

The "Blob" Filter: Gaussian Mixture Nonlinear
Filtering with Re-Sampling for Mixand Narrowing

Mark L. Psiaki
Sibley School of Mechanical & Aerospace Engineering

Cornell University
Ithaca, N.Y. 14853-7501

Abstract—A new Gaussian mixture filter has been developed,
one that uses a re-sampling step in order to limit the covariances
of its individual Gaussian components. The new filter has been
designed to produce accurate solutions of difficult nonlinear/non-
Bayesian estimation problems. It uses static multiple-model filter
calculations and Extended Kalman Filter (EKF) approximations
for each Gaussian mixand in order to perform dynamic
propagation and measurement update. The re-sampling step
uses a newly designed algorithm that employs linear matrix
inequalities in order to bound each mixand's covariance. Re-
sampling occurs between the dynamic propagation and the
measurement update in order to ensure bounded covariance in
both of these operations. The resulting filter has been tested on a
difficult 7-state nonlinear filtering problem. It achieves
significantly better accuracy than a simple EKF, an Unscented
Kalman Filter, a Moving-Horizon Estimator/Backwards-
Smoothing EKF, and a regularized Particle Filter.

Keywords—Kalman Filter; Bayesian Filter; Gaussian Mixture
Filter.

I. INTRODUCTION
Kalman filters have been applied to Bayesian estimation

problems with stochastic dynamic models and noisy
measurements for over 5 decades [1,2]. The original
formulation solved the discrete-time problem with linear
dynamics, linear measurements, and Gaussian noise and priors
[1]. The general discrete-time nonlinear problem, however,
has no known closed-form solution. A number of
approximate solutions for non-linear/non-Gaussian problems
have been developed, and they have met with varying degrees
of success. These include the Extended Kalman Filter (EKF)
[3,4,5] – perhaps better characterized as the family of EKFs
[6], the Unscented or Sigma-Points Kalman Filter (UKF)
[7,8], the family of filters known as Particle Filters (PFs)
[5,9], the Moving Horizon Estimator [10] -- aka the
Backward-Smoothing Extended Kalman Filter (BSEKF) [11],
and a family known as Gaussian mixture filters
[12,13,14,15,16].

There are two general ways in which these approximate
filters can perform poorly. They can diverge, or they may
yield sub-optimal or in-consistent estimation accuracy. These
two failure modes are illustrated in [17] via simulation tests
that use a benchmark 7-state nonlinear estimation problem, the
Blind Tricyclist. The UKF can diverge, and its accuracy is
very poor. The EKF and PF sometimes nearly diverge, and

their accuracies are far from the Cramer-Rao lower bound.
The BSEKF converges and has the best estimation accuracy,
but its accuracy is not very close to the Cramer-Rao lower
bound. Furthermore, the BSEKF is expensive in terms of
needed computational resources, and the PF is even more
expensive.

Reference [17] did not attempt to include a Gaussian
mixture filter in its performance comparison due a known
problem of such filters: If their component mixands have
covariances that are too large, then the EKF or UKF
component calculations will not have sufficient accuracy to
achieve good performance [14,15,18,19].

This paper’s main contribution is to develop a new type of
Gaussian mixture filter that avoids the problem of having
covariances which are too large. Its algorithm uses multiple-
model filter calculations that are based on first-order EKF
approximations carried out on a mixand-by-mixand basis.
The measurement update involves re-weighting of the
mixands using the usual innovations-based technique of static
multiple-model filters [4]. In addition to these standard
Gaussian mixture filter operations, a mixture re-sampling/re-
approximation step is added between the dynamic propagation
and the measurement update. This re-sampling step uses the
Gaussian mixture re-approximation algorithm of [20]. This
latter algorithm starts with an input Gaussian mixture and a
Linear Matrix Inequality (LMI) upper bound that will apply to
the covariance matrices of the output mixands. If all of the
original mixands respect this bound, then the output mixture
essentially equals the input mixture, except that importance-
type re-sampling properties will act to eliminate mixands with
very low weights. If any of the original mixands do not
respect the LMI covariance upper bound, then the re-sampling
algorithm constructs a new Gaussian mixture that
approximates the original mixture accurately while enforcing
the LMI bound. The user selects an upper bound which is
small enough to ensure that first-order EKF measurement
update and dynamic propagation operations can be applied to
each mixand with very little truncation error. This constraint
ensures the overall accuracy with which the Gaussian mixture
filter approximates the exact Bayesian posterior distribution.

This approach is akin to a PF, but with two important
distinctions. First, its re-sampling algorithm approximates one
Gaussian mixture by constructing another rather than
approximating one ensemble of particles by constructing

Preprint, IEEE/ION PLANS 2014, 5-8 May 2014, Monterey, CA.

another. Second, the re-sampling operation occurs in a
different place than for a typical PF, before the measurement
update rather than after it [5,9]. This alternate position
enables a single re-sampling step to enforce the filter's LMI
covariance bound for both the measurement update of the
current sample and the dynamic propagation of the next
sample.

This new Gaussian mixture filter differs from existing
Gaussian mixture filters in several respects. The filters
described in [12] and [16] include neither a re-sampling step
nor any other means to limit mixand covariances. The filter in
[13] includes re-sampling, but not for the purpose of enforcing
a covariance upper limit on each mixand. Instead, re-
sampling is applied primarily to limit the number of mixands,
which is somewhat analogous to the action of importance re-
sampling in a PF to prune away particles with low weight.
References [14], [15], [18], and [19] develop filters or parts of
filters that incorporate Gaussian mixture re-approximation
with the goal of limiting the mixand covariances. All of these
methods, however, rely on re-approximations of wide 1-
dimensional Gaussian elements by a pre-computed set of
narrower weighted 1-dimensional mixands. Re-
approximation of a multi-dimensional Gaussian mixture is
performed using products of mixture re-approximations of 1-
dimensional Gaussians along principal axes of each original
mixand's covariance matrix. This technique has two
drawbacks. First, the number of needed new mixands in the
re-approximation is exponential in the problem dimension.
Second, there is no obvious way to exploit for the overlap of
original wide mixands in order to conserve on the number of
narrowed mixands needed in the re-approximated distribution.

Another contribution of this paper is a new square-root
information filter (SRIF) formulation of the static multiple-
model filter calculations. These calculations form the basis of
its Gaussian mixture filter. Versions of the needed
calculations have been published in multiple places for
covariance filter implementations, e.g., [4], but this paper
gives the first known SRIF formulation.

Another contribution is a simulation-based evaluation of
the new Gaussian mixture filter on the Blind Tricyclist
nonlinear estimation problem [17]. Other Gaussian mixture
papers evaluate their proposed filters on problems of much
lower dimension, typically 2 or 3, or they evaluate only a
single prediction step. The present work tests the new filter
on the 7-state Blind Tricyclist problem and compares its
performance and computational cost to those of an EKF, two
UKFs, two BSEKFs, and two PFs. The new filter's accuracy
is also compared to the problem's Cramer-Rao lower bound.

This paper develops and evaluates its new Gaussian
mixture Bayesian filter in five main sections. Section II poses
the discrete-time nonlinear/non-Gaussian dynamic filtering
problem that will be solved using a Gaussian mixture filter. It
also reviews the problem's theoretical Bayesian solution.
Section III defines a Gaussian mixture using square-root
information matrix notation. Section IV defines an LMI that
bounds the element covariances of a re-sampled Gaussian
mixture, and it reviews the associated new algorithm for

Gaussian mixture re-sampling that is presented in [20].
Section V develops the full Gaussian mixture filter algorithm
that uses this new re-sampling algorithm. Section VI
performs Monte-Carlo simulation tests of the new algorithm's
performance on the Blind Tricyclist problem, and it compares
this performance with that of other filters. Section VII gives a
summary of this paper's new developments along with its
conclusions.

II. DISCRETE-TIME NONLINEAR FILTERING PROBLEM
DEFINITION AND THEORETICAL SOLUTION

A. Filtering Problem Definition
The discrete-time nonlinear/non-Gaussian Bayesian

filtering problem includes a dynamics model and a
measurement model. They take the respective forms:

 xk+1 = fk(xk,wk) for k = 0, 1, 2, ... (1a)

 yk+1 = hk+1(xk+1) + νk+1 for k = 0, 1, 2, ... (1b)

where k is the discrete-time sample index, xk is the nx-
dimensional state vector at sample k, wk is the nw-dimensional
process noise vector that applies for the state transition from
sample k to sample k+1, yk+1 is the ny-dimensional
measurement vector at sample k+1, and νk+1 is the ny-
dimensional measurement noise vector at sample k+1. The
vector function fk(xk,wk) is the nonlinear discrete-time
dynamics state transition function, and the vector function
hk+1(xk+1) is the nonlinear measurement function. These two
functions are assumed to be continuous with continuous first
derivatives.

