matrix 
inversion in order to revert back to a square-root information 
matrix representation of the mixand covariance. 

B. Gaussian Mixture Measurement Update using Mixand-by-
Mixand EKF Computations 
A multiple-model filter measurement update is used in 

conjunction with EKF techniques in order to approximate the 
last line of (6).  The input mixands for this calculation are 
those of the product distribution: 

=− ++++++ )]([)|(~
111111 kkkkkxk pkp xhyx ν  

 ×∑
+

=
++++

1
~

1
)1()1(1)1( )( }~,~;{~xkN

i
ikxxikxksrikx RμxNw  

  )( 1

1
)1()1(111)1( },)];({[∑ −

+

=
++++++

νkN

j
jkjkkkksrjk Rνννν μxhyNw  

  (25) 

Thus, there are 1
ˆ

+xkN  = 11
~

++ νkxk NN  mixands in the filter's 
final a posteriori distribution pxk+1(xk+1|k+1). 

The EKF/SRIF multiple-model measurement update 
performs the Bayesian calculations in the last line of (6) using 
local linearizations of the measurement model function 
hk+1(xk+1).  The linearized approximation used in the ijth 
product term of (25) is: 

 ]~[)~()( )1(1)1()1(111 ikxkikikxkkk H +++++++ −+≅ μμ xhxh  (26) 

where 

 H(k+1)i  =  
ikx

k

k

)1(
~1

1

+
+

+

∂
∂

μ
x
h

 (27) 
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Next, the measurement update re-arranges each mixand 
product term in (25), 

×++++ }~,~;{~
)1()1(1)1( ikxxikxksrikx RμxNw

},)];({[ )1()1(111)1( jkjkkkksrjk R ++++++ − νννν μxhyNw , into 
the equivalent a posteriori form 

}ˆ,ˆ;{ˆ )1()1(1)1( lkxxlkxksrlkunx R ++++ μxNw .  This is done for each 
of the 1

ˆ
+xkN  products of a priori state mixands i = 1, ..., 

1
~

+xkN  and measurement noise mixands j = 1, ..., Nνk+1.  The 
index of each corresponding a posteriori state mixand is l = 
Nνk+1(i-1) + j.  Equivalence between the two forms is possible 
because substitution of the linearized measurement function 
model from (26) into the measurement noise mixand causes 
the original product term to be Gaussian in xk+1.  The 
following standard SRIF measurement update calculations 
[22] and multiple-model filter calculations are designed to 
ensure the equivalence of these two Gaussian forms 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
+

ikjk

ikxxlkxx
lk HR

RRQ
)1()1(

)1()1(
)1(

~

0

ˆˆ
νν

 (28a) 

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+

lkr

lkx

)1(

)1(ˆ
z
z

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−− +++++

+ })~({
0ˆ

)1()1(11)1(

T
)1(

jkikxkkjk
lk R

Q
ννν μμhy

 

  (28b) 

 lkxlkxxikxlkx R )1(
1

)1()1()1( ˆˆ~ˆ +
−

+++ += zμμ  (28c) 

×
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

+

++
+++ 2/

)1(

)1()1(
)1()1()1(

)2(|)ˆdet(|

|)det()~det(|~ˆ
yn

lkxx

jkikxx
jkikxlkunx

R

RR

π

νν
νwww  

 }5.0exp{ )1()1( lkr
T

lkr ++− zz  (28d) 

The calculations in (28a) QR factorize the input matrix on the 
right-hand side in order to compute the orthonormal matrix 

lkQ )1(
ˆ

+  and the square, upper-triangular a posteriori square-
root information matrix lkxxR )1(

ˆ
+ , which both appear on the 

left-hand side.  Equation (28b) forms the normalized 
measurement residual on the right-hand side and transforms 
the result using the transpose of lkQ )1(

ˆ
+  in order to compute 

the residual error vector lkr )1( +z  and the vector lkx )1(ˆ +z .  The 
latter vector is used in (28c) to update the mixand mean. 

Equation (28d) computes the un-normalized version of the 
a posteriori mixand weight.  Four of the product terms on the 
right-hand side of (28d) are standard in a static multiple-
model re-weighting formula: the two pre-update mixand 
weights, the power of 2π, and the exponential that involves a 
sum of squares of normalized measurement residuals [4].  The 
terms involving determinants of square-root information 
matrices are required for this new SRIF form of the static 
multiple-model measurement update.  They replace a term 
involving the determinant of the innovations covariance 

matrix that appears in the covariance form of this re-weighting 
formula [4]. 

The final step of the Gaussian mixture measurement 
update re-normalizes the new mixand weights.  Re-
normalization occurs after the calculations in (28a)-(28d) have 
been carried out for all of the mixands.  The re-normalization 
takes the form: 

 

∑

=
+

=
+

+
+

1ˆ

1
)1(

)1(
)1(

ˆ

ˆ
ˆ

xkN

m
mkunx

lkunx
lkx

w

w
w     for l = 1, ..., 1

ˆ
+xkN  (29) 

This completes the calculations on the last line of (6) because 
the sum of the unnormalized weights in the denominator of 
(29) equals the integral of the probability density product in 
the denominator of (6). 

Given that these calculations could involve a large number 
of mixands, 1

ˆ
+xkN , it is important to carry them out in the 

most efficient manner possible.  One important efficiency is to 
evaluate the linearization calculations in (26) and (27) only 

1
~

+xkN  times, not 1
ˆ

+xkN  times.  Similarly, the determinant 
)~det( )1( ikxxR +  only needs to be evaluated 1

~
+xkN  different 

times, and the determinant )det( )1( jkR +νν  only requires Nνk+1 
independent evaluations.  Furthermore, the usual upper-
triangularity of ikxxR )1(

~
+ , jkR )1( +νν , and lkxxR )1(

ˆ
+  expedites 

the determinant calculations because the determinant of an 
upper-triangular matrix equals the product of its diagonal 
elements. 

C. Complete Gaussian Mixture Filter Operations 
The Gaussian mixture filtering algorithm starts with the 

following inputs: 

a) the a posteriori state Gaussian mixture at sample 0, 
px0(x0|0), 

b) the process noise and measurement noise Gaussian 
mixtures pwk(wk) and pνk+1(νk+1) at samples k = 0, 1, 
2, ...  

c) the square-root information matrix LMI lower 
bound Rmin that is used in (12), and  

d) the target number of mixands after each state re-
sampling Ntarget. 

Given these inputs, the approximate nonlinear/non-
Gaussian Bayesian calculations of the new Gaussian mixture 
filter proceed according to the following 7 steps: 

1. If necessary, re-sample px0(x0|0) using the 
Gaussian mixture re-sampling algorithm of [20] in 
order to ensure that the LMI in (12) is satisfied by 
each mixand's square-root information matrix.  If 
re-sampling is necessary, then use Ntarget as the 
target/maximum number of re-sampled mixands. 

2. Set the current sample index to k = 0. 
3. Perform the multiple-model SRIF/EKF dynamic 

propagation calculations in (21a)-(21c) for all 
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1+xkN  = xkN̂ Nwk mixands of the new a priori 
distribution pxk+1(xk+1|k).  Use the matrices Φkl and 
Γkl for l = 1, ..., 1+xkN  from (23) in these 
calculations. 

4. Perform Gaussian mixture re-sampling of 
pxk+1(xk+1|k) in order to produce )|(~

11 kp kxk ++ x  with 
mixand square-root information matrices that all 
satisfy the LMI in (12).  Use the re-sampling 
procedure of [20], as discussed in this paper's 
Section IV.  Use Ntarget as the target/maximum 
number of re-sampled mixands. 

5. Perform the multiple-model SRIF/EKF 
measurement update calculations in (28a)-(28d) for 
all 1

ˆ
+xkN  = 1

~
+xkN Nνk+1 mixands of the new a 

posteriori distribution pxk+1(xk+1|k+1).  Use the 
matrices H(k+1)i for i = 1, ..., 1

~
+xkN  from (27) in 

these calculations. 
6. Use (29) to compute the normalized mixand 

weights of the new a posteriori distribution 
pxk+1(xk+1|k+1). 

7. Replace k by k+1.  Stop if the incremented k value 
is the last sample of the filtering run.  Otherwise, 
return to Step 3. 