The definition of 3 a priori probability density functions
completes the filtering problem definition. The first is the a
priori probability density for x0. Let it be defined as px0(x0).
The second is the a priori probability density function for
each wk. Its definition is pwk(wk). The third is the a priori
probability density function for each νk+1, which is defined as
pνk+1(νk+1). Let the probability density functions pwk(wk) and
pνk+1(νk+1) be defined for all k = 0, 1, 2, ...

B. Theoretical Bayesian Solution
The theoretical solution to the filtering problem is the

conditional probability density function pxk(xk|y1,...,yk). This is
the probability density of xk conditioned on all the data
starting from the initial measurement y1 and extending up to
the measurement yk, which is the last one available at the
applicable sample time of xk. This is commonly known as the
a posteriori probability density function. Let this function be
written in short-hand form as pxk(xk|k), and let the definition of
this latter function be extended to include px0(x0|0) = px0(x0).

An additional useful probability density function is the a
priori state probability density, pxk+1(xk+1|y1,...,yk). Let this
latter function be designated by the short-hand form
pxk+1(xk+1|k).

2

The Bayesian filtering operations start at sample k = 0 and
successively compute px1(x1|0), px1(x1|1), px2(x2|1), px2(x2|2),
px3(x3|2), px3(x3|3), ... These computations can be completely
characterized by a recursion that starts with pxk(xk|k), pwk(wk),
and pνk+1(νk+1) and that uses the dynamics and measurement
models in (1a) and (1b) to compute pxk+1(xk+1|k) followed by
pxk+1(xk+1|k+1). These computations start by forming the
following probability density functions:

 pxk+1(xk+1|xk,wk) = δ[xk+1 - fk(xk,wk)] (2a)

 pxk+1xkwk(xk+1,xk,wk|k)
 = pxk+1(xk+1|xk,wk)pxkwk(xk,wk|k)
 = δ[xk+1 - fk(xk,wk)]pxk(xk|k)pwk(wk) (2b)

where δ[] is a Dirac delta function that takes a vector
argument which is a perturbation of the xk+1 vector away from
the output of the dynamics model function fk(xk,wk).

The xk and wk dependence of the probability density
function in (2b) is integrated out to yield the desired a priori
probability density function at sample k+1:

 pxk+1(xk+1|k)

 = ∫ ∫
∞

∞−

∞

∞−
++)|,,(11 kpdd kkkxkwkxkkk wxxxw

 = ∫ ∫ −
∞

∞−

∞

∞−
+ })|()],([{)(1 kpdpd kxkkkkkkkwkk xwxfxxww δ

 = ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡∞

∞−
+

−
)det(

1]|),([)(1
1

k
kkkxkkwkk kppd

Φ
wxfww

 (3)

where the function),(1
1

kkk wxf +
− in the last line of (3) is the

inverse of the dynamics function in (1a). It is defined so that
xk+1 = fk(xk,wk) and xk =),(1

1
kkk wxf +

− are equivalent, which
is the same as saying that the latter equation is valid for all
combinations of xk+1, xk, and wk that obey the former equation.
The scalar function det() returns the determinant of its matrix
input argument. The nx-by-nx matrix Φk in (3) is the Jacobian
first partial derivative of the dynamics function:

 Φk =
}],,[{ 1

1
kkkk

k

k

wwxfx
f

+
−∂

∂ (4)

The final operations of the Bayesian recursion require the
measurement probability density conditioned on the state at
sample k+1:

 pyk+1(yk+1|xk+1) = pνk+1[yk+1 - hk+1(xk+1)] (5)

The measurement update is then

 pxk+1(xk+1|k+1)

 =
∫
∞

∞−
+++++

+++++

)|()|(

)|()|(

11111

11111

kppd

kpp

kxkkkykk

kxkkkyk

xxyx

xxy
(((

 =
∫ −

−
∞

∞−
++++++

++++++

)|()]([

)|()]([

111111

111111

kppd

kpp

kxkkkkkk

kxkkkkk

xxhyx

xxhy
(((

ν

ν (6)

Unfortunately, many of the theoretical calculations given
in the dynamic propagation in (3) given in the measurement
update in (6) cannot be evaluated in closed form. The inverse
dynamics function),(1

1
kkk wxf +

− often cannot be derived
analytically. The last line of (3) is unlikely to allow closed-
form evaluation of its integral with respect to wk. The integral
in the denominator of the second line of (6) would likely not
allow close-form computation. Even if one were able to
produce closed-form results for these steps, the resulting
pxk+1(xk+1|k+1) likely would be too complicated to allow
closed-form computation of the a posteriori expected value of
xk+1 or its covariance. Furthermore, the resulting
pxk+1(xk+1|k+1) would constitute an input to the (3) wk integral
for the next sample interval. In all but some special cases, one
eventually loses the ability to derive closed-form expressions
for the probability density functions of interest.

These difficulties necessitate the development of
approximate solutions to this nonlinear/non-Gaussian
Bayesian estimation problem. The present approach uses
Gaussian mixtures to approximate all of these probability
density functions. Given mixtures with individual elements
that have sufficiently small covariances, local linearized
approximations of the functions),(1

1
kkk wxf +

− and hk+1(xk+1)
can be used. All of the needed integrals are computable in
closed form when working with Gaussian mixture probability
density functions and local linearizations of the problem
model functions.

III. DEFINITION OF GAUSSIAN MIXTURE PROBABILITY
DENSITY FUNCTIONS

A. Gaussian Mixture in Square-Root Information Form
A Gaussian mixture probability density function is a

weighted sum of individual Gaussian terms. A Gaussian
mixture can be written in the following square-root
information form

 ∑=
=

N

i
iisri Rp

1
),;()(μxx Nw (7)

where the scalars wi for i = 1, ..., N are the mixand weights
and the functions

3

)]([)]([5.0
2/

T

)2(
|)det(|),;(iiii

x

RR
n

i
iisr eRR μμμ −−−= xxx

π
N

 for i = 1, ..., N (8)

are individual Gaussian distributions for the nx-dimensional
vector x. The ith Gaussian mixand is defined by its nx-
dimensional mean value vector μi along with its nx-by-nx
square-root information matrix Ri. The corresponding nx-by-
nx covariance matrix of the ith mixand is Pi = T1 −−

ii RR , with
()-T indicating the transpose of the inverse of the given matrix.

The scalar weights of the distribution must be non-
negative, and they must sum to 1. Thus, they obey the
conditions:

 0≥iw for i = 1, ..., N and ∑=
=

N

i
i

1
1 w (9)

Gaussian mixtures inherit an important property from their
Gaussian components: It is straight-forward to calculate
various useful integrals that involve Gaussian mixture
probability density functions. For example, it is easy to prove
unit-normalization of the integral of a Gaussian mixture by
using the unit normalization of each individual Gaussian
mixand function Nsr(x;μ i,Ri) along with the unit normalization
summation constraint on the weights wi, which is given in (9).
Explicit calculations of the mean and covariance of a Gaussian
mixture are carried out using similar techniques. The results
are:

 ∑=
=

N

i
iimixture

1
μμ w and

 ∑ +=
=

−−N

i
mixtureimixtureiiiimixture RRP

1

TT1])-)(-([μμμμw

 (10)

B. Specific Gaussian Mixtures Used to Develop the "Blob"
Filter
Five different Gaussian mixture probability density

functions are needed in order to develop this paper's Gaussian
mixture "blob" filter. One approximates the a posteriori state
probability density function pxk(xk|k). Two are needed to
approximate the a priori state probability density function
pxk+1(xk+1|k), one immediately after the dynamic propagation
calculations and a second one after the Gaussian mixture re-
sampling operation that bounds mixand covariances. A fourth
Gaussian mixture is needed to approximate the a priori
process noise probability density function pwk(wk), and the
fifth approximates the a priori measurement noise probability
density pνk+1(νk+1).

Let these approximations be defined as:

∑=
=

xkN

i
xxkixkiksrxkikxk Rkp

ˆ

1
)ˆ,ˆ;(ˆ)|(μxx Nw (11a)

∑=
+

=
++++++

1

1
)1()1(1)1(11),;()|(

xkN

i
ikxxikxksrikxkxk Rkp μxx Nw

 (11b)

∑=
+

=
++++++

1
~

1
)1()1(1)1(11)~,~;(~)|(~ xkN

i
ikxxikxksrikxkxk Rkp μxx Nw

 (11c)

∑=
=

wkN

i
wwkiwkiksrwkikwk Rp

1
),;()(μww Nw (11d)

∑=
+

=
++++++

1

1
)1()1(1)1(11),;()(

νkN

i
ikikksrikkk Rp ννννν μνν Nw (11e)

where each of these five Gaussian mixtures is characterized by
its number of mixands and by its sets of mixand weights,
mean values, and square-root information matrices. The five
Gaussian mixtures' respective mixand counts are xkN̂ , 1+xkN ,

1
~

+xkN , wkN , and 1+νkN . Their respective ith elements have the
weights xkiŵ , ikx)1(+w , ikx)1(

~
+w , wkiw , and ik)1(+νw , the

mean values xkiμ̂ , ikx)1(+μ , ikx)1(
~

+μ , wkiμ , and ik)1(+νμ , and
the square-root information matrices xxkiR̂ , ikxxR)1(+ ,

ikxxR)1(
~

+ , wwkiR , and ikR)1(+νν .