This is a recursive procedure.  Each iteration of Steps 3-7 
produces the a posteriori distribution pxk+1(xk+1|k+1) that 
becomes the input distribution pxk(xk|k) for the next iteration 
after k is incremented in Step 7. 

The most important purpose of Step 4's mixture re-
sampling is to bound the mixand covariances using the LMI in 
(12).  This bounding ensures sufficient accuracy of the EKF 
linearizations of the dynamics and measurement models in 
(22) and (26).  It is obvious that enforcement of the LMI 
bound in Step 4 can ensure accuracy of the measurement 
model linearization in (26) because the measurement update 
calculations of Step 5 occur immediately after the re-sampling 
step.  Satisfaction of the LMI bound in (12) during the 
dynamic propagation may seem uncertain because the 
measurement update in Steps 5 and 6 happens after the re-
sampling and before the Step-3 dynamic propagation of the 
filter recursion's next iteration.  Note, however, that the SRIF 
measurement update calculation in (28a) guarantees that  

 ikxxikxxlkxxlkxx RRRR )1(
T

)1()1(
T

)1(
~~ˆˆ

++++ ≥  (30) 

This inequality re-states the fact that the measurement update 
of a linear filter can never increase the covariance of the 
corresponding state estimate.  The re-sampling in algorithm 
Step 4 ensures that the LMI in (12) is satisfied by each 

ikxxR )1(
~

+ .  Equation (30) and the transitivity of LMIs ensure 
that  

 minminlkxxlkxx RRRR T
)1(

T
)1(

ˆˆ ≥++  for all l = 1, ..., 1
ˆ

+xkN  (31) 

Therefore, the filter need not re-sample after its measurement 
update.  Equation (31) guarantees that the a posteriori 
mixands at the end of the kth iteration of Steps 3-7 are 
sufficiently narrow to admit accurate EKF dynamic 
propagation calculations in Step 3 of the k+1st iteration. 

The second goal of the mixture re-sampling in Step 4 is to 
limit the number of mixands.  If possible, this step seeks to 
reduce this number as much as is practical without adversely 
affecting the accuracy of the re-sampled distribution.  One can 
show that 1+xkN  = xkN~ NνkNwk.  If Nνk or Nwk is greater than 1, 
then the number of mixands will grow during execution of 
Steps 5-7 of the k-1st iteration of the algorithm and Step 3 of 
the kth iteration.  Without the re-sampling in Step 4, the 
number of mixands would grow geometrically without bound, 
and the calculations would quickly become intractable.  The 
re-sampling in Step 4 bounds each xkN~  to be no greater than 
Ntarget, thereby bounding the possible growth in the number of 
mixands.  Normally such a bound can be enforced without 
undue loss of accuracy because many of the mixands "lost" in 
the re-sampling process have insignificant weights or are 
redundant with other mixands. 

As will be shown in Section VI, the re-sampling algorithm 
of [20] includes features that have the potential to form a 

)|(~
11 kp kxk ++ x  that is an accurate approximation pxk+1(xk+1|k), 

but with the number of re-sampled mixands 1
~

+xkN  much less 
than Ntarget.  When this happens, the Gaussian mixture filter 
has the potential to be very efficient computationally, almost 
as efficient as a standard EKF or UKF. 

The new Gaussian mixture filter differs markedly from a 
standard PF in its placement of the re-sampling algorithm 
between the dynamic propagation of Step 3 and the 
measurement update of Steps 5 and 6.  A typical PF performs 
importance re-sampling after the measurement update [5,9].  
The re-positioning of the re-sampling step in the present filter 
has been driven by its need to enforce the LMI bound in (12).  
If the re-sampling step took place after the measurement 
update, then the potential for mixand covariance growth 
during the dynamic propagation on the next iteration could 
cause violation of the LMI in (12) at the point of measurement 
model linearization in (26) and (27).  The fact of covariance 
shrinkage in the measurement update allows the filter to avoid 
all such problems by placing the re-sampling step between the 
dynamic propagation and the measurement update.  This 
placement enables each filter iteration's one re-sampling 
operation to enforce the LMI bound in (12) at two separate 
points of the iteration. 

The only negative consequence of moving the re-sampling 
step is the potential to retain insignificant mixands too long.  
The re-weighting calculations of the measurement update in 
(28d) and (29) can cause some updated mixands to have 
negligible weights.  Typically this happens when a given 
mixand has unreasonably large normalized measurement 
residuals in its lkr )1( +z  vector from (28b).  Such mixands have 
virtually no impact on the remainder of the filter calculations.  
Failure to eliminate them through importance re-sampling 
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Fig. 1.  Plan view of the blind tricyclist problem showing the two merry-go-rounds, the simulated 
truth position trajectory (blue solid curve), and the corresponding estimated trajectories for 8 

different filters. 

after the measurement update results in wasted computation.  
The wasted operations, however, persist only until re-
sampling Step 4 on the next iteration of the algorithm.  That 
step includes mixand importance considerations in its re-
sampling calculations, which eliminate all mixands with 
negligible weights. 

VI. GAUSSIAN MIXTURE FILTER PERFORMANCE ON THE 
BLIND TRICYCLIST PROBLEM 

Monte-Carlo simulation tests of the new Gaussian mixture 
filter have been carried out for the  Blind Tricyclist nonlinear 
filtering problem of [17].  Its performance is compared to that 
of the same nonlinear filters that are evaluated in [17], an 
EKF, two UKFs, two Moving Horizon Estimators (also called 
Backwards-Smoothing EKFs -- BSEKFs), and two PFs. 

A. Review of Blind Tricyclist Problem 
The Blind Tricyclist problem is developed in [17] as a 

benchmark nonlinear filtering problem.  It involves a blind 
tricyclist who navigates around an amusement park based on 
relative bearings measured between his heading and the 
locations of 2 friends on 2 merry-go-rounds who shout to him 
intermittently.  He knows which friend is on which merry-go-
round and can distinguish their voices.  He also knows the 
location and diameter of each merry-go-round, but he does not 
know each friend's initial phase angle on the merry-go-round 
(i.e., which horse the friend rides), nor does he know the 
constant rate of rotation of each merry-go-round.  He seeks to 
determine his east-west/north-south position and his heading 
angle.  In order to do this, he also must estimate the 
"nuisance" parameters that characterize the two friends' 
merry-go-rounds' instantaneous angles 
and constant rates.  Thus, his state 
vector xk has 7 elements, his position 
coordinates Xk and Yk, his heading angle 
θk, the phase angles of the two friends' 
merry-go-round positions φ1k and φ2k, 
and their merry-go-rounds' constant 
rates k1φ&  and k2φ& .  The k subscript on 
the latter two quantities is somewhat 
misleading in that their true values do 
not change with time, but their 
estimates can change with time as a 
result of measurement updates. 

The Blind Tricyclist uses a 
kinematic model that includes known 
input time histories for the steer angle 
and the speed.  The process noise 
includes small white-noise errors in 
these two commanded input time 
histories along with wheel slippage that 
allows slight violations of the tricycle's 
planar rolling constraints.  The 
dynamics models for the merry-go-
rounds are kinematic and have no 

uncertainty beyond their unknown initial angles and rates. 

Relative bearing measurements to each merry-go-round-
riding friend are made once every 3 seconds, with the two 
friends shouting out of phase with each other.  During the 141 
second duration of the considered filtering run, there are a 
total of 47 relative bearing measurements made to each friend.  
The filter sample intervals are only 0.5 seconds long.  Thus, 
there are three sample times with no measurement data 
between each sample time that has bearing data.  The filter 
algorithm skips measurement update Steps 5 and 6 in the 
absence of bearing data.  

Figure 1 illustrates this estimation problem.  It shows a top 
view of the amusement park with the two merry-go-rounds 
and a simulated true tricyclist trajectory for a particular case.  
Also shown are various filters' estimates of this trajectory.  
The merry-go-rounds lie slightly to the left of center, with a 
smaller one to the north drawn in green and a larger one to the 
south drawn in magenta.  The truth tricyclist trajectory is 
shown in solid blue.  The tricyclist starts at the blue asterisk 
position to the south-east of the figure's center.  He proceeds 
almost due north until he takes a ~90o right turn.  At the end 
of this first turn he stops and then executes a ~90o left turn 
traveling in reverse.  At the end of this second turn he stops 
again at the northern-most point of his trajectory.  He is now 
facing south.  Next, he proceeds south until he is almost due 
east of the mid-point between the two merry-go-rounds.  He 
now executes a second ~90o right turn and heads almost due 
west until he finishes his travels at a point between the two 
merry-go-rounds. 