The Gaussian mixture)|(~
11 kp kxk ++ x in (11c) ostensibly

represents the same distribution as the a priori Gaussian
distribution pxk+1(xk+1|k) in (11b), which is the output of the
dynamic propagation calculation prior to re-sampling. The
alternate a priori probability density function)|(~

11 kp kxk ++ x is
an approximation of pxk+1(xk+1|k) that is generated by applying
the re-sampling algorithm of [20]. The primary goal of this
re-sampling algorithm is to enforce LMI upper bounds on the
covariance of each new mixand ikxxP)1(

~
+ = T

)1(
1

)1(
~~ −

+
−

+ ikxxikxx RR .
A secondary goal is to reduce the number of mixands so that

1
~

+xkN is as small as possible while)|(~
11 kp kxk ++ x is still a

good approximation of pxk+1(xk+1|k).

IV. LMI COVARIANCE BOUNDS AND GAUSSIAN MIXTURE
RE-SAMPLING

The main new feature of this paper's Gaussian mixture
filter is the algorithm that generates the re-sampled Gaussian
mixture)|(~

11 kp kxk ++ x from pxk+1(xk+1|k). The re-sampling
algorithm is developed in [20]. It enforces LMI upper bounds
on the covariances of the individual mixands of the new

)|(~
11 kp kxk ++ x distribution. Enforcement of these bounds is

the key to successful Bayesian estimation through the
application of EKF approximations to each mixand within
static multiple-model filter calculations. The present section
gives an overview this re-sampling algorithm.

4

A. LMI Square-Root Information Matrix Bounds and
Candidate Square-Root Information Matrices for Re-
Sampled Mixands
Given the covariance matrix upper bound Pmax, a

corresponding square-root information matrix Rmin can be
computed using Cholesky factorization followed by matrix
inversion so that -T1

min
-
min RR = Pmax. Given Rmin, the new

mixands' covariances will be upper-bounded by Pmax, in the
LMI sense, if and only if their square-root information
matrices respect the following LMI lower bounds [20]:

 ikxxikxx RR)1(
T

)1(
~~

++ minmin RRT≥ for all i = 1, ..., 1
~

+xkN (12)

The choice of the covariance upper bound Pmax is problem-
dependent. It must be chosen small enough so that linear
approximations of the dynamics and measurement model
functions in (1a) and (1b) are reasonably accurate over about a
2-σ range of Pmax. It may be allowable for the chosen Pmax to
permit large variations in certain subspaces where the problem
model functions only have weak nonlinearities. In the limit of
subspaces with perfect linearity of the model functions, very
large corresponding projections of Pmax are acceptable, and the
resulting filter calculations will behave somewhat like a Rao-
Blackwellized particle filter. It may also be allowable to make
the choice of Pmax dependent of the region of xk space where
the mixands are being generated. The most convenient way to
implement such a dependence is to choose Pmax as function of
the mean values of the pxk+1(xk+1|k) mixands that are used to
generate particular new)|(~

11 kp kxk ++ x mixands.

The re-sampling algorithm generates each new daughter
mixand of)|(~

11 kp kxk ++ x from an original parent mixand of
pxk+1(xk+1|k). The daughter mixand inherits its new square-root
information matrix from a perturbed version of the square-root
information matrix of the parent mixand. Let the perturbed
square-root information matrix associated with the ith mixand
of pxk+1(xk+1|k) be called ikxxR)1(+

(
. It is chosen to obey the

following two LMIs

 ikxxikxx RR)1(
T

)1(++
((

minminRRT≥ (13a)

 ikxxikxx RR)1(
T

)1(++
((

ikxxikxx RR)1(
T

)1(++≥ (13b)

while minimizing the following weighted-matrix-norm-
squared cost function:

 J(ikxxR)1(+
(

) = Trace(1
)1(

T
)1(

-T -
minikxxikxxmin RRRR ++

((
) (14)

Thus, ikxxR)1(+
(

 is the "smallest" square-root information
matrix that is no smaller, in the squared LMI sense, than Rmin
or ikxxR)1(+ . The Rmin LMI lower bound in (13a) enforces the
Pmax maximum covariance bound, and the ikxxR)1(+ LMI in
(13b) ensures that the daughter mixand covariance is also
upper-bounded by the covariance of the parent mixand. This

second bound is needed in order to ensure that the parent
mixand can be approximated by a set of daughter mixands.
Minimization of the matrix-norm-squared cost function in (14)
causes the daughter mixand covariance to be as large as
possible while respecting the two covariance upper bounds
associated with the LMIs in (13a) and (13b). By using the
largest possible daughter covariance, the re-sampling
algorithm is likely to be able to achieve good re-
approximation accuracy with the fewest possible daughter
mixands per parent mixand.

Section III of [20] details the calculations that solve for the
ikxxR)1(+

(
 which satisfies the LMIs in (13a) and (13b) while

minimizing the cost in (14). They involve a sequence of
matrix linear algebra calculations that include matrix
inversion, singular value decomposition, and
orthonormal/upper-triangular (QR) factorization [21].

The needed calculations yield an additional matrix that is
of importance to the re-sampling procedure. It is the matrix
square-root of the covariance decrement in going from the
parent mixand to the daughter mixand, ikxxY)1(+

(
δ . It obeys

the covariance decrement relationship

 T
)1()1(ikxxikxx YY ++

((
δδ = -T

)1(
1

)1(
-T

)1(
1

)1(ikxx
-

ikxxikxx
-

ikxx RRRR ++++ −
((

 (15)

This covariance square-root matrix always has nx rows, but it
may have fewer than nx columns. In fact, if ikxxR)1(+ satisfies
the covariance-bounding LMI in (13a), then the optimal

ikxxR)1(+
(

 equals ikxxR)1(+ , and ikxxY)1(+
(

δ can be an empty
array or simply an nx-by-1 matrix of all zeros.

B. Sampling-Based Algorithm to Choose Mixands of New
Gaussian Mixture Distribution
The weights, mean values, and square-root information

matrices of the re-sampled)|(~
11 kp kxk ++ x distribution are

chosen by sampling from a modified version of the
pxk+1(xk+1|k) distribution. This modified version is:

 =++)(11 ktempkp x

 ∑
+

=
+++++

1

1

T
)1()1()1(1)1(),;(

xkN

i
ikxxikxxikxkikx YY

((
δδμxNw (16)

Its definition uses the standard covariance form of the vector
Gaussian distribution

)()(5.0
2/

1T

|)det(|)2(
1),;(μμμ −−− −

= xxx P
n e

P
P

xπ
N

 (17)

Comparison of (11b) with (16) reveals that the only difference
between pxk+1(xk+1|k) and ptempk+1(xk+1) is that the ith mixand of
the former has covariance -T

)1(
1

)1(ikxx
-

ikxx RR ++ , while the

5

corresponding mixand of the latter has covariance
T

)1()1(ikxxikxx YY ++
((

δδ . The latter covariance is less than or equal
to the former in the LMI sense.

The re-sampling algorithm picks the means of its new
mixands by sampling directly from ptempk+1(xk+1). This
sampling procedure is accomplished in two steps that use
random number generators and standard Monte-Carlo
techniques. The first step samples from a 1-dimensional
uniform distribution on the range [0,1]. The uniform sample
is compared to the cumulative weights in (16) in order to
select the particular element of ptempk+1(xk+1) that will be
sampled to determine the mean of a new)|(~

11 kp kxk ++ x
mixand. Let the chosen element of the ptempk+1(xk+1)
distribution be mixand j. The second step determines the
mean of the new lth mixand of)|(~

11 kp kxk ++ x by using a
random number generator to sample a zero-mean, identity-
covariance vector Gaussian distribution with dimension equal
to the number of columns in jkxxY)1(+

(
δ . Let this random

vector be ηjl. The mean value of the new lth mixand of
)|(~

11 kp kxk ++ x becomes

 jljkxxjkxlkx Y ημμ)1()1()1(
~

+++ +=
(

δ (18)

The square-root information matrix of the new lth mixand is
set equal to the pre-computed value that corresponds to the
LMI-bounded version of the covariance of the jth mixand of
pxk+1(xk+1|k):

 lkxxR)1(
~

+ = jkxxR)1(+
(

 (19)

All of the weights for the new mixands are nominally equal-
valued, as in standard importance re-sampling in a PF.

The basic re-sampling algorithm given above is augmented
in three ways in [20]. First, it starts with a target value for the
number of re-sampled mixands, Ntarget. The actual final value

1
~

+xkN will be no larger than this target value, and it could be
smaller. Second, it may happen that some of the mixands of
ptempk+1(xk+1) in (16) will have zero covariance, i.e., jkxxY)1(+

(
δ

= 0. If such a mixand is re-sampled multiple times by this
algorithm, then a simple-minded application of the algorithm
will produce multiple identical mixands of the re-sampled

)|(~
11 kp kxk ++ x with identical weights. Instead, the algorithm

combines these mixands into a single re-sampled mixand with
an appropriately increased weight. Third, several of the
original mixands of pxk+1(xk+1|k) may be nearly identical and
have jkxxY)1(+

(
δ values equal to zero. In this case, the re-

sampling algorithm of [20] attempts to merge such mixands
before executing its re-sampling steps. Merging is carried out
if it results in an initial re-approximation of pxk+1(xk+1|k) that is
not very different from the original pxk+1(xk+1|k) as measured in
a functional 2-norm sense. These last two features of the
algorithm tend to limit the number of mixands in the re-
sampled)|(~

11 kp kxk ++ x , 1
~

+xkN . Experience has shown that

these features are likely to reduce 1
~

+xkN in situations where
the underlying nonlinear/non-Gaussian Bayesian filter has
converged to a sufficiently accurate solution, one whose total
covariance respects the Pmax bound.

V. GAUSSIAN MIXTURE FILTERING ALGORITHM
This paper's new Gaussian mixture filter uses the 5

mixtures in (11a)-(11e) and the dynamics and measurement
models in (1a) and (1b) to approximate the operations of an
exact nonlinear/non-Gaussian Bayesian filter. The dynamic
propagation operation uses pxk(xk|k) from (11a), pwk(wk) from
(11d), and local linearized approximations of the dynamics
model in (1a) in order to compute pxk+1(xk+1|k) by evaluating
the integral on the third line of (3). These calculations are
followed by the Gaussian mixture re-sampling algorithm of
[20], which has been reviewed in Section IV. It forms

)|(~
11 kp kxk ++ x to approximate pxk+1(xk+1|k) in a way that

respects the LMI mixand covariance upper bound expressed
by (12). It also attempts to reduce the needed number of
mixands. The final filtering step is the measurement update.
It uses)|(~

11 kp kxk ++ x from (11c), pνk+1(νk+1) from (11e), and
local linearized approximations of the measurement model
(1b) in order to compute pxk+1(xk+1|k+1) by evaluating the
second line of (6). The dynamic propagation calculations and
the measurement update calculations are standard static
multiple-model filter operations [4], except they are carried
out using EKF techniques cast in the form of SRIF
calculations.

The next two subsections define, respectively, the
multiple-model/EKF/SRIF dynamic propagation and the
multiple-model/EKF/SRIF measurement update. The final
subsection combines these operations with the re-sampling
algorithm of [20] and Section IV in order to define this paper's
full Gaussian mixture filter. It also discusses the reason for
placement of the re-sampling step between the dynamic
propagation and the measurement update.

A. Gaussian Mixture Dynamic Propagation using Mixand-by-
Mixand EKF Calculations
Multiple-model filter dynamic propagation operations are

used to approximate the integral in the last line of (3). The
approximation uses EKF calculations for each mixand. The
input mixands for this calculation are those of the product
distribution:

=)()|(kwkkxk pkp wx ×∑
=

})ˆ,ˆ;(ˆ{
ˆ

1

xkN

i
xxkixkiksrxki RμxNw

 }),;({
1

∑
=

wkN

j
wwkjwkjksrwkj RμwNw (20)

This product causes there to be 1+xkN = xkN̂ Nwk mixands in
the calculation's pxk+1(xk+1|k) output distribution.

6

The multiple-model dynamic propagation implements the
SRIF form of the EKF dynamic propagation steps for each of
the 1+xkN products of a posteriori state mixands i = 1, ..., xkN̂
and process noise mixands j = 1, ..., Nwk. The index of each
resulting a priori state mixand for xk+1 is l = Nwk(i-1) + j, and
the corresponding dynamic propagation calculations for this
mixand are:

 wkjxkilkx www ˆ)1(=+ (21a)

),ˆ()1(wkjxkiklkx μμμ f=+ (21b)

 ⎥
⎦

⎤
⎢
⎣

⎡

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−

+

+
11

)1(

)1(
ˆˆ

0
0

ˆˆ

klxxkiklklxxki

wwkj

lkxx

lkwxwwkl
kl ΦRΓΦR

R
R
RR

Q

 (21c)

where the calculations in (21c) start with the matrix on the
right-hand side and perform a QR factorization of that matrix
in order to compute the outputs on the left-hand side. These
outputs are the orthonormal matrix Qkl, the square, upper-
triangular matrices wwklR̂ and lkxxR)1(+ , and the additional
matrix lkwxR)1(

ˆ
+ .

The calculations in (21a)-(21c) have been derived by first
substituting the linearized approximation

),(1
1

kkkk wxfx +
−=

]}[),ˆ({ˆ 1
1

wkjkklwkjxkikkklxki ΓΦ μμμμ −−−+≅ +
− wfx

 (22)

with

 Φkl =
),ˆ(wkjxkik

k

μμx
f

∂
∂ and Γkl =

),ˆ(wkjxkik

k

μμw
f

∂
∂ (23)

into the product term ×)ˆ,ˆ;(ˆ xxkixkiksrxki RμxNw
),;(wwkjwkjksrwkj RμwNw of the Gaussian mixture in (20).

The resulting approximate term is a joint Gaussian in xk+1 and
wk. Its integral with respect to wk in the last line of (3) can be
evaluated by using the Gaussian unit normalization condition.
The values of lkx)1(+w , lkx)1(+μ , and lkxxxR)1(+ in (21a)-(21c)
have been defined so that the resulting integral equals

),;()1()1(1)1(lkxxxlkxksrlkx R ++++ μxNw , consistent with
standard SRIF calculations [22].

In order for the linearized approximation in (22) to be
sufficiently accurate, it is required that the pwk(wk) mixand
covariances T1 −−

wwkjwwkj RR for j = 1, ..., Nwk be sufficiently
small. Thus, the square-root information matrices for the
process noise mixands must obey an LMI of the form

 wwkjwwkj RRT
wminwminRRT≥ for all j = 1, ..., Nwk (24)

where Pwmax = T1 −−
minwwminww RR is the covariance upper bound

for the a priori process noise mixands. If the original
formulation of the filtering problem does not respect this
process noise mixand LMI, then the Gaussian mixture re-
sampling algorithm of [20], as reviewed in Section IV of the
present paper, must be applied to the original process noise
distribution in order to produce the distribution of (11d) that
will be used by the filter.

The orthonormal matrix Qkl is discarded after the
operations in (21a)-(21c), and the matrices wwklR̂ and

lkwxR)1(
ˆ

+ are also discarded unless one wants to do a
backwards smoothing pass after the forwards filtering pass.

The dynamic propagation of the mixand square-root
information matrix in (21c) relies on the inverse of the mixand
state transition matrix Φkl. Alternate calculations can be
implemented in situations where Φkl is not invertible provided
that the resulting lkxxR)1(+ will not be infinite, which will be
the case for a process noise model that keeps the filtering
problem non-singular. One suitable alternate version uses
square-root covariance propagation followed by matrix
inversion in order to revert back to a square-root information
matrix representation of the mixand covariance.

B. Gaussian Mixture Measurement Update using Mixand-by-
Mixand EKF Computations
A multiple-model filter measurement update is used in

conjunction with EKF techniques in order to approximate the
last line of (6). The input mixands for this calculation are
those of the product distribution:

=− ++++++)]([)|(~
111111 kkkkkxk pkp xhyx ν

 ×∑
+

=
++++

1
~

1
)1()1(1)1()(}~,~;{~xkN

i
ikxxikxksrikx RμxNw

)(1

1
)1()1(111)1(},)];({[∑ −

+

=
++++++

νkN

j
jkjkkkksrjk Rνννν μxhyNw

 (25)

Thus, there are 1
ˆ

+xkN = 11
~

++ νkxk NN mixands in the filter's
final a posteriori distribution pxk+1(xk+1|k+1).