Many additional details about the Blind Tricyclist are 
contained in [17].  They include the equations that define the 
dynamics function fk(xk,wk) and the measurement function 
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hk+1(xk+1), the process-noise and measurement-noise 
covariances, the tricycle geometry, the merry-go-round 
geometry, and the initial estimation error covariance.  Two 
problems are considered, one with a small initial covariance 
that allows a simple EKF to converge reasonably well, and 
another with a much larger initial uncertainty that causes 
severe convergence problems for a number of the filters.  
Only the difficult latter case is considered here.  Reference 
[17] cites a link to MATLAB code that includes all Blind 
Tricyclist model functions, a truth-model simulation, and a 
first-order EKF solution.  That link is included here as [23]. 

B. Comparison of the Gaussian Mixture Blob Filter with 
other Nonlinear Filters for a Representative Blind 
Tricyclist Case 
The Gaussian mixture filter has been applied to a truth-

model simulation of the Blind Tricyclist problem.  This 
implementation uses Nwk = 1 mixand for the process noise and 
Nνk+1 = 1 mixand for the measurement noise, thereby 
modeling these as Gaussian white-noise sequences.  There is 
no need to re-sample the process noise 1-element Gaussian 
"mixture" in order to respect the bound on its covariance 
associated with (24) because its original covariance already 
respects a sufficiently small bound. 

The Gaussian mixture filter's re-sampling algorithm has 
been tuned for the Blind Tricyclist problem as follows:  The 
value of Ntarget is set to 7,000 re-sampled mixands, though 
results will show that the filter is able to reduce the number of 
mixands far below this value after initial convergence has 
been achieved.  The LMI lower-bound on the state mixand 
square-root information matrices in (12) is enforced using the 
value Rmin = diag[1/(2.6 m); 1/(2.6 m); 1/(1.04 rad); 1/(0.3467 
rad); 1/(0.4 rad); 1/(2000 rad/sec); 1/(2000 rad/sec)].  The first 
two values correspond to maximum east-west and north-south 
position error standard deviations of 2.6 m for each mixand.  
The third term implements a maximum heading standard 
deviation per mixand of 1.04 rad (60 deg).  The fourth and 
fifth terms specify each mixand's maximum angular standard 
deviations for the two merry-go-round phase angles, 0.3467 
rad (20 deg) for the southern merry-go-round and 0.4 rad (23 
deg) for the northern one.  The last two terms are per-mixand 
merry-go-round rate standard-deviation limits of 2,000 rad/sec 
(318 Hz or 1.15x105 deg/sec).  These rate limits are 
intentionally very large because the rates only enter linearly 
into the dynamics function fk(xk,wk) and not at all into the 
measurement function hk+1(xk+1).  Their nonlinear effects are 
indirect, through the merry-go-round phase angle terms.  The 
mixand covariance limits on the phase angles suffice to limit 
the indirect nonlinear effects of large merry-go-round rate 
variances. 

Figure 1 plots the east-west and north-south tracking 
performance of the Gaussian mixture filter on an example 
simulated problem.  The initial position estimate of the filter is 
given by the red asterisk in the lower left-hand part of the 
figure.  This is obviously far from the initial truth position 
designated by the blue asterisk in the bottom half of the figure 
and somewhat right of center.  Also shown in the figure are 
the estimated position time histories of 7 other filters that have 

been tested in [17].  In fact, Fig. 1 corresponds to the case that 
produced Fig. 4 of [17].  Therefore, most of the other filters' 
estimated trajectories in Fig. 1 are identical to those of [17]'s 
Fig. 4. 