The EKF/SRIF multiple-model measurement update
performs the Bayesian calculations in the last line of (6) using
local linearizations of the measurement model function
hk+1(xk+1). The linearized approximation used in the ijth
product term of (25) is:

]~[)~()()1(1)1()1(111 ikxkikikxkkk H +++++++ −+≅ μμ xhxh (26)

where

 H(k+1)i =
ikx

k

k

)1(
~1

1

+
+

+

∂
∂

μ
x
h

 (27)

7

Next, the measurement update re-arranges each mixand
product term in (25),

×++++ }~,~;{~
)1()1(1)1(ikxxikxksrikx RμxNw

},)];({[)1()1(111)1(jkjkkkksrjk R ++++++ − νννν μxhyNw , into
the equivalent a posteriori form

}ˆ,ˆ;{ˆ)1()1(1)1(lkxxlkxksrlkunx R ++++ μxNw . This is done for each
of the 1

ˆ
+xkN products of a priori state mixands i = 1, ...,

1
~

+xkN and measurement noise mixands j = 1, ..., Nνk+1. The
index of each corresponding a posteriori state mixand is l =
Nνk+1(i-1) + j. Equivalence between the two forms is possible
because substitution of the linearized measurement function
model from (26) into the measurement noise mixand causes
the original product term to be Gaussian in xk+1. The
following standard SRIF measurement update calculations
[22] and multiple-model filter calculations are designed to
ensure the equivalence of these two Gaussian forms

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
+

ikjk

ikxxlkxx
lk HR

RRQ
)1()1(

)1()1(
)1(

~

0

ˆˆ
νν

 (28a)

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

+

lkr

lkx

)1(

)1(ˆ
z
z

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−− +++++

+ })~({
0ˆ

)1()1(11)1(

T
)1(

jkikxkkjk
lk R

Q
ννν μμhy

 (28b)

 lkxlkxxikxlkx R)1(
1

)1()1()1(ˆˆ~ˆ +
−

+++ += zμμ (28c)

×
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

+

++
+++ 2/

)1(

)1()1(
)1()1()1(

)2(|)ˆdet(|

|)det()~det(|~ˆ
yn

lkxx

jkikxx
jkikxlkunx

R

RR

π

νν
νwww

 }5.0exp{)1()1(lkr
T

lkr ++− zz (28d)

The calculations in (28a) QR factorize the input matrix on the
right-hand side in order to compute the orthonormal matrix

lkQ)1(
ˆ

+ and the square, upper-triangular a posteriori square-
root information matrix lkxxR)1(

ˆ
+ , which both appear on the

left-hand side. Equation (28b) forms the normalized
measurement residual on the right-hand side and transforms
the result using the transpose of lkQ)1(

ˆ
+ in order to compute

the residual error vector lkr)1(+z and the vector lkx)1(ˆ +z . The
latter vector is used in (28c) to update the mixand mean.

Equation (28d) computes the un-normalized version of the
a posteriori mixand weight. Four of the product terms on the
right-hand side of (28d) are standard in a static multiple-
model re-weighting formula: the two pre-update mixand
weights, the power of 2π, and the exponential that involves a
sum of squares of normalized measurement residuals [4]. The
terms involving determinants of square-root information
matrices are required for this new SRIF form of the static
multiple-model measurement update. They replace a term
involving the determinant of the innovations covariance

matrix that appears in the covariance form of this re-weighting
formula [4].

The final step of the Gaussian mixture measurement
update re-normalizes the new mixand weights. Re-
normalization occurs after the calculations in (28a)-(28d) have
been carried out for all of the mixands. The re-normalization
takes the form:

∑

=
+

=
+

+
+

1ˆ

1
)1(

)1(
)1(

ˆ

ˆ
ˆ

xkN

m
mkunx

lkunx
lkx

w

w
w for l = 1, ..., 1

ˆ
+xkN (29)

This completes the calculations on the last line of (6) because
the sum of the unnormalized weights in the denominator of
(29) equals the integral of the probability density product in
the denominator of (6).

Given that these calculations could involve a large number
of mixands, 1

ˆ
+xkN , it is important to carry them out in the

most efficient manner possible. One important efficiency is to
evaluate the linearization calculations in (26) and (27) only

1
~

+xkN times, not 1
ˆ

+xkN times. Similarly, the determinant
)~det()1(ikxxR + only needs to be evaluated 1

~
+xkN different

times, and the determinant)det()1(jkR +νν only requires Nνk+1
independent evaluations. Furthermore, the usual upper-
triangularity of ikxxR)1(

~
+ , jkR)1(+νν , and lkxxR)1(

ˆ
+ expedites

the determinant calculations because the determinant of an
upper-triangular matrix equals the product of its diagonal
elements.

C. Complete Gaussian Mixture Filter Operations
The Gaussian mixture filtering algorithm starts with the

following inputs:

a) the a posteriori state Gaussian mixture at sample 0,
px0(x0|0),

b) the process noise and measurement noise Gaussian
mixtures pwk(wk) and pνk+1(νk+1) at samples k = 0, 1,
2, ...

c) the square-root information matrix LMI lower
bound Rmin that is used in (12), and

d) the target number of mixands after each state re-
sampling Ntarget.

Given these inputs, the approximate nonlinear/non-
Gaussian Bayesian calculations of the new Gaussian mixture
filter proceed according to the following 7 steps:

1. If necessary, re-sample px0(x0|0) using the
Gaussian mixture re-sampling algorithm of [20] in
order to ensure that the LMI in (12) is satisfied by
each mixand's square-root information matrix. If
re-sampling is necessary, then use Ntarget as the
target/maximum number of re-sampled mixands.

2. Set the current sample index to k = 0.
3. Perform the multiple-model SRIF/EKF dynamic

propagation calculations in (21a)-(21c) for all

8

1+xkN = xkN̂ Nwk mixands of the new a priori
distribution pxk+1(xk+1|k). Use the matrices Φkl and
Γkl for l = 1, ..., 1+xkN from (23) in these
calculations.

4. Perform Gaussian mixture re-sampling of
pxk+1(xk+1|k) in order to produce)|(~

11 kp kxk ++ x with
mixand square-root information matrices that all
satisfy the LMI in (12). Use the re-sampling
procedure of [20], as discussed in this paper's
Section IV. Use Ntarget as the target/maximum
number of re-sampled mixands.

5. Perform the multiple-model SRIF/EKF
measurement update calculations in (28a)-(28d) for
all 1

ˆ
+xkN = 1

~
+xkN Nνk+1 mixands of the new a

posteriori distribution pxk+1(xk+1|k+1). Use the
matrices H(k+1)i for i = 1, ..., 1

~
+xkN from (27) in

these calculations.
6. Use (29) to compute the normalized mixand

weights of the new a posteriori distribution
pxk+1(xk+1|k+1).

7. Replace k by k+1. Stop if the incremented k value
is the last sample of the filtering run. Otherwise,
return to Step 3.

This is a recursive procedure. Each iteration of Steps 3-7
produces the a posteriori distribution pxk+1(xk+1|k+1) that
becomes the input distribution pxk(xk|k) for the next iteration
after k is incremented in Step 7.

The most important purpose of Step 4's mixture re-
sampling is to bound the mixand covariances using the LMI in
(12). This bounding ensures sufficient accuracy of the EKF
linearizations of the dynamics and measurement models in
(22) and (26). It is obvious that enforcement of the LMI
bound in Step 4 can ensure accuracy of the measurement
model linearization in (26) because the measurement update
calculations of Step 5 occur immediately after the re-sampling
step. Satisfaction of the LMI bound in (12) during the
dynamic propagation may seem uncertain because the
measurement update in Steps 5 and 6 happens after the re-
sampling and before the Step-3 dynamic propagation of the
filter recursion's next iteration. Note, however, that the SRIF
measurement update calculation in (28a) guarantees that

 ikxxikxxlkxxlkxx RRRR)1(
T

)1()1(
T

)1(
~~ˆˆ

++++ ≥ (30)

This inequality re-states the fact that the measurement update
of a linear filter can never increase the covariance of the
corresponding state estimate. The re-sampling in algorithm
Step 4 ensures that the LMI in (12) is satisfied by each

ikxxR)1(
~

+ . Equation (30) and the transitivity of LMIs ensure
that

 minminlkxxlkxx RRRR T
)1(

T
)1(

ˆˆ ≥++ for all l = 1, ..., 1
ˆ

+xkN (31)

Therefore, the filter need not re-sample after its measurement
update. Equation (31) guarantees that the a posteriori
mixands at the end of the kth iteration of Steps 3-7 are
sufficiently narrow to admit accurate EKF dynamic
propagation calculations in Step 3 of the k+1st iteration.

The second goal of the mixture re-sampling in Step 4 is to
limit the number of mixands. If possible, this step seeks to
reduce this number as much as is practical without adversely
affecting the accuracy of the re-sampled distribution. One can
show that 1+xkN = xkN~ NνkNwk. If Nνk or Nwk is greater than 1,
then the number of mixands will grow during execution of
Steps 5-7 of the k-1st iteration of the algorithm and Step 3 of
the kth iteration. Without the re-sampling in Step 4, the
number of mixands would grow geometrically without bound,
and the calculations would quickly become intractable. The
re-sampling in Step 4 bounds each xkN~ to be no greater than
Ntarget, thereby bounding the possible growth in the number of
mixands. Normally such a bound can be enforced without
undue loss of accuracy because many of the mixands "lost" in
the re-sampling process have insignificant weights or are
redundant with other mixands.

As will be shown in Section VI, the re-sampling algorithm
of [20] includes features that have the potential to form a

)|(~
11 kp kxk ++ x that is an accurate approximation pxk+1(xk+1|k),

but with the number of re-sampled mixands 1
~

+xkN much less
than Ntarget. When this happens, the Gaussian mixture filter
has the potential to be very efficient computationally, almost
as efficient as a standard EKF or UKF.

The new Gaussian mixture filter differs markedly from a
standard PF in its placement of the re-sampling algorithm
between the dynamic propagation of Step 3 and the
measurement update of Steps 5 and 6. A typical PF performs
importance re-sampling after the measurement update [5,9].
The re-positioning of the re-sampling step in the present filter
has been driven by its need to enforce the LMI bound in (12).
If the re-sampling step took place after the measurement
update, then the potential for mixand covariance growth
during the dynamic propagation on the next iteration could
cause violation of the LMI in (12) at the point of measurement
model linearization in (26) and (27). The fact of covariance
shrinkage in the measurement update allows the filter to avoid
all such problems by placing the re-sampling step between the
dynamic propagation and the measurement update. This
placement enables each filter iteration's one re-sampling
operation to enforce the LMI bound in (12) at two separate
points of the iteration.

The only negative consequence of moving the re-sampling
step is the potential to retain insignificant mixands too long.
The re-weighting calculations of the measurement update in
(28d) and (29) can cause some updated mixands to have
negligible weights. Typically this happens when a given
mixand has unreasonably large normalized measurement
residuals in its lkr)1(+z vector from (28b). Such mixands have
virtually no impact on the remainder of the filter calculations.
Failure to eliminate them through importance re-sampling

9

-40 -20 0 20 40 60 80

-50

-40

-30

-20

-10

0

10

20

30

40

East Position (m)

N
or

th
 P

os
iti

on
 (m

)

Truth
EKF
UKF A
UKF B
BSEKF A
BSEKF B
PF A
PF B
Blob Filter

Initial
estimates

"Truth" initial
conditions

Fig. 1. Plan view of the blind tricyclist problem showing the two merry-go-rounds, the simulated
truth position trajectory (blue solid curve), and the corresponding estimated trajectories for 8

different filters.

after the measurement update results in wasted computation.
The wasted operations, however, persist only until re-
sampling Step 4 on the next iteration of the algorithm. That
step includes mixand importance considerations in its re-
sampling calculations, which eliminate all mixands with
negligible weights.

VI. GAUSSIAN MIXTURE FILTER PERFORMANCE ON THE
BLIND TRICYCLIST PROBLEM

Monte-Carlo simulation tests of the new Gaussian mixture
filter have been carried out for the Blind Tricyclist nonlinear
filtering problem of [17]. Its performance is compared to that
of the same nonlinear filters that are evaluated in [17], an
EKF, two UKFs, two Moving Horizon Estimators (also called
Backwards-Smoothing EKFs -- BSEKFs), and two PFs.

A. Review of Blind Tricyclist Problem
The Blind Tricyclist problem is developed in [17] as a

benchmark nonlinear filtering problem. It involves a blind
tricyclist who navigates around an amusement park based on
relative bearings measured between his heading and the
locations of 2 friends on 2 merry-go-rounds who shout to him
intermittently. He knows which friend is on which merry-go-
round and can distinguish their voices. He also knows the
location and diameter of each merry-go-round, but he does not
know each friend's initial phase angle on the merry-go-round
(i.e., which horse the friend rides), nor does he know the
constant rate of rotation of each merry-go-round. He seeks to
determine his east-west/north-south position and his heading
angle. In order to do this, he also must estimate the
"nuisance" parameters that characterize the two friends'
merry-go-rounds' instantaneous angles
and constant rates. Thus, his state
vector xk has 7 elements, his position
coordinates Xk and Yk, his heading angle
θk, the phase angles of the two friends'
merry-go-round positions φ1k and φ2k,
and their merry-go-rounds' constant
rates k1φ& and k2φ& . The k subscript on
the latter two quantities is somewhat
misleading in that their true values do
not change with time, but their
estimates can change with time as a
result of measurement updates.

The Blind Tricyclist uses a
kinematic model that includes known
input time histories for the steer angle
and the speed. The process noise
includes small white-noise errors in
these two commanded input time
histories along with wheel slippage that
allows slight violations of the tricycle's
planar rolling constraints. The
dynamics models for the merry-go-
rounds are kinematic and have no

uncertainty beyond their unknown initial angles and rates.

Relative bearing measurements to each merry-go-round-
riding friend are made once every 3 seconds, with the two
friends shouting out of phase with each other. During the 141
second duration of the considered filtering run, there are a
total of 47 relative bearing measurements made to each friend.
The filter sample intervals are only 0.5 seconds long. Thus,
there are three sample times with no measurement data
between each sample time that has bearing data. The filter
algorithm skips measurement update Steps 5 and 6 in the
absence of bearing data.

Figure 1 illustrates this estimation problem. It shows a top
view of the amusement park with the two merry-go-rounds
and a simulated true tricyclist trajectory for a particular case.
Also shown are various filters' estimates of this trajectory.
The merry-go-rounds lie slightly to the left of center, with a
smaller one to the north drawn in green and a larger one to the
south drawn in magenta. The truth tricyclist trajectory is
shown in solid blue. The tricyclist starts at the blue asterisk
position to the south-east of the figure's center. He proceeds
almost due north until he takes a ~90o right turn. At the end
of this first turn he stops and then executes a ~90o left turn
traveling in reverse. At the end of this second turn he stops
again at the northern-most point of his trajectory. He is now
facing south. Next, he proceeds south until he is almost due
east of the mid-point between the two merry-go-rounds. He
now executes a second ~90o right turn and heads almost due
west until he finishes his travels at a point between the two
merry-go-rounds.

Many additional details about the Blind Tricyclist are
contained in [17]. They include the equations that define the
dynamics function fk(xk,wk) and the measurement function

10

hk+1(xk+1), the process-noise and measurement-noise
covariances, the tricycle geometry, the merry-go-round
geometry, and the initial estimation error covariance. Two
problems are considered, one with a small initial covariance
that allows a simple EKF to converge reasonably well, and
another with a much larger initial uncertainty that causes
severe convergence problems for a number of the filters.
Only the difficult latter case is considered here. Reference
[17] cites a link to MATLAB code that includes all Blind
Tricyclist model functions, a truth-model simulation, and a
first-order EKF solution. That link is included here as [23].

B. Comparison of the Gaussian Mixture Blob Filter with
other Nonlinear Filters for a Representative Blind
Tricyclist Case
The Gaussian mixture filter has been applied to a truth-

model simulation of the Blind Tricyclist problem. This
implementation uses Nwk = 1 mixand for the process noise and
Nνk+1 = 1 mixand for the measurement noise, thereby
modeling these as Gaussian white-noise sequences. There is
no need to re-sample the process noise 1-element Gaussian
"mixture" in order to respect the bound on its covariance
associated with (24) because its original covariance already
respects a sufficiently small bound.

The Gaussian mixture filter's re-sampling algorithm has
been tuned for the Blind Tricyclist problem as follows: The
value of Ntarget is set to 7,000 re-sampled mixands, though
results will show that the filter is able to reduce the number of
mixands far below this value after initial convergence has
been achieved. The LMI lower-bound on the state mixand
square-root information matrices in (12) is enforced using the
value Rmin = diag[1/(2.6 m); 1/(2.6 m); 1/(1.04 rad); 1/(0.3467
rad); 1/(0.4 rad); 1/(2000 rad/sec); 1/(2000 rad/sec)]. The first
two values correspond to maximum east-west and north-south
position error standard deviations of 2.6 m for each mixand.
The third term implements a maximum heading standard
deviation per mixand of 1.04 rad (60 deg). The fourth and
fifth terms specify each mixand's maximum angular standard
deviations for the two merry-go-round phase angles, 0.3467
rad (20 deg) for the southern merry-go-round and 0.4 rad (23
deg) for the northern one. The last two terms are per-mixand
merry-go-round rate standard-deviation limits of 2,000 rad/sec
(318 Hz or 1.15x105 deg/sec). These rate limits are
intentionally very large because the rates only enter linearly
into the dynamics function fk(xk,wk) and not at all into the
measurement function hk+1(xk+1). Their nonlinear effects are
indirect, through the merry-go-round phase angle terms. The
mixand covariance limits on the phase angles suffice to limit
the indirect nonlinear effects of large merry-go-round rate
variances.

Figure 1 plots the east-west and north-south tracking
performance of the Gaussian mixture filter on an example
simulated problem. The initial position estimate of the filter is
given by the red asterisk in the lower left-hand part of the
figure. This is obviously far from the initial truth position
designated by the blue asterisk in the bottom half of the figure
and somewhat right of center. Also shown in the figure are
the estimated position time histories of 7 other filters that have

been tested in [17]. In fact, Fig. 1 corresponds to the case that
produced Fig. 4 of [17]. Therefore, most of the other filters'
estimated trajectories in Fig. 1 are identical to those of [17]'s
Fig. 4.