For the two PF's, however, the trajectories in Fig. 1 differ 
from those of [17].  During the course of the present research, 
it was discovered that PFs and Gaussian mixture filters can be 
confused by the 2π cycle ambiguity of the tricycle heading 
angle θk and the merry-go-round phase angles φ1k and φ2k.  In 
the Gaussian mixture filter, this aliasing-like effect is benign.  
It only impacts the filter's computation of the overall state 
mean and error covariance, as per (10).  If this mean and 
covariance are required as outputs, then one can remove this 
aliasing effect by performing a 2π relative unwrapping 
operation between the mean heading angles and the mean 
merry-go-round phase angles of the filter's individual 
mixands.  For the PFs, however, failure to compensate for this 
effect during filter operation can have a dramatic impact on 
the regularization process that has been used to avoid collapse 
of particle diversity.  It is necessary to do inter-particle 
unwrapping of these angles after each measurement update 
before regularized re-sampling occurs.  The results reported in 
[17] do not include this type of PF data processing.  The 
results reported here include it.  Therefore, the PF results in 
the present paper exhibit dramatic improvements in 
comparison to those of [17]. 

Even with the improved PF results, the best three filters in 
Fig. 1 are BSEKF A (light green dashed curve), BSEKF B 
(grey dash-dotted curve), and the new Gaussian mixture Blob 
Filter (dark green solid curve).  These are the only filters that 
track near the truth blue solid curve during its initial north-
bound leg.  They are the only filters that show the initial two 
turns with the stops at the end of each and with the backing-up 
maneuver performed during the second turn.  The EKF (red 
solid curve) and UKF A (brown dashed curve) never produce 
anything like the true trajectory, though they do manage to 
stay within the general area of tricycle motion.  UKF B (cyan 
dotted curve) diverges out of the figure's field of view and 
never returns.  Its sigma points spread is tuned somewhat 
differently than that of UKF A [17].  PF A (purple dash-dotted 
curve) uses 3,000 particles, and PF B (dark grey dotted curve) 
uses 10,000.  Neither of them reproduces the stopping or left-
turning back-up maneuver, and PF B even exits the figure's 
field of view temporarily.  In their favor, both PFs eventually 
approach the true trajectory and the estimated trajectories of 
the 3 good filters on the final westward leg.  The best 
performance in Fig. 1 appears to be that of BSEKF B, which 
employs explicit nonlinear smoothing for the 40 half-second 
sample/propagation intervals that precede the filter sample of 
interest.  The next best performance appears to be that of the 
new Gaussian mixture Blob Filter, and BSEKF A has the 3rd 
best performance.  BSEKF A employs explicit nonlinear 
smoothing over a shorter window, only 30 half-second 
sample/propagation intervals.  The performance of the new 
Blob Filter is only slightly better than that of BSEKF A, and 
this better performance occurs primarily during the first right-
ward turn, the subsequent stop, and the initial part of the 
backwards left-hand turn. 
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Fig. 2.  Blind tricyclist RMS position error magnitude time histories for 8 different 
filters and the corresponding Cramer-Rao lower bound, as computed using a 100-

case Monte-Carlo simulation. 

Fig. 3.  Blind tricyclist consistency tests for 8 different filters that show the 
percentage of normalized squared state errors that lie above the 99.99% threshold of 

a degree-7 χ2 statistic, as computed using 100 Monte-Carlo simulation cases. 

C. Statistical Filter Analysis using 100 Monte-
Carlo Simulation Cases 
A Monte-Carlo study has been conducted 

using 100 different truth-model simulations.  
Each simulation had the same nominal starting 
point for the tricyclist and the same nominal steer 
and speed time history as produced the blue solid 
curve in Fig. 1.  Each truth trajectory varied 
somewhat from that in Fig. 1 due to process 
noise.  The filter's initial distribution px0(x0|0) was 
a Gaussian with the same large covariance for 
each case, but with a different mean value for 
each of the 100 Monte-Carlo runs.  The 
distribution of mean values was chosen to cause 
the 100-case statistics of the actual errors between 
the truth initial state and each px0(x0|0) mean to be 
consistent with the common covariance of the 
100 px0(x0|0) distributions. 