For the two PF's, however, the trajectories in Fig. 1 differ
from those of [17]. During the course of the present research,
it was discovered that PFs and Gaussian mixture filters can be
confused by the 2π cycle ambiguity of the tricycle heading
angle θk and the merry-go-round phase angles φ1k and φ2k. In
the Gaussian mixture filter, this aliasing-like effect is benign.
It only impacts the filter's computation of the overall state
mean and error covariance, as per (10). If this mean and
covariance are required as outputs, then one can remove this
aliasing effect by performing a 2π relative unwrapping
operation between the mean heading angles and the mean
merry-go-round phase angles of the filter's individual
mixands. For the PFs, however, failure to compensate for this
effect during filter operation can have a dramatic impact on
the regularization process that has been used to avoid collapse
of particle diversity. It is necessary to do inter-particle
unwrapping of these angles after each measurement update
before regularized re-sampling occurs. The results reported in
[17] do not include this type of PF data processing. The
results reported here include it. Therefore, the PF results in
the present paper exhibit dramatic improvements in
comparison to those of [17].

Even with the improved PF results, the best three filters in
Fig. 1 are BSEKF A (light green dashed curve), BSEKF B
(grey dash-dotted curve), and the new Gaussian mixture Blob
Filter (dark green solid curve). These are the only filters that
track near the truth blue solid curve during its initial north-
bound leg. They are the only filters that show the initial two
turns with the stops at the end of each and with the backing-up
maneuver performed during the second turn. The EKF (red
solid curve) and UKF A (brown dashed curve) never produce
anything like the true trajectory, though they do manage to
stay within the general area of tricycle motion. UKF B (cyan
dotted curve) diverges out of the figure's field of view and
never returns. Its sigma points spread is tuned somewhat
differently than that of UKF A [17]. PF A (purple dash-dotted
curve) uses 3,000 particles, and PF B (dark grey dotted curve)
uses 10,000. Neither of them reproduces the stopping or left-
turning back-up maneuver, and PF B even exits the figure's
field of view temporarily. In their favor, both PFs eventually
approach the true trajectory and the estimated trajectories of
the 3 good filters on the final westward leg. The best
performance in Fig. 1 appears to be that of BSEKF B, which
employs explicit nonlinear smoothing for the 40 half-second
sample/propagation intervals that precede the filter sample of
interest. The next best performance appears to be that of the
new Gaussian mixture Blob Filter, and BSEKF A has the 3rd
best performance. BSEKF A employs explicit nonlinear
smoothing over a shorter window, only 30 half-second
sample/propagation intervals. The performance of the new
Blob Filter is only slightly better than that of BSEKF A, and
this better performance occurs primarily during the first right-
ward turn, the subsequent stop, and the initial part of the
backwards left-hand turn.

11

0 50 100 150

100

101

102

103

Time (sec)

R
M

S
 P

os
iti

on
 E

rro
r M

ag
ni

tu
de

 (m
)

 EKF
UKF A
UKF B
BSEKF A
BSEKF B
PF A
PF B
Blob Filter
Cramer-Rao

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

Fr
ac

tio
n

of
 C

as
es

EKF
UKF A
UKF B
BSEKF A
BSEKF B
PF A
PF B
Blob Filter

Fig. 2. Blind tricyclist RMS position error magnitude time histories for 8 different
filters and the corresponding Cramer-Rao lower bound, as computed using a 100-

case Monte-Carlo simulation.

Fig. 3. Blind tricyclist consistency tests for 8 different filters that show the
percentage of normalized squared state errors that lie above the 99.99% threshold of

a degree-7 χ2 statistic, as computed using 100 Monte-Carlo simulation cases.

C. Statistical Filter Analysis using 100 Monte-
Carlo Simulation Cases
A Monte-Carlo study has been conducted

using 100 different truth-model simulations.
Each simulation had the same nominal starting
point for the tricyclist and the same nominal steer
and speed time history as produced the blue solid
curve in Fig. 1. Each truth trajectory varied
somewhat from that in Fig. 1 due to process
noise. The filter's initial distribution px0(x0|0) was
a Gaussian with the same large covariance for
each case, but with a different mean value for
each of the 100 Monte-Carlo runs. The
distribution of mean values was chosen to cause
the 100-case statistics of the actual errors between
the truth initial state and each px0(x0|0) mean to be
consistent with the common covariance of the
100 px0(x0|0) distributions.

Figures 2 and 3 present summary statistical
results from these simulations. They compare the
new Gaussian mixture Blob Filter with the 7
other filters that have been used to generate Fig. 1. Figure 2
plots the root-mean-square (RMS) east-west/north-south
position error magnitude time history for each filter, as
averaged over the 100 Monte-Carlo cases. It also plots the
Cramer-Rao lower bound for this error as approximated by
averaging over the 100 simulations. The better filter is the
one with the lowest RMS error in Fig. 2. Figure 3 plots the
fraction of the 100 cases in which the normalized square of
the state error)ˆ(ˆ)ˆ(1T

kkxxkkk P xxxx −− − exceeds the 99.99%
probability threshold of a degree-7 χ2 distribution. In this
calculation, kx̂ and xxkP̂ are, respectively, the mean and
covariance of a given filter's approximation of the a posteriori
probability density function pxk(xk|k). The fraction of cases
that violate this limit should only be about 0.0001 if the state
estimation error is nearly Gaussian. Therefore, a
consistent filter will produce a curve at or very
near 0 in Fig. 3. Note that Figs. 2 and 3 are
nearly identical to Figs. 5 and 6 of [17], except
that PF A and PF B show better performance than
in [17] due to the fixed 2π ambiguity problem
noted earlier.

It is obvious from Fig. 2 that the new
Gaussian mixture Blob Filter performs
significantly better than any of the other filters.
Its RMS position error time history (dark green
solid curve) is consistently the lowest, and it is
much closer to the Cramer-Rao lower bound
(tan/green dash-dotted curve) than that of the next
best filter, BSEKF B (dark grey dash-dotted
curve). Thus, the superior performance of
BSEKF B in Fig. 1 appears to be an outlier, a
statistical exception to the rule of Fig. 2 that the
Blob filter achieves the best RMS accuracy
throughout the trajectory.

PF B (grey dotted curve) displays the best the filter
consistency in Fig. 3. Its curve is always very close to zero.
The new Gaussian mixture Blob Filter (dark green solid
curve) has the second best consistency after t = 70 seconds,
but one or two other filters display better consistency in the
early stages of the filtering interval, UKF A (brown dashed
curve) and UKF B (cyan dotted curve). Given that PF B,
UKF A, and UKF B are significantly less accurate than the
Blob Filter, as demonstrated in Fig. 2, their superior
consistency is not very useful. The two filters with accuracy
closest to that of the Blob filter in Fig. 2 are BSEKF A (light
green dashed curve) and BSEKF B (grey dash-dotted curve).
In Fig. 3, however, both of them display significantly poorer
consistency than the Blob filter. In summary, the new

12

0 50 100 150
0

1000

2000

3000

4000

5000

6000

7000

Time (sec)

N
ha

t k

100-Case Maximum
100-Case Average
100-Case Minimum

Fig. 4. Time histories of the maximum, mean, and minimum statistics of the Gaussian mixture
filter's a posteriori mixand count kN̂ for 100 Monte-Carlo simulation cases.

Gaussian mixture Blob filter achieves the best accuracy for
this problem, and it's consistency is better than 4 of the other
filters for the entire filtering interval and better than 6 of the 7
other filters during the second half of the interval.

Figure 4 investigates the mixand count performance of the
Gaussian mixture filter for the 100 Monte-Carlo simulation
cases. It plots max(kN̂) vs. tk (blue solid curve), mean(kN̂)
vs. tk (red dash-dotted curve), and min(kN̂) vs. tk (light green
dashed curve), where the maximum, mean, and minimum are
computed over the 100 Monte-Carlo cases. These curves all
start at the value 7,000, which is the Ntarget value that has been
used for the re-sampling in Step 4 of Subsection V.C.
Eventually, the re-sampling algorithm is able to reduce this
number through its two ad hoc strategies for developing an
accurate Gaussian mixture re-approximation with a reduced
number of mixands [20]. By the end of the filter run, the
maximum kN̂ is 8, the mean is 3.77, and the minimum is 1.

In a PF context, the low terminal values of kN̂ would be
interpreted as a collapse of particle diversity and would
indicate filter failure. In the Gaussian mixture context, the
filter can function well with a very small number of mixands
if the true a posteriori probability density function is well
modeled by the resulting mixture. Clearly this is the case for
the present example, as indicated by the excellent accuracy
results given in Fig. 2.

Note that the Gaussian mixture filter has the ability to
increase kN̂ should an increase be needed. This ability relies
on a coupling of two processes. The first process is the
expansion of the mixand covariances of the state probability
distribution that can occur during dynamic propagation. The
second process is the enforcement of the LMI in (12) during
Gaussian mixture re-sampling. A filter with few mixands

could experience mixand covariance expansion during the
dynamic propagation to the point of violating the LMI in (12)
after the propagation. The re-sampling procedure would split
the expanded mixands into multiple mixands. This expansion
and splitting procedure could continue for multiple samples
and eventually result in a large number of mixands. This
scenario has occurred in simulation tests of the Gaussian
mixture blob filter on a different estimation problem.

One last filter performance metric to consider is the
needed computational resources. The average time to run
each filter over the 141 second data interval has been
computed, with averaging carried out over the 100 Monte-
Carlo cases. These averages have been computed when
running the filter algorithms on a 3 GHz Windows XP
Professional Workstation using MATLAB code. The results
are as follows: EKF 0.08 sec, UKFs A and B 1.18 sec,
BSEKF A 60.84 sec, BSEKF B 110.6 sec, PF A 149 sec, PF B
695 sec, and the new Gaussian mixture Blob Filter 187 sec.

Thus, the Blob Filter is the second most
expensive filter, but it uses only 27% as
much computation time, on average, as
does the 10,000-particle PF B. Note, also,
that the Blob Filter is only 70% more
expensive computationally than the next
most accurate filter, BSEKF B.
Furthermore, the Blob Filter would have a
more favorable average time comparison
for longer filter runs because its largest
computational costs occur during the
convergence from the large initial errors,
when it needs to use many mixands in
order to accurately approximate the
underlying probability density functions,
as documented in Fig. 4.

The new Blob Filter is highly
parallelizable. The only calculations that
require "communication" between
mixands are the weight normalization at
the end of the measurement update in (29)
and the parts of the re-sampling algorithm

that merge mixands. Therefore, greatly increased execution
speed could be achieved by mapping the algorithm onto a
parallel processor.

VII. SUMMARY AND CONCLUSIONS
A new Gaussian mixture nonlinear filter has been

developed. It uses EKF calculations to implement a static
multiple-model filter in which each of its Gaussian mixands
constitutes a model. These calculations are implemented in
SRIF form. The key new element of this filter is its re-
sampling algorithm, which executes between the dynamic
propagation step and the measurement update step. The
primary goal of the re-sampling algorithm is to produce an
accurate approximation of the original a priori distribution
while enforcing an LMI upper bound on the covariance of
each of its mixands. If this bound is tuned properly for a
given problem, then it ensures that the multiple-model EKF

13

computations will accurately approximate the underlying
Bayesian calculations of an exact nonlinear/non-Gaussian
filter. The re-sampling step also limits the number of mixands
in the distribution, and it can reduce the number of mixands
significantly when many of them would otherwise be
redundant.

This new filter can be interpreted as generalizing the
concept of a Particle Filter. Its generalization uses "fattened"
components -- Gaussian mixands with finite covariances --
instead of particles that have infinitesimal covariances.
Therefore, its components might reasonably be designated as
"blobs", and the overall filter might reasonably be called a
"Blob Filter."

The new Blob Filter has been tested on a difficult 7-state
benchmark nonlinear filtering problem, the Blind Tricyclist
problem. Monte-Carlo simulation tests demonstrate that the
new filter is more accurate than a number of other filters,
including an EKF, two UKFs, two Moving-Horizon
Estimators/BSEKFs, and two regularized Particle Filters. Its
accuracy is significantly closer to the Cramer-Rao lower
bound than that of the two next best filters, the BSEKFs. Its
speed of execution is slow, but it requires only 27% as much
computational time as the most expensive filter considered in
this study, a 10,000-particle PF. The new filter's consistency
between its computed and actual estimation error covariance
is imperfect, but not nearly as imperfect as the two next best
filters. Given the Blob Filter's superior accuracy, its bounded
computational costs, and its reasonable consistency, it
represents a good candidate for solution of difficult nonlinear
filtering problems.

REFERENCES

[1] Kalman, R.E., "A New Approach to Linear Filtering and Prediction

Problems," Trans. ASME Journal of Basic Engineering, Vol. 82, March
1960, pp. 34-45.

[2] Kalman, R.E., and Bucy, R.S., "New Results in Linear Filtering and
Prediction Theory," Trans. ASME Journal of Basic Engineering, Vol.
83, March 1961, pp. 95-108.

[3] Brown, R.G., and Hwang, P.Y.C., Introduction to Random Signals and
Applied Kalman Filtering, 3rd Edition, J. Wiley & Sons, (New York,
1997), pp. 345-346.

[4] Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T., Estimation with
Applications to Tracking and Navigation, J. Wiley & Sons, (New York,
2001), pp. 92-98, 381-395, 441-466.

[5] Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter,
Artech House, (Boston, 2004), pp. 19-22, 24-31, 35-60, 94-98.

[6] Daum, F., “Nonlinear filters: Beyond the Kalman filter,” IEEE
Aerospace & Electronic Systems Magazine, Vol. 20, No. 8, August
2005, pp. 57–69.

[7] Wan, E.A., and van der Merwe, R., "The Unscented Kalman Filter,"

Kalman Filtering and Neural Networks, S. Haykin, ed., J. Wiley & Sons,
(New York, 2001), pp. 221-280.

[8] Julier, S., Uhlmann, J., and Durrant-Whyte, H.F., "A New Method for
the Nonlinear Transformation of Means and Covariances in Filters and
Estimators," IEEE Trans. on Automatic Control, Vol. AC-45, No. 3,
2000, pp. 477-482.

[9] Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T., "A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking," IEEE Trans. on Signal Processing, Vol. 50, No. 2, Feb. 2002,
pp. 174-188.

[10] Rao, C.V., Rawlings, J.B., and Mayne, D.Q., "Constrained State
Estimation for Nonlinear Discrete-Time Systems: Stability and Moving
Horizon Approximations," IEEE. Trans. on Automatic Control, Vol. 48,
No. 2, Feb. 2003, pp. 246-258.

[11] Psiaki, M.L., "Backward-Smoothing Extended Kalman Filter," Journal
of Guidance, Control, & Dynamics, Vol. 28, No. 5, Sept.-Oct. 2005, pp.
885-894.

[12] Sorenson, H.W., and Alspach, D.L., "Recursive Bayesian Estimation
Using Gaussian Sums," Automatica, Vol. 7, No. 4, 1971, pp. 465-479.

[13] van der Merwe, R., and Wan, E., "Gaussian Mixture Sigma-Point
Particle Filters for Sequential Probabilistic Inference in Dynamic State-
Space Models," Proceedings of the International Conference on
Acoustics, Speech, & Signal Processing, (Hong Kong), IEEE, Apr. 2003.
Available at http://www.cse.ogi.edu/~rudmerwe/pubs/index.html.

[14] Horwood, J.T., and Poore, A.B., "Adaptive Gaussian Sum Filters for
Space Surveillance," IEEE Trans. on Automatic Control, Vol. 56, Issue
8, Aug. 2011, pp. 1777–1790.

[15] Horwood, J.T., Aragon, N.D., and Poore, A.B., "Gaussian Sum Filters
for Space Surveillance: Theory and Simulations," Journal of Guidance,
Control, & Dynamics, Vol. 34, No. 6, Nov.-Dec. 2011, pp. 1839-1851.

[16] Terejanu, G., Singla, P., Singh, T., and Scott, P., “Adaptive Gaussian
Sum Filter for Nonlinear Bayesian Estimation,” IEEE Trans. on
Automatic Control, Vol. 56, Issue 9, Sept. 2011, pp. 2151–2156.

[17] Psiaki, M.L., "The Blind Tricyclist Problem and a Comparative Study of
Nonlinear Filters," IEEE Control Systems Magazine, Vol. 33, No. 3,
June 2013, pp. 40-54.

[18] DeMars, K.J., Bishop, R.H., and Jah, M.K., "Entropy-Based Approach
for Uncertainty Propagation of Nonlinear Dynamical Systems," Journal
of Guidance, Control, & Dynamics, Vol. 36, No. 4, July-Aug. 2013, pp.
1047-1057.

[19] Bayramoglu, E., Ravn, O., and Andersen, N.A., "A Novel Hypothesis
Splitting Method Implementation for Multi-Hypothesis Filters," Proc.
10th IEEE International Conference on Control & Automation,
Hangzhou, China, June 12-14, 2013, pp. 574-579.

[20] Psiaki, M.L., Schoenberg J.R., and Miller, I.T., “Gaussian Sum Re-
Approximation for use in a Nonlinear Filter,” submitted to the Journal of
Guidance, Control, & Dynamics, Jan. 2014. Available online at
http://gps.mae.cornell.edu/psiaki_etal_gaussianmixresamp_jgcd2014submission.pdf.

[21] Gill, P.E., Murray, W., and Wright, M.H., Practical Optimization,
Academic Press, (New York, 1981), pp. 37-40.

[22] Bierman, G.J., Factorization Methods for Discrete Sequential
Estimation, Academic Press, (New York, 1977), pp. 69-76, 115-122.

[23] Psiaki, M.L., "Blind Tricyclist Problem MATLAB Functions, Example
Input/Output Data File, and Example Use in EKF Calculations," Cornell
University, Ithaca, New York, available online at
http://gps.mae.cornell.edu/blind_tricyclist_models_simulation_example.zip, Jan. 2013.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