Figures 2 and 3 present summary statistical 
results from these simulations.  They compare the 
new Gaussian mixture Blob Filter with the 7 
other filters that have been used to generate Fig. 1.  Figure 2 
plots the root-mean-square (RMS) east-west/north-south 
position error magnitude time history for each filter, as 
averaged over the 100 Monte-Carlo cases.  It also plots the 
Cramer-Rao lower bound for this error as approximated by 
averaging over the 100 simulations.  The better filter is the 
one with the lowest RMS error in Fig. 2.  Figure 3 plots the 
fraction of the 100 cases in which the normalized square of 
the state error )ˆ(ˆ)ˆ( 1T

kkxxkkk P xxxx −− −  exceeds the 99.99% 
probability threshold of a degree-7 χ2 distribution.  In this 
calculation, kx̂  and xxkP̂  are, respectively, the mean and 
covariance of a given filter's approximation of the a posteriori 
probability density function pxk(xk|k).  The fraction of cases 
that violate this limit should only be about 0.0001 if the state 
estimation error is nearly Gaussian.  Therefore, a 
consistent filter will produce a curve at or very 
near 0 in Fig. 3.  Note that Figs. 2 and 3 are 
nearly identical to Figs. 5 and 6 of [17], except 
that PF A and PF B show better performance than 
in [17] due to the fixed 2π ambiguity problem 
noted earlier. 

It is obvious from Fig. 2 that the new 
Gaussian mixture Blob Filter performs 
significantly better than any of the other filters.  
Its RMS position error time history (dark green 
solid curve) is consistently the lowest, and it is 
much closer to the Cramer-Rao lower bound 
(tan/green dash-dotted curve) than that of the next 
best filter, BSEKF B (dark grey dash-dotted 
curve).  Thus, the superior performance of 
BSEKF B in Fig. 1 appears to be an outlier, a 
statistical exception to the rule of Fig. 2 that the 
Blob filter achieves the best RMS accuracy 
throughout the trajectory. 

PF B (grey dotted curve) displays the best the filter 
consistency in Fig. 3.  Its curve is always very close to zero.  
The new Gaussian mixture Blob Filter (dark green solid 
curve) has the second best consistency after t = 70 seconds, 
but one or two other filters display better consistency in the 
early stages of the filtering interval, UKF A (brown dashed 
curve) and UKF B (cyan dotted curve).  Given that PF B, 
UKF A, and UKF B are significantly less accurate than the 
Blob Filter, as demonstrated in Fig. 2, their superior 
consistency is not very useful.  The two filters with accuracy 
closest to that of the Blob filter in Fig. 2 are BSEKF A (light 
green dashed curve) and BSEKF B (grey dash-dotted curve).  
In Fig. 3, however, both of them display significantly poorer 
consistency than the Blob filter.  In summary, the new 

12



 

0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

Time (sec)

N
ha

t k

 

 

100-Case Maximum
100-Case Average
100-Case Minimum

Fig. 4.  Time histories of the maximum, mean, and minimum statistics of the Gaussian mixture 
filter's a posteriori mixand count kN̂  for 100 Monte-Carlo simulation cases. 

Gaussian mixture Blob filter achieves the best accuracy for 
this problem, and it's consistency is better than 4 of the other 
filters for the entire filtering interval and better than 6 of the 7 
other filters during the second half of the interval. 

Figure 4 investigates the mixand count performance of the 
Gaussian mixture filter for the 100 Monte-Carlo simulation 
cases.  It plots max( kN̂ ) vs. tk (blue solid curve), mean( kN̂ ) 
vs. tk (red dash-dotted curve), and min( kN̂ ) vs. tk (light green 
dashed curve), where the maximum, mean, and minimum are 
computed over the 100 Monte-Carlo cases.  These curves all 
start at the value 7,000, which is the Ntarget value that has been 
used for the re-sampling in Step 4 of Subsection V.C.  
Eventually, the re-sampling algorithm is able to reduce this 
number through its two ad hoc strategies for developing an 
accurate Gaussian mixture re-approximation with a reduced 
number of mixands [20].  By the end of the filter run, the 
maximum kN̂  is 8, the mean is 3.77, and the minimum is 1. 

In a PF context, the low terminal values of kN̂ would be 
interpreted as a collapse of particle diversity and would 
indicate filter failure.  In the Gaussian mixture context, the 
filter can function well with a very small number of mixands 
if the true a posteriori probability density function is well 
modeled by the resulting mixture.  Clearly this is the case for 
the present example, as indicated by the excellent accuracy 
results given in Fig. 2. 

Note that the Gaussian mixture filter has the ability to 
increase kN̂  should an increase be needed.  This ability relies 
on a coupling of two processes.  The first process is the 
expansion of the mixand covariances of the state probability 
distribution that can occur during dynamic propagation.  The 
second process is the enforcement of the LMI in (12) during 
Gaussian mixture re-sampling.  A filter with few mixands 

could experience mixand covariance expansion during the 
dynamic propagation to the point of violating the LMI in (12) 
after the propagation.  The re-sampling procedure would split 
the expanded mixands into multiple mixands.  This expansion 
and splitting procedure could continue for multiple samples 
and eventually result in a large number of mixands.  This 
scenario has occurred in simulation tests of the Gaussian 
mixture blob filter on a different estimation problem. 

One last filter performance metric to consider is the 
needed computational resources.  The average time to run 
each filter over the 141 second data interval has been 
computed, with averaging carried out over the 100 Monte-
Carlo cases.  These averages have been computed when 
running the filter algorithms on a 3 GHz Windows XP 
Professional Workstation using MATLAB code.  The results 
are as follows: EKF 0.08 sec, UKFs A and B 1.18 sec, 
BSEKF A 60.84 sec, BSEKF B 110.6 sec, PF A 149 sec, PF B 
695 sec, and the new Gaussian mixture Blob Filter 187 sec.  

Thus, the Blob Filter is the second most 
expensive filter, but it uses only 27% as 
much computation time, on average, as 
does the 10,000-particle PF B.  Note, also, 
that the Blob Filter is only 70% more 
expensive computationally than the next 
most accurate filter, BSEKF B.  
Furthermore, the Blob Filter would have a 
more favorable average time comparison 
for longer filter runs because its largest 
computational costs occur during the 
convergence from the large initial errors, 
when it needs to use many mixands in 
order to accurately approximate the 
underlying probability density functions, 
as documented in Fig. 4. 

The new Blob Filter is highly 
parallelizable.  The only calculations that 
require "communication" between 
mixands are the weight normalization at 
the end of the measurement update in (29) 
and the parts of the re-sampling algorithm 

that merge mixands.  Therefore, greatly increased execution 
speed could be achieved by mapping the algorithm onto a 
parallel processor. 

VII. SUMMARY AND CONCLUSIONS 
A new Gaussian mixture nonlinear filter has been 

developed.  It uses EKF calculations to implement a static 
multiple-model filter in which each of its Gaussian mixands 
constitutes a model.  These calculations are implemented in 
SRIF form.  The key new element of this filter is its re-
sampling algorithm, which executes between the dynamic 
propagation step and the measurement update step.  The 
primary goal of the re-sampling algorithm is to produce an 
accurate approximation of the original a priori distribution 
while enforcing an LMI upper bound on the covariance of 
each of its mixands.  If this bound is tuned properly for a 
given problem, then it ensures that the multiple-model EKF 
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computations will accurately approximate the underlying 
Bayesian calculations of an exact nonlinear/non-Gaussian 
filter.  The re-sampling step also limits the number of mixands 
in the distribution, and it can reduce the number of mixands 
significantly when many of them would otherwise be 
redundant. 

This new filter can be interpreted as generalizing the 
concept of a Particle Filter.  Its generalization uses "fattened" 
components -- Gaussian mixands with finite covariances -- 
instead of particles that have infinitesimal covariances.  
Therefore, its components might reasonably be designated as 
"blobs", and the overall filter might reasonably be called a 
"Blob Filter." 

The new Blob Filter has been tested on a difficult 7-state 
benchmark nonlinear filtering problem, the Blind Tricyclist 
problem.  Monte-Carlo simulation tests demonstrate that the 
new filter is more accurate than a number of other filters, 
including an EKF, two UKFs, two Moving-Horizon 
Estimators/BSEKFs, and two regularized Particle Filters.  Its 
accuracy is significantly closer to the Cramer-Rao lower 
bound than that of the two next best filters, the BSEKFs.  Its 
speed of execution is slow, but it requires only 27% as much 
computational time as the most expensive filter considered in 
this study, a 10,000-particle PF.  The new filter's consistency 
between its computed and actual estimation error covariance 
is imperfect, but not nearly as imperfect as the two next best 
filters.  Given the Blob Filter's superior accuracy, its bounded 
computational costs, and its reasonable consistency, it 
represents a good candidate for solution of difficult nonlinear 
filtering problems. 
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